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ABSTRACT

The similarities and differences of a universal network to normal

neural networks are outlined. The description and application of
a universal network is discussed by showing how a simple linear

system is modeled by normal techniques and by universal network
techniques. A full implementation of the universal network as
universal process modeling software on a dedicated computer
system at EBR-II is described and example results are presented.
It is concluded that the universal network provides differentz

o feature recognition capabilities than a neural network and that

i the universal network can provide extremely fast, accurate, andfault-tolerant estimation, validation, and replacement of signals

i in a real system.

INTRODUCTION

i Networks are computational schemes which can learn the mappingbetween the inputs and outputs of complicated functions or
systems. The architecture of current network applications is
loosely inspired by the human brain and because of this fact they
are usually referred to as neural networks. It is also often
stated that neural networks provide a distributed, non-
algorithmic way of learning to map inputs to outputs as opposed
to the usual local, algorithmic, non-learning methods. While this
may be true in some cases, it is misleading in general because
neural networks use algorithms and because many normal techniques
are in fact distributed and include su.ps which are equivalent to

learning. This is true of many of the classical linear techniques
of optimization such as least-squares.

!
ii Work supported in part by the U.S. Department of Energy, Office

of Nuclear Energy under Contract No. W-31-109-ENG-38.
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One of the key features of neural networks is that they can learn
from a large number of training examples, something that is not

possible in general with classical linear techniques. In this
paper we describe the network of a distributed, non-linear,
algorithmic technique for learning in general from any number of
training examples. Although this technique can also be described
by a modification of classical mathematical expressions, it is
described as a network in order to provide insights into the
meaning of nodes, connections, weights, and output functions both
for neural and universal networks. It is hoped that these' e
understandings may lead to using both technlqu s simultaneouslyr
to solve problems that might lie beyond the separate abilities of
each.

NETWORKS

The modern history of networks began in the 1950s. In notable
work during this period Rosenblatt investigated two-layer
networks for the ability to learn to recognize patterns (I)- Two-

layer networks were further developed in the 1960s as adaptive
signal processors, most notably by Widrow and Hoff (2), but ran
into trouble for more extensive uses when they were shown to have

; some fundamental limitations in terms of logic that they cannot
orm as ointed out by Minsky and Papert (3). Single-layer

perf . P ...... _ _nd an act as content-addressable
networks store pa_n ..... c
memories. This was shown by Hopfield who analyzed the dynamics of

a fully-connected single-layer network by analogy to a physical
system (4). Multi-layer networks were shown to be practical by
using the back-propagation algorithm for training the network.
Among several workers who showed this were Rumelhart, Hinton, and
Williams (5). The back-propagation algorithm has been improved
for multi layer networks and shown to be useful for signal
validation, for example in the work of Upadhyaya, Eryurek, and

I Mathai (6). The latest uses of multi-layer networks involve theirability to adapt to changing control conditions, especially those
in non-linear systems, as shown comprehensively in an analysis by
Narendra and Parthasarathy (7).

Network characteristics are defined by layers, connections,

weights, and output functions. Their characteristics can be
summarized by the following statements:

I Layers refer to nodes.

• Connections between nodes transmit the output of one node to
the input of another node.

• Weights are associated with connections between nodes.

I Output functions reside _n each node and combine the inputs
and weights from other nodes to produce the nodal output.
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• The output functions resident in each node can be designed
to recognize particular features present in the inputs to
the node.

• After definition of the layers, connectivities, and output
functions, the weights are determined by training the
network to match inputs and outputs for a large number of
reference examples.

Understanding the output functions at each node is the key to
understanding and controlling neural network performance. Each
node recognizes some feature or pattern of the inputs presented
to it as weighted by their respective connections. The weighted
inputs are often simple products and the output functions are
often threshold activation functions although specific
combinations of weights and inputs and a complicated output
function may be necessary to recognize specific features or
patterns. The design of the output function of each node may
therefore be a very application-specific and network-
architecture-specific _exercise. Once the architecture, weighting
scheme, and output functions are designed then the weights of
each connection are determined in a training session where a

large number of reference examples are successively presented to
the input layer. A computerized search selects the set of weights
that simultaneously matches the inputs and outputs _of all the
reference samples within specified convergence criteria. Initial
values of the weights must be supplied for the search to begin.

The reference examples used to train a neural network anddetermine the connection weights are not explicitly used in

i application of the network.The continual development of multi-layer neural networks has led
to their use in a variety of applications even though these

networks require explicit separation of input and output
va:_iables, definition of architecture and output functions, and
initial values for connecting weights. These are all application-

specific characteristics. Furthermore, these networks are not
known for their quantitative accuracy.

The universal network is a particular kind of network that is
extremely accurate in a quantitative sense and avoids all of the
difficulties with designing and determining appropriate input
variables, output variables, layers, connectivities, weights,
output functions, and convergence criteria that are attendant
with neural network applications. It has a partially designated
architecture with two hidden layers of known functionality which

is completed in its entirety by the reference examples. It does
not require separation of inputs from outputs although they can
be separated. The reference example values are used explicitly

I!I for many of the connection weights, and to determine the
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connection weights not explicitly defined. There is no need for
initial weight values or iterative calculations.

A SIMPLE LINEAR MODEL

Figure 1 shows two good data points and one bad data point for a
simple linear system which is expected to follow Y = AX + B. The
the first two points are good and result from A = 1 and B = 0.
The third data point is the faulty one. Specifically these data
points are:

Xl = 1 and Y1 = 1
X2 = 2 and Y2 = 2
X3 = 3 and Y3 = 2

These data points can be modeled using a least-squares technique,
we find that A = .500 and B = .667 for the data of Figure i.
These values of A and B are far from the correct values and

unless we have prior knowledge about the acceptable ranges for A
and B or about the possible errors in their measurements we have
no way of determining whether they are acceptable.

I

Figure 1 also shows the results of applying a universal network
to the data and finding A = .955 and B = -.150. These values of A
and B are much closer to the correct values and illustrate the
fault-tolerance of the universal network. The remainder of this
section describes how these values for A and B were obtained.

i The first in applying the universal network to this system

step
uses four examples of Y = AX + B that encompass the expected
range of X, Y, A, and B values and generally characterize the

i system.

I Example 1 is Y = 5X/3 and the specific values X, Y, A, and B are:
= Y = Y ii = 5/3 when X = 1

Y = Y21 = 10/3 when X = 2
Y = Y31 = 15/3 when X = 3
A = AI = 5/3 independent of X
B = B1 = 0 independent of X

Example 2 is Y = X _ 1 and the specific values X, Y, A, and B are:

Y = YII = 2 when X = 1
Y = Y21 = 3 when X = 2

Y = Y31 = 4 when X = 3
A = A1 = 1 independent of X
B = B1 = 1 independent of X

Example 3 is Y = X - 1 and the specific values X, Y, A, and B are:
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Y = YII = 0 when X = 1
Y = Y21 = 1 when X = 2
Y = Y31 = 2 when X = 3
A = A1 _ = 1 independent of X
B = B1 = -I independent of X

Example 4 is Y = X/3 and the specific values X, Y, A, and B are:

Y = YII = 1/3 when X = 1
: Y = Y21 = 2/3 when X = 2

Y = Y31 = 3/3 when X = 3
A = A1 = 1/3 independent of X
B = BI = 0 independent of X

Three explicit values of Y are chosen as input variables, and
two explicit values of A and B are chosen as output values from
each of the four examples for the reference library of the
universal network. The choice of three input variables determines

| that the number of nodes in the first layer of the universal
| network is three. The choice of four examples in the reference

library determines that the number of nodes in each of the two
hidden layers is four. The total number of five input plus output
variables determines that the number of nodes in the output layer
is five. The output layer of the universal network provides
estimates of all input variables plus constructions of all output
variables.

The universal network for the above situation is shown in Figure
2. In this figure the conventions are used that ellipses enclose
the changing output values of each node*in the network and that
rectangles contain the fixed weights for each connection, lt can
be easily seen that the reference examples provide all the
weights between the input layer and the first hidden layer, and
all the weights between the second hidden layer and the output

layer.

The input layer of the universal network does nothing but display
the input values, Y1 through Y30 and pass them on as output
values.

The first hidden layer of the universal network determines
features of the input layer that correspond to features in each
column of input variables in the reference library. The

particular columns of input values from the reference library are
I the weights, YII through Y34, displayed in the rectangles just to

the left of each node. The output function in each node is a

parametric function with continuous output _alues, SI through S4,
between zero and unity. The parameters of these functions are

completely determined by the range of values in each row of the
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reference library.

The second hidden layer of the universal network determines that
combination of features present in each column of input variables
in the reference library which are necessary to model the input

layer. The output function in each node of this layer produces a
simple sum of products, C1 through C4, of the inputs and weights
received from the previous layer. The weights, Wll through W44,
in the rectangles just to the left of the second hidden layer
nodes are determined by training the network to produce a value
of unity for Cl and values of zero for C2, C3, and C4 when the

: first set of input values from the reference library is presented
to the input layer, to produce a value of unity for C2 and values
of zero for CI, C3, and C4 when the second set of input values
from the reference library is presented to the input layer, and
so on as each set of values from the reference library is

presented to the input layer. This is not an iterative process
but instead uses the solutions of an exactly determined set of

simultaneous equations and is therefore a very fast calculation.

I

The output layer of the universal network provides estimates,
i YI', Y2', and Y3', of the input layer variables plus

constructions, A and B, of all the output variables. The output
| function for this layer is a simple normalized sum of products of

inputs and corresponding weights. In Figure 2 the weights, YIIthrough Y34, A1 through A4, and B1 through B4, in the rectangles
Just to the left of the nodes in the output layer are all derived
from the rows of input and output values in the reference
library.

Figure 3 shows the numerical results of applying the universal
network values above to the data of Figure I. The input variables
are estimated to have values somewhat different than those

presented to the input layer, indicating that there is some
uncertainty present. The output variables are found to have
values of A = .955 and B = -.150 which lie close to the correct
values, lt can be easily surmised here that the universal network
is dominated by the good data points and produces a somewhat
fault-tolerant estimate of the model parameters A and B.

UNIVERSAL PROCESS MODELING AT EBR-II

In the last section of this paper the application of a universal
network to variables and parameters with specific meanings in
terms of a model of a linear system was outlined. However, the
universal network can be applied in a similar manner to any lists
of numbers. The universal network can therefore be extended to

applications involving large numbers of inputs, outputs, and
reference library examples from any source. In doing so it is
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usually found that the accuracy and fault-tolerance of the output
layer values are increased dramatically over the simple example
analyzed above. The main work of a large application is in
providing an efficient man-machine interface using menus and
graphics that facilitate the identification, manipulation, and
control of input variables, output variables, and reference
library examples. These tasks are especially cumbersome when
large numbers of variables are involved, especlially in a real-
time environment.

A real-time environment also imposes the necessity to estimate
uncertainties in each of the output layer values at each instant
of time. This uncertainty analysis is different than a time-
series analysis of a sequence of output layer values compared to
a similar sequence of actually measured values. Fortunately, an
uncertainty analysis of the required type can be performed by the
universal network because of the fact that the input layer values
are estimated by the output layer. Furthermore, methods of
determining correlations between pairs and higher multiplicities
of variables has also been developed. The universal network when
embedded in software providing the necessary man-machine
interface and tools for analysis just described is referred to as
universal process modeling software.

M
_

Universal process modeling software has been installed on a
dedicated UNIX workstation environment at EBR-II. This
installation typically receives approximately 40 signal values
each second from the reactor system and from the primary,
secondary, and steam heat transport systems. A typical list of
signals is shown in Table I. Usually a reference library of
approximately 200 examples is used to estimate and validate all
signal values each second.

Results obtained from this installation are used in Figures 4
through 7 to illustrate the accuracy and fault-tolerance of this

application for measurements of power and pressure. The reference
library for these illustrations was obtained from a reactor
startup beginning 15 November 1990 and sampled every I0 minutes
for 40 hours. After a reactor shutdown another startup occurred

beginning 25 December 1990 and this second startup is modeled by
the first startup, also every i0 minutes for a period of 40
hours. This modeling application is only for illustrative

purposes because normally the reference library would be obtained
from a number of examples of startups and full power operations.
While Figures 4 through 7 display trends over a forty hour period
it is well to keep in mind that the universal process modeling
software created 144,000 separate and distinct models of the
simultaneous values of 43 signals during this time period.

Figure 4 shows the actual and modeled rsactor power for the 240
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examples modeled. The modeled signal is virtually
indistinguishable from the actual signal on the scale used in
this figure. The vertical line near the center of the graph
indicates the time when full power was first achieved.

Figure 5 shows an expanded scale of the actual and modeled
reactor power after startup for the last 120 examples modeled
along with the required limits for validity. The reactor power is
valid for this entire time period.

Figure 6 shows the actual and modeled upper plenum pressure for
the 240 examples mode led.This signal is quite different fronl the
reactor power previously shown in Figure 4 and yet is modeled
simultaneously with the reactor power. The vertical line near the
center of the graph indicates the time when full power was first
achieved. The modeled signal of Figure 6 can be easily seen to

diverge from the actual signal after full power is reached ands
as later illustrated in Figure 7, can be determined to be invalid
until approximately the last 5 hours of the time period modeled.
Invalid in this case may mean that the primary flow was not set

correctly or that the pressure sensor is reading incorrectly.
Whatever the cause, the problem was corrected by the end of the

modeling period illustrated.

i
Figure 7 shows an expanded scale of the actual and modeled upper
plenum pressure after sta_tup for the last 120 examples modeled
along with the required accuracies for validity. The invalidity
of the upper plenum pressure and its correction can be seen
clearly in this graph by comparing the actual signal to the
signal validation limits.

SUMMARY AND CONCLUSIONS

Conventional neural networks provide a content-specific mapping

of inputs to outputs for complicated functions, processes, or
systems. The content-specific aspects of neural networks are the
number of layers of nodes, the number of nodes, the connections
between nodes, and the output function present in each node.

Weights for each connection are derived by training t_,_ network
to provide known mappings of inputs to outputs for a large number
of examples. Each of the nodes provides recognition of a specific
feature contained in the inputs presented to the node as modified

by the corresponding weights of each input connection. Feature
recognition is therefore dependent on both the architecture and
output functions used in the network design. Different processes
and systems usually require widely different neural networks.

Universal networks provide a generic mapping of actual inputs to

8
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a combination of estimated inputs plus constructed outputs for
any function, process, or system. The separation between inputs _
and outputs is arbitrary. The number of layers of nodes is always
four. All adjacent layers are fully connected. The number of
nodes is fixed by the number of inputs plus outputs and by the
number of examples used to train the network. The output
functions in the first, third, and fourth layers are completely
defined. The output function of the second layer is
parametrically defined and is determined by the set of examples
used to train the network. The weights between the first and
second layers and between the third and fourth layers are taken

, directly from the set of examples used to train the network. The
weights between the second and third layers are determined by
training the network to perfectly Identify and estimate the set
of training examples. The second layer provides recognition of
features of the input layer that are contained in each of the
training set examples. The third layer provides the combination
of features among all the training set examples that are
necessary for the output layer to estimate the input layer as
closely as possible. The output layer provides an estimate of the
input layer plus a construction of all output variables. A
complete uncertainty analysis of all output layer values can be
dynamically provided for each instance of an input layer.
Correlations between pairs and higher multiplicities of input and
output variables can be calculated.

The feature recognition aspects of a neural network compared to a
universal network comprise some of the key differences between
them. A neural network requires explicit design of feature
recognition while a universal network uses whatever features are
present in the set of examples used to train the network. The
features that are present in a set of examples are usually a
combination of fundamental features. Using a neural network to
identify the fundamental features while simultaneously using a
universal network to identify combinations of fundamental
features may offer a powerful overall technique for analyzing
complicated processes.

The universal network is applicable to any process or system for
which examples of operation exist or can be simulated. Its
application is illustrated for a simple linear system with 5
variables and for a real system at EBR-II with 43 variables, lt
is concluded that the universal network can be embodied in

universal process modeling software to provide uncertainty
analyses and correlation analyses, and extremely fast, accurate,
and fault-tolerant estimation, validation, and replacement of

i signals in a real system.
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Table i. EBR-II Signals

1 Reactor Power Nuclear MW
2 Heat Balance Primary System MW
3 Heat Balance Secondary System MW
4 Heat Balance Steam System MW

5 Wide Range A Linear Power Level %
6 Wide Range B Linear Power Level %
7 Wide Range C Linear Power Level %
8 Upper Plenum Probe Pressure 521A psi
9 Upper Plenum Probe Pressure 521B psi
i0 Primary Pump 2 Out Flow 521B Voltage MV
ii Low Pressure Plenum 2 Flow 513B Voltage MV
12 Low Pressure Plenum 2 Flow 541B Voltage MV

13 Primary Total Out Flow 541E Voltage MV
14 Reactor Outlet Flow Rate 541E gpm
15 Low Pressure Plenum Sodium Temp. 540AR Deg, F
16 Low Pressure Plenum Sodium Temp. 540AS Deg. F
17 Low Pressure Plenum Sodium Temp. 540AV Deg. F

18 High Pressure Plenum Sodium Temp. 540AT Deg. F
19 Reactor Outlet Temp. 1534CF Deg. F
20 Reactor Outlet Temp. 503 Bailey Deg. F
21 Reactor DT 506 Bailey Deg, F
22 Reactor DT Based On 1534CF Outlet Deg, F
23 Reactor DT Based On Average S/A Outlet Deg, F
24 Reactor DT Test Calculation Deg. F
25 IHX Secondary Outlet Temp. 533AA Deg. F
26 IHX Secondary Outlet Temp, 546A Deg. F
27 Superheater Sodium Inlet Header 508A Deg, F
28 Superheater Sodium Inlet Header 546H Deg. F
29 Superheater Sodium Inlet Header 546J Deg. F
30 Evaporator Outlet Header North 508D Deg. F
31 Evaporator Outlet Header North 546AM Deg. F
32 Evaporator Outlet Header South 508C Deg. F
33 Evaporator Outlet Header South 546AL Deg. F
34 Generator MW 642 MW

35 Average Bulk Sodium Temp. 501AA-X Deg, F
36 Average Reactor Inlet Temp. 540AR-S-V Deg. F

i 37 Average Subassembly Outlet Temp. Deg. F

38 Average Upper Plenum Probe Temp. Dego F
39 Average IHX Primary Outlet Temp. Deg. F

i 40 Average Superheater Sodium Inlet Temp. Deg. F

41 Average Evaporator Sodium Outlet Temp, Deg. F
42 Average Evaporator Feedwater Inlet Temp.Deg. F
43 Average Evaporator Steam Outlet Temp. Deg. F

I
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Figure i. Universal network and least-squares estimates of
two good data points and one bad data point for a
system modeled by Y = AX + B.
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YII YI'
YI2

' YII SI ' WII 1 YI3
Y21 W21 YI4

Y31 W31

Y1 W41 Y21Y22

_12 S2 Wf2 C2 Y23
Y22 W22 . Y24
Y32 W32

Y2 W42 Y3'
Y32

YI3 $3 WI3 C3 Y33
Y23 W2"3 Y34
Y33 ' W33

Y3 W34 A1 AA2

YI4 $4 Wf4 C4 A3
Y24 W24 A4

Y34 W34

W44 B1
B2
B3
B4

Figure 2. A universal network with three inputs, four sets of
examples, and two outputs for the solution of the
problem illustrated in Figure i. See text for
definitions of symbols.
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i. 667 0 805
2.000

I

1.667 0'.47 3.058 0 0.000
3. 333 -2. 522 O. 333
5.000 -0.050 3.333 1.760

: i. O. 156 3. 000

2.000 0.5 -2.522 0 27 1.000
3. 000 3. 148 0.667
4.000 -0.291

2. 0.050 5.000 2.74.000
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1.000 '0. 291 1.000

_ 2 •000 3 •148
& -2.522 1.667 0.955
i 2 1.000
m • 1 000
| O. 333 O. O. 156 0.214 -

0.667 -0.050 0.333
1.000 -2.522

3. 058 O. 000 O. 15
1.000

-1.000
0.000

o

Figure 3. Nodal val_es and weights for the universal network
of Figure 2 applied to the solution of data in
Figure i. See text for source of numerical values.
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Figure 4. The actual and modeled reactor power every i0
minutes for 40 hours of EBR-II operation on 25

| and 26 December 1990. The reference library was
obtained from similar data on 15 and 16 November

1990 °
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Figure 5. An expanded view of the right half. of Figure 4
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Figure 6. The actual and modeled upper plenum pressure
every I0 minutes for 40 hours of EBR-II operation
on 25 and 26 December 1990. The reference library
was obtained from similar data on 15 and 16
November 1990.
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