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CHAPTER 1. INTRODUCTION

Nuclear Power Plant Safety

The safe operation of a nuclear reactor in a power plant is of utmost importance

to the nuclear engineering community and quite vital to creating a positive attitude

towards nuclear energy among the rest of the society. This thesis is an attempt to

demonstrate how Artificial Neural Networks (ANNs) can increase the operational

safety of nuclear reactors by being the basis of a fault diagnostic system in a power

plant. It is hoped that neurocomputing, as the science of neural networks is some-

times called, will provide a better approach to recognizing and classifying operational

transients at a nuclear power plant.

Most power plants currently employ automatic safety systet_ls that allow the

plant to operate within a predefined normal operating parameter space. These sys-

tems check to see if the plant status conforms to the preassigne(l safety limits of the

various plant variables. As the plant enters into an abnormal con¢lit i_m, indications of

plant variables exceeding the normal range causes the safety syst,,_l_ to either trigger

a scram that automatically shuts down the reactor or notify th_, ,,perators through

some alarms or indicators. The sequence of events leading to th,' t_lant shutdown are

analyzed later by technical support teams located both on and ,,ff ._ite. Use of th, _

proposed advisor would be helpful in better understanding these events in real time.
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Diagnostic systems in use at this time ahnost always rely on elaborate expert

systems to evaluate the current plant status. Sometimes, these expert systems are

interactive with the operator. Also, these expert systems go through a long, com-

putation intensive, fault-tree type diagnosis routine. This may make them slow to

respond in an emergency situation. The proposed advisor is expected to have quicker

response, thus providing the operators with more time to rectify the problem, miti-

gate any possible damage, and save the plant from an unnecessary shutdown.

This thesis is part of an ongoing project at Iowa State University to develop

ANN based fault diagnostic systems to detect and classify operational transients

at nuclear power plants. The project envisages the deployment of such an advisor

at Iowa Electric Light and Power Company's Duane Arnold Energy ('enter nuclear

power plant located at Palo, IA. This advisor is expected to make status diagnosis

in real time, thus providing the operators with more time for corrective measures.

Neural Networks

Neurai networks are a novel and fast-emerging branch of the science of artifi-

cial intelligence. Robert He&t-Nielsen [23] defined a neural network as a "parallel,

distributed information processing structure consisting of processing elements inter-

connected together with unidirectional signal channels called connections" (p. 59.3).

Each processing element has a single output connection which "fans out" into as

many collateral connections as desired. The processing element output signal can be

of any mathematical type desired.

Neural networks draw interest because of the absence of a knowledge base which

is the core of any expert system. Expert systems require that knowledge be specif-
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ically inserted into them about every aspect of a system that needs to be analyzed.

This knowledge is stored as numerous "if-then' logic statements that assist the system

in performing a fault-tree type analysis. In the case of a nuclear power plant, this

requires that every possible scenario be investigated in as much detail as possible. It

also requires that the personnel developing the system understand all the processes

and systems in the plant and know the significance of each sensor reading in each of

the scenarios being investigated. On the other hand, ANNs do not require knowledge

to be explicitly inserted into them. In fact, the designer need not have a very intimate

understanding of the importance of each sensor reading. All he need to know is that

certain sensors are important indicators of the health of the plant 1291. ANNs learn

the correct response from the training set during the training process, and generalize

this information (For a more detailed discussion of neural networks and learning,

see Chapter 2). The training set is the collection of input-output patterns that is

used by the network to infer the functional relationship between the inputs and the

outputs• Generalization is the ability to "quantitatively estimate certain character-

istics or features of a phenomenon never before encountered based on similarities

with things previously known" 15](p. 102). Neural networks, because of their parallel

analog nature, are more noise tolerant than the conventional expert systems, and so

manage to do a fairly credible job of classification under deteriorating sensor condi-

tions. Faced with the fact that a majority of the anticipated transients at nuclear

power plants have never actually occurred and data for such scenarios are obtained

through computer simulation, the generalization capabilities of .\NNs are especially

useful for determining a solution for accident recognition [29}. If some physical as-

pects had been overlooked while constructing the models on which the simulations
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and expert systems are based, an expert system would still function on the rules built

into them. However, an ANN would be able to disregard this particular mistake and

work on the basis of other information garnered through the training process.

Problem Statement

This work explores the use of ANNs to recognize operational transients at a

nuclear power plant. Every transient is unique in the changes they cause in the values

of plant variables. The plant status, as given by the values of these plant variables

at any time, constitutes a pattern that is related to the transient that caused the

same. So. the task of transient recognition can be thought of as a problem in pattern

recognition, though on a rather massive scale. The pattern recognition capabilities of

ANNs are quite well known. Ttteir application in plant status diagnostics, therefore,

is quite promising.

Though promising, neural networks ha_," not witnessed the widespread use ini-

tially expected of them. One of the reasons is the problem of selecting an appropriate

architecture for a desired task. Conventional ANNs require the architecture to be

set before training is started. However, this choice of the architecture influences the

training process as well as the post-training performance of the network. Thus "the

viability of a specific architecture can only be evaluated after training" [5](p. 101).

For a large and complex problem of the kind involving nuclear power plant status

diagnostics, the search for an appropriate architecture would have proved to be an

extremely time consuming affair involving a lot of guesswork. For the quick and

efficient development of a trained ANN to perform the required task, it was thus im-

perative to develop a systematic method to arrive at a 'proper' network architecture
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for ,_ny given problem. A network of the smallest size that can successfully classifyi

the problem is said to have the 'proper' architecture for the problem. This led to

the development of a derivative Dynamic Node Architecture (DNA) scheme for the

backpropagation neural network algorithm.

The present work uses the DNA scheme to create an ANN that will be able to

classify seven d_fferent transients and the normal conditions. The trained advisor

would ide_Ltify if the plant was in a normal operating condition, or if it was under-

going one of the seven transients. The database for training contains the values of

eighty-one plant variables at one-second time intervals during the progression of the

transients. The variables monitored are computer points of the full scale control room

simulator at the Duane Arnold Energy Center (DAEC); these points correspond to

meter readings in the actual control room at the plant. These variables were selected

after intensive discussions between personnel at the plant and fellow researchers at

Iowa State Univer,fity [18].
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CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

Introduction

Artifidal Neural Networks (ANNs) were developed as a result of the efforts of

researchers to model the human brain. In fact, a neural network researcher is as likely

to have a background in psychology as in electrical engineering. Interest in ANNs has

been increasing for the past decade though the concept is over 30 vears old [43]. Ar-

tificial neural networks, also called neural systems, connectionist systems, and neuro-

computers, were brought into the spotlight in the 1987 announcement of the Japanese

Sixth Generation computer project. The Japanese announcement coined the term

"natural intelligence" to explain that the computers "would display behaviors based

on biological rather than silicon models"[7](p. 46). The present axe of neurocomput-

ing started in 1960 v/ith the publication of the Perceptron rule and the Least Mean

Square (LMS) algorithm, two early rules for training adaptive eletttents [43]. In the

years following these discoveries, many new techniques have been ¢leveloped in this

field, and the discipline is growing rapidly. One early developnl,'nt was Steinbuch's

Learning Matrix [36], a pattern recognition machine based on linear discriminant

functions. At the same time, Widrow and his students devise<l hladaline Rule I

(MRI), the earliest popular learning rule for neural networks with tttttltiple adaptive

elements [44]. This led to the most famous neural network: Widrow's Adaptive Lin-
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ear Element (ADALINE) developed in 1963 as a simple bin sorter 143]. Other early

work included the "mode-seeking" technique of Stark, Okajima, and Whipple i35].

This was probably the first example of competitive learning wherein one particular

solution is chosen over many possible competing solutions. However, until the 1980s

artificial neural networks had been considered interesting but impractical. In 1982,

J.J.Hopfield sparked a resurgence of interest in neural networks when he discussed

how such interconnected neurons can have collective computational properties,with

a'distributed memory [2.5]. The most significant developments were the formulation

of the backpropagation neural network algorithm independently by Werbos [41] and

Rumelhart et al. [32]. Backpropagation has since become the most commonly used

neural network paradigm [30].

Artificial neural network models attempt to achieve good performance via dense

interconnection of simple computational elements or nodes. Instead of performing a

program,of instructions sequentially as in a von Neumann computer, neural networks

"explore many competing hypotheses simultaneously using massively parallel nets
.

composed of many computational elements connected by links with variable weights"

[30](p. 4). The layered feed-forward ANN consists of nodes arranged in layers, with

the nodes of any layer being connected to the nodes in an adjacent layer through

variable weights (see Figure 2.1). The nodes of a layer are connected to every node

of the layers immediately above and below them but not to any node in the same

layer. In such feed-forward layered networks, the first layer is the input layer where

the nodes are inactive, their outputs being equal to their inputs. The last layer is the

output layer. The layers in between consist of "hidden" nodes, so called because they

are isolated from the outside environment. The design of a network architecture is
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rather arbitrary, only the number of nodes in the input and output layers being fixed

by the problem at hand. The nodes used in ANNs are nonlinear and typically analog.

The simplest node sums weighted inputs and passes the result through a nonlinearity

function, sometimes also called the transfer function. More complex nodes may

include "temporal integration or other types of time dependencies" [30](p. 4) and

more complex computations than summation.

"'Neural network models are specified by the network topology, node characteris-

tics, and training or learning rules" [30](p. 4). Given an initial set of weights, usually

selected at random, these rules indicate how weights should be changed to improve

performance. The nodes in a neural network carry out local computations, and thus

various nodes can do their own calculations simultaneously. This massive parallelism

results in high computation rates. But the potential benefits of neural networks ex-

tend beyond this. Neural networks typically provide a greater degree of robustness

or fault tolerance than von Neumann sequential computers because there are many

more processing nodes, each with primarily local connections [30J. Damage to a few

nodes or links thus need not impair overall performance significantly.

Using a Neural Network: Training

A neural network can be used to solve a problem only after it has been trained on

the problem. The training results in the network learning the solution to the problem.

Learning in neural networks can be supervised or unsupervised. Supervised learning

means the network has some omniscient input present during training to tell it what

the correct answer should be [7]. The network then has a means to determine whether

or not its output was correct and knows how to apply its particular learning law to
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adjust its weights. Unsupervised learning means the network has no such knowledge

of the correct answer and thus cannot know exactly what the correct, response should

be. ,Most training processes are accomplished by supervised learning. A training set

consisting of sample datapoints is presented to the network and learning is based

on this training set. The performance of the network is improved by changing the

interconnecting weights according to the learning rule being used. A common measure

of the performance of a network is the root mean square (RMS) error of the output

nodes. The weights are randomized at the beginning and the process of presenting

examples and changing weights is repeatedly carried out till the network performs

to the user's satisfaction. The aim of the training process is to achieve as small

an RMS error as possible, a global minimum. However, using the gradient slope

descent methods of backpropagation, a neural network tends to become lodged in a

local minima or on a plateau with a small gradient [1][4][24]. The training process

becomes increasingly more complex as the size and scope of the training problem

increases. The post-training performance of a network is determined by the closeness

of the training set to the recall set. The most common training scheme for the feed-

forward ANNs is the backpropagation method which is detailed in the next section.

There are also many other good references on backpropagation including [23] [30] [32]

etc.

Backpropagation

The Delta Rule

Backpropagation is a supervised learning method, lt is without question the

most commonly used learning algorithm in the world today [8]. Developed by Bernard
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,

Widrow and Ted Hoff at Stanford University and first published in 1960, it used the

Delta rule or Least Mean Squared (LMS) training law. The network itself was called

ADALINE, derived from the term ADAptive LINear Element. Strictly speaking,

Delta rule is the learning law which when applied to a feed-forward ANN results in

the backpropagation network. The Delta rule changes the weights according to the

following equation [9]'
X

Wnew - Wol d = ,2E (2.1)
X 2

where W represents the weight vector before and after the weights are adjusted (old

and neu., respectively), ,3 is the learning rate, X is the input pattern vector, I-;k'lis the

length or magnitude of the input pattern vector, and E is the error for a node. As

the name LMS training law suggests, this rule attempts to insure that the aggregate

statistical LMS error over the entire training set is minimized in the network. In the

case of backpropagation, it is assumed that there exists a unique set of weights that

very nearly relates the inputs to the outputs for the given problem. The error in the

weights of the processing element cannot be directly measured as the desired weight

set is not known. The error in the weight vector manifests and is measured as an

error in the output of the node. The current error, or how far away the network is

from this ideal value, is calculated for the weights for the give_l in l>Ut. The weight.

vector is then adjusted by calculating a Delta vector that is l,arallel to the input

vector and has a magnitude as described in the previous equati_,n !):. The weights

are adjusted by adding this delta vector to the current weight w,ctor.

The aggregate (over the training set) root mean squared err,,r of the output of
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a network is expressed as

l N kmaz
,- {2.2)

nrl h=l

where N is the number of patterns in the training set, krnar is the number oi"nodes

in the output layer, zh, n is the expected output of the hth output node for the

nth training pattern and xh,n is the actual output of the same node for the same

pattern. This RMS error is a function of the existing set of weights. It can be

shown mathematically that the aggregate mean squared error is a n-power function

of the weight vector, where the weight vector has n components i8]. So a plot of the

mean squared error vs. the possible weight vectors would give a hyperparaboloid in

n-space. The Delta rule moves the weight vector from wherever it is on the surface

of this hyperparaboloid towards the bottom. The bottom of the hyperparaboloid

represents the nearest minimum mean squared error, and this is the point the weight

vector needs to reach, assuming that this is the lowest that the error surface gets. As

is known from vector analysis, the gradient always points along the direction of the

steepest rise of a curve and the negative gradient is the steepest descent of the curve

at any given point [8][9]. That means this learning algorithm always takes the most

direct route from the current position of the weight vector to the nearest position

where the hyperparaboloid bottoms out, based on the current pattern. It is to be

noted that the minima reached by the Delta rule is almost always the nearest point

of zero gradient. This might be either a local or the global minima. The goal is to

reach the global minima, but this algorithm has a tendency to get lodged in local

minima.

The mathematics of the Delta rule can be demonstrated in a rather simple

manner starting with Newton's method. This method is used to find the roots of
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an equation f(,v) = 0. The basic assumption is that the function f is differentiable.

This impfies that the graph of f has a definite slope at each point and hence a unique

tangent line. Suppose we take the value x 0 as an approximation of the root x*. The

tangent at the point (x O, f(xo) ) on the graph of f is a rather good approximation to

the curve in the vicinity of that point _111. The point where this tangent meets the

,tc
x-axis, x 1 is the next approximation of x . This value of x 1 is given by •

f(xo) (2.3)
x 1 = ,ro ft(xo)

See Figure 2.2 for an illustration of this. Further iterations will provide a sequence

of estimates as

f(xl) (2.4)
x 2 = x I ft(x l)

and so on. This interpretation of the Newton's method shows that this method, and

so backpropagation, can get lodged in a local minima. So the initial guess x 0 is

important. In fact in Figure 2.2, if our initial guess for the minima were x_ instead

of x0, we would end up in the local minima. Usually some techniques like using a

momentum term help take us beyond local minima. In backpropagation implemen-

tation this means that the initial selection of weights, usually done at random, might

influence the network reaching the global minima or getting lodged in a ldcal minima.

Shown above was the steepest decent method wherein the second and higher order

derivatives of the function f are ignored.

Typically, Newton's method utilizes a number of derivatives of the function f(x)

to arrive at the next estimate of the root x*. The Taylor series expansion of f(x 0 --h)

is given by [6][171

h2ftt hnfl_(,c ) .,. (2.5
f(x 0 -+-h) = f(xo) + hft(xo) + _ (xo) + "'" + n! 0 " )
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This Taylor series expansion, when applied to the RMS error (Equation 2.2). shows

the mechanics of the Delta rule. The RMS error is a function of the weights. Refer-

ring to this error function as E(W), the purpose of the training is to minimize this

error, i.e. to find the weight vector l/V* that will minimize E(W). The Taylor series

expansion of this error function is [4][29]:

1

E(W + kW) = E(W ) + GT(w)AW + _I,V T H(W)AW 4- ... (2.6)

G(W) is the gradient vector given by [4][29]:

5E 5E 5E 5E IT
G(W) - 5W = [SW 1 ' 5w2'"" 5Wn j (2.7)

where W is an n dimensioned vector, i.e. there are n components of the weight vector.

H is the Hessian matrix defined [4][29]

H= [Hi,j] i= 1,...,n and j = 1,...,n (2.8)

where [29]
62E(W)

g ,j = 6WWj (2.9)
Newton's method is iased to try solve the above equations in an iterative manner.

The estimate of the weight vector at iteration i + 1 is based on the weight vector at

the previous iteration and the corresponding/kW vector. Mathematically,

Wi+ 1 = W i + AWi. (2.1.0)

The iterative process is stopped when the error function for the present set of weights

reaches a value very near the value of the error function for the ideal weight set W*,

i.e. when E(Wi)_.E(W*).
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If the second and higher order derivatives in the Taylor series expansion of the

error function (Equation 2.6) are ignored, we get the steepest decent method [17]

given by

E(W + AW) = E(W) + GT(w)Aw: (2.11)

Let us assume that the new estimate of W*, i.e. W + AW is exact, then I'V* =

W + AI, V. From the above equation we get

E(W*) = E(W) + GT(w)AI'V. (2.12)

If W* defines a local minima in the weight space, then the gradient at the point is

zero, i.e. G(W* ) = 0. The derivative of the error function at any point is the gradient

at the point. So, taking derivative of the above equation we get 29!!4]

G(W*) = a(w) + H(W)AW = 0 (2.13)

which gives

AW = -H-I(W)G(W). (2.14)

If we set the step size # = H -1 we get the implementation of the steepest decent

method. The iteration

wi+t = wi - a(wi) (2.t5)

will result in the vector W moving towards W*, i.e. it will move towards the local

minima. In the Delta rule, the learning rate d corresponds to the step size p. This

proves the earlier assertion that the Delta rule moves the weight vector towards the

nearest minima, which may be either the global or a local miniIila, in the fastest

manner. It also shows the importance of the initial guess of the weight vector.
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Backpropagation Neural Networks

The publication of the backpropagation technique by Rumelhart et al. L.),,! has

unquestionably been the most influential development in the field of neural networks

irt the past decade. The learning procedure they suggested involved the presentation

of a set of pairs of input and output patterns. The ANN uses the input vector to

produce its own output vector and then compares this with the expected or desired

output vector. (This makes backpropagation a supervised learning method [7].) If

there is 1-,odifference, no learning takes piace. Otherwise the weights are changed

to reduce the difference. This process utilizes the Delta and the Generalized Delta

rules. For the output nodes the error is easily calculated as the difference between

the actual output and the desired output. But for the nodes in the hidden layers, it

is not possible to calculate the error in this way. The correct output of the hidden

nodes are not known. To assign an error to the hidden nodes we backpropagate the

error of the output nodes to the hidden nodes using the very same weights that were

used to propagate the error to the output nodes in the first piace[9]. The Delta rule

modified for the hidden nodes is called the Generalized Delta rule [9][32].

Backpropagation networks are layered and feed-forward; they always consist of

at least three layers of nodes. The number of inputs and outputs are fixed by the

problem at hand. The only choice of network architecture is the number of hidden

nodes. This choice needs to be carefully exercised. If the hidden layer is too large it

will encourage the network to memorize the input patterns rather than generalize the

input into features [9][23]. This is because the large number of nodes and weights give

the network more ways to distinguish features, resulting in the specifics being learned

better than the generalities. This reduces the network's ability to correctly classify
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unfamiliar patterns after training is complete. On the other hand, a hidden layer

too small will drastically increase the number of iterations, and thus the computer

time, required to train the network and will most likely reduce the accuracy of recall

[9]. There are no hard and fast rules for determining the optimum architecture; most

rules in use at this time are empirical in nature, derived by heuristic methods.

The learning process in a backpropagation neural network consists of primarily

two steps: the forward activation flow and the backward error backpropagation. The

first gives an output in the output layer from which the error in that layer can be

calculated. The second gives the error of the hidden nodes. Applying the Delta and

the Generalized Delta rules, we can arrive at the new weight vector. This process is

continued until the root mean squared (RMS) error of the output layer, also called

the cost or energy function, is below a preselected value.

Forward Activation Flow When a pattern is presented to the network, the

input layer passes the input values to the first hidden layer through the weights

connecting the two layers. The input to the hidden nodes is a weighted sum of

the outputs of the previous layer. These nodes then pass their inputs through their

transfer function. The calculations within a node is shown in Figure 2.3. The output

of one layer is used to generate the input of the next layer. This process is repeated

until the output of the output layer is calculated. The forward activation flow is

shown in Figure 2.4.

The transfer function, also called the activation function (see Figure 2.4), deter-

mines the activity or the excitation level of the node. The activation function used
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here is the sigmoid function given by

1
f(x) = (2.16)

l+e-x

The above equation gives an output between 0.0 and 1.0 for any real value of x. (See

Figure 2.5.) Networks with only three layers were used, i.e. there were an input,

one hidden, and an output layers. In the terminology used from now on, subscripts

i,j, and k relate to the input, hidden and output layers respectively and the subscript

n refers to the nth training pattern.

The input of the jth node in the hidden layer is the weighted sum of the outputs

of the input layer nodes. Mathematically,

iD'/aX

sumj, n = Y_ Xi,naj, i (2.17)
i=l

where xi, n is the output of the ith input layer node for the nth pattern, aj, i is the

weight connecting the jth hidden layer node to the ith input layer node and irnax

is the number of nodes in the input layer• The output of the jth hidden layer node,

Xi,n, after passing the input through the transfer function (Equation 2.16), is given

by

1

xi, n = _sumj, n (2.18)l+e

where sumj, n is given by Equation 2.17. Similarly, the input to the kth output node

is
jrrlax

xurnk,n= y_ Xj,nbk, j (2•19)
j=l

where bk, j is the weight connecting the kth output layer node to the jth hidden layer

node and jmax is the number of nodes in the hidden layer. As with the hidden layer,

215



22

°,

i '-
I

N

I
I
t m,

T

i

1 " ,.._ _'._
•,-, 1 L

x ' ,,..

+ .................. _-_ :'_

X I _: I '

%" I ,.t-, ,-j

I ..
1 -

t 1 "

_ _
1 -

1 1 "
-.%

III

1 - 0'"

!

I".. LO ¢,J __
I •

216



23

the output of the kth output layer node, Xk, n, is given by

1

,ck, n = _sum k (2.20)l+e ,n

By the above computations, the output of the network for the given weight set can

be calculated for a given pattern.

Backward Error Flow Once the outputs of the network are calculated by the

abeve process, the error in the nodes of the output layer can be found out by finding

the difference between the actual outputs and the desired outputs. The desired or

correct outputs are part of the data in the training set. The errors in the output

nodes are propagated backward to the hidden nodes. This process is done using the

very same weights that were used to propagate the errors from the hidden to the

output layers. Let the error in the kth output node for the nth pattern be errk, n.

errk, n = l:Ck,rt- Zk,n I (2.21).

where Zk,n is the expected output of the kth output layer node for the nth training

pattern. These errors are backpropagated to the hidden layer for each pattern. It

is important to note that the weights are not changed after presenting each pattern

but after all the patterns have been presented. This practice is called batch training.

Ali work presented here utilized batch training. Batch training has been shown

to increase the convergence rate and generalization capabilities of backpropagation

neural networks [39].

The backpropagated error of the jth hidden layer node for the nth pattern is

]_rr/.a x

errj, n = _ errk,nbk, j (2.22)
k=l
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where again errk, n is the error in the output of the kth output layer node for the nth

pattern, bk, j is the weight connecting the kth output node to the jth hidden node,

and kmax is the number of nodes in the output layer.

Now the Delta rule is applied to the output nodes to change the weights bk, j.

Mathematically, this is written as (See Figure 2.6)

bk,Jnew = bk,Jold + 3-_ errk,nZj, n (2.23)
n=l

where N is the total number of patterns in the training set,/3 is the learning rate,

and errk, n and zj, n are as given by equations 2.21 and 2.18 respectively.

To change the weights connecting the hidden and the input layers, i.e. the set

of weights ai,i, we need to utilize the Generalized Delta Rule [23]. For this we need

to use the derivative of the activation function. For the particular sigmoid function

• used (Equation 2.16), the derivative is of the graceful form

fl(z) =/(x)[1- f(z)]. (2.24)

The Generalized Delta Rule is of the form [9][29]

Wnew = Wol d + E_3 _ _ f(z)fl(.r) (2.25)
patterns nodes

where E is the error,/3 is the learning rate, and f(z) is the activation function. For

the sigmoidal function, the derivative looks like a bell (Figure '2.7). with relatively

large values in the midrange of inputs and small values at either end. Applying the

derivative serves two purposes. First, it ensures that as the outputs approach

0 or 1, only very small changes in weights can take place. This promotes stability

in the network. Secondly, it prevents excessive blame to be attached to the hidden

layer nodes [9]. When the connection between a hidden node and an output node is
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Figure 2.6: Delta Rule for Output Layer Nodes [19]
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very strong, indicated by a very extreme value of the weight, and the output node

has a very large error, the middle layer node may be assigned a very large error. If

that hidden node had a very small output, then this would be inappropriate as it

could not have singlehandedly caused the large error in the eutput node. The use of

the derivative moderates the error attributed to the hidden nodes and only small to:

moderate changes are made to the hidden layer neurode,s weights.

In the implementation for this work, the Generalized Delta Rule (See Figure 2.8)

takes the form

1 N

aj,inew = aj,iold +/3-_ _ [erT'j,nXj,n(1 - xj,,7 )i.ri,n (2.26)
n_=l

where aj, i is the weight connecting the jth hidden layer node to the ith input layer

node, and all other terms are as defined before.

The weights are changed after all the training patterns are presented. The RMS

error of the network over the training set is calculated after the weights are changed.

If this error is greater than the preselected target RMS error, then the training process

is continued. Else, the training is terminated and the latest set of weights is saved.

These weights are then used for the recall over 'unseen' patterns, lt is of importance

to note that there might be various functional relationships that tI_ight relate the

input patterns to the output patterns in the training set. But only one of them will

be able to do so for the problem as a whole. We seek to find this particular functional

relationship.
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CHAPTER 3. DYNAMIC NODE ARCHITECTURE

Introduction

Backpropagation neural networks are layered feed-forward. The input and out-

put layers are open to the environment. The middle layers, in between the input and

the output layers, are isolated from the outside and are thus called hidden layers. The

problem to be solved dictates the number of nodes in the input and output nodes.

The number of nodes in the hidden layers is the only real choice the user has in decid-

ing the architecture of the network. The architecture selected is of vital importance

to the training characteristics and recall performance of the network. Most 'rules'

currently used to decide network architectures are derived by heuristic methods and

are empirical in nature. The usual approach to deciding network architecture is to

start with various guesses, train all of them, and then retain the one with the best

post-training characteristics I5]. This drastically increases the training time required

before a network can be used to solve a problem. Problems of this kind have been
,,

instrumental in preventing the widespread use of neural networks as effective tools

in solving many intractable problems [5].

The problem addressed in this thesis involves status diagnostics in a nuclear

power plant. The input data consisted of eighty-one variables and the output was a

combinati)n oi" three booleans. The network needed to be trained a number of times
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with different training sets. If an appropriate architecture was needed for each trial,

the problem would have assumed mammoth proportions. A lot of guesswork would

have been involved, the physical problem being not so well understood. So it was

imperative to come up with some systematic method that would derive the optimum,

or near optimum, architecture for any given problem.

It is of great importance to have the correct number of nodes in the hidden

layer(s). If there are too many nodes, then the network will tend to memorize the

relation between the inputs and the outputs in the training set. This is undesirable.

The network should be able to learn only the generalities in the training exemplars

and not the specifics of the patterns in the training set. The former will result in low

training RMS as well as good generalization, i.e. good performance over recall data.

On the other hand, memorizatign will result in a low training RMS but bad recall

performance.

Architecture Optimization : Existing Methods

The recognized need for methods to optimize network architectures has stimu-

lated researchers in neural networks to come up with various algorithms to do this.

Approach to this problem has been two pronged: network pruning and weight elimi-

nation. In the first approach, training is started with a relatively large network. As

this network learns the training set to the desired level of accuracy, nodes that are

found to be unnecessary are removed. Various researchers have come up with differ-

ent methods to determine which of the nodes need be removed 133!. As a node isJ

lost, the network needs to be trained further until its RMS error over the training set

is below the desired RMS error. This process is continued until the smallest network
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that can successfully classify the training set is found. Any further reduction in the

network size renders the network incapable of classifying the training set.

Some other researchers have attempted to prune unnecessary weights from a

fully connected and trained network !28][40][45]. This results in a sparsely connected

network devoid of redundant weights. The objection to pruning algorithms is that

they start off by training a network too big for the problem. Thus computer time is

wasted training unnecessary nodes and weights. Moreover, some amount of guesswork

is still involved in deciding the network size to be trained. For very complex problems

involving a lot of inputs, it is not always possible to make a very confident decision

as to what network size is moderately larger than the optimum architecture.

Another noteworthy approach involves starting with small networks and building

up until the network reaches a size where it can successfully learn the training set

i11!24][38]. Most of these algorithms stop when the training set is first learned• But

it is known that learning a functional relationship requires more nodes than recalling

the same. Work by Hirose et al. [24] addresses this issue. When training results in

the first network that can successfully learn the training set, the latest added node is

eliminated. The smaller network is then further trained till it can learn the training

set. The process is continued till the smallest network is found that can learn the

problem. This process assumes that the last added node is the one that should be

eliminated first. From a heuristic point of view it seems reasonable that the node

that has spent the least amount of time in the network during training has the least

contribution to the performance of the network. But there is no definite way to verify

this assertion.

The derivative Dynamic Node Architecture(DNA)scheme was developed to skirt
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ali the above problems and arrive systematically at a near-optimum architecture for

any problem• The scheme is detailed in the next section.

Dynamic Node ArchitectureTheory

When neuralnetworksareusedtosolvea problem,itisimportanttoutilizethe

networkarchitectureappropriatefortheproblem.A networkwithtoofewnodeswill

be unableto learntheproblemand willincreasecomputationtime.On theother

hand,a networkwithtoomany nodeswillmemorizetheproblem.Thiswillcausepoor

generalization. As previously defined, "generalization is the ability to quantitatively

estimate the characteristics of a phenomenon never encountered before based on its

similarities with things already known"[5](p. 102). A neural network, during its

training, searches out general characteristics that classify the problem. If too many

nodes, and weights, are used, the network will have too many ways to distinguish

features [1] and will learn the specifics of the training set along with the generalities.

This can be compared to the problem of finding the interpolation polynomial between

various points [5]. An appropriate order polynomial gives a smooth curve. But as

the order of the interpolating polynomial is increased, the interpolating curve tends

to get chaotic, oscillating between the interpolating points.

The derivative Dynamic Node Architecture (DNA) scheme progresses in a sys-

tematic method to come up with the appropriate architecture for the problem. Train-

ing is commenced with a small network which won't be able to _,_lve the problem.

In ali work presented in this thesis, training was started with ju,t one hidden node.

As training progresses, the network soon reaches a plateau and cannot reduce the

RMS error beyond a certain point. Now a node is added to the hidden layer. The
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weights cor"_ecting this node are assigned a very small value so that the addition

of this node does not disrupt the network much. Training is now resumed until

the network reaches another plateau. Now another node is added. This process is

continued until the network reaches an RMS error value below a preselected value.

This indicates that the network has learned the problem to the desired level of ac-

curacy. Now, not all of these nodes may be necessary to recall the problem. So the

hidden nt:.;e with the least importance is removed from the network. The resultant

network would require further training. If the deleted node had a very low level of

importance, then the node had little contribution to the performance of the network.

U,0on continued training, the smaller network might be able to learn _he problem.

Then, another node (with the least importance) s deleted. This process is continued

until the network is too small to learn the problem. Now nodes are added until the

problem is relearnt. The process of deleting and adding nodes is continued until the

algorithm starts oscillating about the optin,_am architecture. It is to be noted that

the architecture given by this scheme may v.ot be the opt,_'murn architecture but very

close to it.

Importance of a Node

While deleting nodes, we get rid of the node with the least importance. The

importance of a node is a function of the network outputs. If changes in the output

of a hidden node is detrimental in deciding the output of the network more than a

similar change in the output of another hidden node, it stands to reason that the

former node is more important to the "dynamic functioning of the network" [.5]than

the later node. The importance of the jth hidden node with respect to the kth output
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node is defined as [5]

Z(xj Xk ) - E[l_zk,n/_Xj,n! ] • dx_ am (3.1)

where E[...] is the expectation over the entire training set and dx? az is the maximum

change in the output of the jth hidden layer node also over the entire training set.

This importance function is called the derivative importance function. The derivative

in the previous equation, which is the change in the output of the kth output node

due to a change in the output of the jth hidden node, can be evaluated by partial

differentiation of the transfer function. This gives

6:ek'n = exp(-sumk'n) * bk'j (3.2)
6xj, n [1 + exp(-sumk, n)]2

where su mk, n is of the form given by Equation _.19, bk,j is the weight connecting

the kth output layer node to the jth hidden layer node. Equation 3.1 gives the

partial importance of the jth hidden node with respect to the kth output node. If

the network were to consist of more than one hidden layer, the partial importance of

any of these hidden nodes with respect to any output node can be found out using

the chain rule.

The total importance of the jth hidden node is the sum of the partial {mportances

of that node with respect to ali the output nodes. Mathematically.

kma;g

I(xj) = k_ 1=I(xjlXk ) (3.3)

In the same way, the importance of a layer can be defined as tile sum of the impor-

tances of the nodes in that layer.
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Demonstration of the DNA Algorithm

This section demonstrates how the derivative Dynamic Node Architecture scheme

works. For this purpose, the algorithm is used to learn three different problems. They

are the Exclusive-Nor problem, the 8-to-1 decoder problem, and a probability density

function separator problem.

The Exclusive-Nor Problem

The most simple network learning problem is the exclusive-nor problem. The

training data is shown in Table 3.1. This is a simple two-input one-output problem.

Table 3.1: Exclusive-nor training data

Pattern Input 1 Input2 Output
1 0.0 0.0 1.0
2 0.0 1.0 0.0 •
3 1.0 0.0 0.0
4 1.0 1.0 1.0

The DNA algorithm training was started with one hidden node. Thus the starting

architecture was 2 x-1 x 1. Table 3.2 shows the training history for this problem.

The starting architecture is, as expected, unable to learn the problem. A second

node is added. This architecture reaches a plateau and a third node is added. This

2 x 3 x 1 architecture too is unable to learn the problem fast enough and a fourth

node is added. The 2 x 4 x 1 architecture manages to reaches an PtMS error below

the target of 0.01. Now, the node with the least importance is deleted. This leaves

three nodes in the hidden layer. This architecture is now able to reach the target

RMS error, and a further node is deleted. On further training, the 2 x 2 x 1 networkD
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Table 3.2: Dynamic node architecture training history for the exclusive-nor problem

Arch. RMS Arch. RMS Arch. RMS
In Hid Out Error In Hid Out Error In Hid Out Error
2 1 1 0.50122 2 3 1 0.01793 2 4 1 0.02828
2 1 1 0.38725 2 4 1 0.01929 2 4 1 0.00997
2 2 1 0.39071 2 4 1 0.00993 2 3 1 0.02877
2 2 1 0.11059 2 3 1 0.02243 2 3 1 0.00982
2 3 1 0.11902 2 3 1 0.00972 2 2 1 0.06837
2 3 1 0.03376 2 2 1 0.04227 2 2 1 0.00999
2 4 1 0.04133 2 2 1 0.00999 2 1 1 0.49962
2 4 i 0.00997 2 1 1 0.49979 2 i 1 0.49224
2 3 1 0.02521 2 1 1 0.49286 2 2 1 0.42182
2 3 1 0.00981 2 2 1 0.32188 2 2 1 0.14522
2 2 1 0.06242 2 2 1 0.06229 2 3 1 0.18256
2 2 1 0.02109 2 3 1 0.06681 2 3 1 0.01644
2 3 1 0.03027 2 3 1 0.01483 2 4 1 0.02388

is also able to learn the problem classification. The further elimination of a node

renders the network with only one hidden nodes. This is not sufficient to learn the

problem, and a node is added. This process is continued and the algorithm oscillates

around the optimum architecture as can be seen from Table 3.2. It is also evident

that 2 x 2 x 1 is the appropriate architecture for the problem.

The 8-to-1 Decoder Problem

Eight distinct patterns can be made using three booleans. This problem involves

firing one of eight output nodes for each of the eight patterns. So there are three

inputs and eight outputs. The training data for this problem are in Table 3.3. As

with the exclusive-nor problem, training is started with one hidden layer. So the

starting architecture is 3 x 1 x 8. The training history for this problem can be

found in Table 3.4. The training process is very similar to that for the exclusive-
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Table 3.3: 8-to-1 decoder training data

Pattern

1 Inputs 0.0 0.0 0.0
Outputs 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 Inputs 0.0 0.0 1.0
Outputs 0,0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

3 Inputs 0.0 1.0 0.0
Outputs 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

4 Inputs 0.0 1.0 1.0
Outputs 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

,5 Inputs 1.0 0.0 0.0
Outputs 0.0 0,0 0.0 0.0 1.0 0.0 0.0 0.0

6 Inputs 1.0 0.0 1.0
Outputs 0.0 0.0 0.0 0.0 0.0 t.0 0.0 0.0

7 Inputs 1.0 1.0 0.0
Outputs 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

8 Inputs 1.0 1.0 1.0
Outputs 0.0 0.0 0.0 0,0 0.0 0.0 0.0 1.0

nor problem. The target RMS error was 0.01. The network kept adding nodes

till the RMS error finally fell below the target with six hidden nodes, Then nodes

began to be deleted until at three hidden nodes, the network was unable to learn the

problem. Following this, nodes began to be added and the oscillations noticed in the

previous example is witnessed here too. As can be seen from Table :5.4, the optimum

architecture arrived at by the DNA scheme is 3 x 4 x 8.

The Probability Density Function Separator Problem

In this problem, an artificial neural network with DNA is taught to recognize

which of two probability density functions (pdf's) was used t,, ..a_ple a set of ten
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Table 3.4: Dynamic node architecture training history for the 8-to-1 decoder prob-
lem

Arch. RMS Arch. RMS Arch. RMS
In Hid Out Error In Hid Out Error In Hid Out Error
3 1 8 0.51626 3 4 8 0.12675 3 5 8 0.06223
3 1 8 0.48722 3 4 8 0.00986 3 5 8 0.00988
3 2 8 0.42163 3 3 8 0.22187 3 4 8 0.05029
3 2 8 0.29358 3 3 8 0.08341 3 4 8 0.00906
3 3 8 0.33542 3 4 8 0.16794 3 3 8 0.11476
3 3 8 0.19744 3 4 8 0.02108 3 3 8 0.07338

•3 4 8 0.21927 3 5 8 0.06048 3 4 8 0.14273
3 4 8 0.08952 3 5 8 0.00980 3 4 8 0.03227
3 5 8 0.12481 3 4 8 0.09443 3 5 8 0.09103
3 5 8 0.02275 3 4 8 0.00991 3 5 8 0.02466
3 6 8 0.05181 3 3 8 0.24218 3 6 8 0.04019
3 6 8 0.00996 3 3 8 0.08280 3 6 8 0.00980
3 5 8 0.08264 3 4 8 0.10042 3 5 8 0.08263
3 5 8 0.00992 3 4 8 0.03159 3 5 8 0.00957

numbers. The two functions were

f(.) = (3.4)

arid

f(z) = 4z 3. (3.5)

These equations and their graphs can be seen in Figure 3.1. If the pdf given by

Equation3.4 (function A) is used then the expected output is 0.000; if the pdf given

by Equation3.5 (function B) is used then the expected output is 1.000. The training

data for this problem can be found in Table 3.5. Table 3.6 gives the training history

for this problem. The training process is similar to the previous two examples.

The target RMS error in this case was 0.05. The starting architecture was 10 x 1 x 1.

The network expands to four hidden nodes before it reaches the target RMS error.
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FUNCTION A : f (X) = 0.5_Cos (_X/2)

OUTPUT ." 0.00

FUNCTION B : f(X) = 4X 3

OUTPUT : 1.00

3.e FUNCTION B

X20

_" FUNCTION A

0.0
0.0 0.2 0.4 0.6 0.8 I.0

X

Fisure 3.1: The probability density functions used in the pdf seperator problem
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Table 3.5: Probability density function separator training data

I n p u t s Output
0.388 0.099 0.327 0.892 0.394 0.036 0,50,5 0.571 0,383 0.4,54 0.000
0.628 0.996 0.487 0.628 0.9,53 0.873 0.36,5 0.917 0.899 0.666 1.000
0.892 0.099 0,394 0.034 0.695 0.619 0.223 0.011 0.126 0.020 0.000
0.996 0.628 0.873 0.480 0,970 0.953 0,766 0.365 0.666 0.425 1,000
0.099 0.034 0.619 0,091 0.350 0.695 0.316 0,223 0,020 0.120 0.000
0.628 0.480 0.9.53 0.614 0,850 0.970 0.830 0,766 0.425 0.6,58 1.000
0.034 0.091 0,695 0.227 0.580 0,350 0.375 0.316 0.120 0.503 0.000
0.480 0.614 0.970 0.769 0.943 0.850 0.863 0.830 0.658 0.918 1.000

Table 3.6: Dynamic node architecture training history for the probability density
function separator problem

Arch. RMS Arch. RMS Arch. RMS
In Hid Out Error In Hid Out Error In Hid Out Error
10 1 1 0.4999 10 3 1 0.0662 10 3 1 0.0992
10 2 1 0.3454 10 4 1 0.5019 10 4 1 0.1492

• 10 2 1 0.2055 10 4 1 0.4404 10 4 1 0.0623
10 3 1 0.2819 10 5 1 0.3216 10 5 1 0.0812
10 3 1 0.1448 10 5 1 0.0422 10 5 1 0.0488
I0 4 1 0.1403 i0 4 I 0.091,8 i0 4 i 0.1008
i0 4 I 0.0413 I0 4 i 0.0488 i0 4 i 0.0402
i0 3 i 0.1304 i0 3 i 0.1281 I0 3 I 0.0961

From the training history, it is apparent that the DNA algorithm gives an optimum

architecture of 10 x 4 x 1. The computer program savedthe weights oi the network

of this architecture with the least RMS error.

Recall performance

Further computer simulations were carried out to compare the performance of

DNA generated networks and networks trained by conventional Fixed Node Archi-

tecture (FNA) schemes. These comparisons were carried out on the exclusive-nor
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and 8-to-1 decoder problems.

For the exclusive-nor problem the DNA algorithm gave an optimum network of

size 2 x 2 x 1. Two more networks with 5 and l0 hidden nodes are trained on the

exclusive-nor problem using an FNA scheme. These networks were trained to the

same level of RMS error. Then all the three networks were used to recall on data

corrupted by uniform noise. A similar experiment was done for the 8-to-1 decoder

problem. The results of these experiments can be found in Table 3.7.

Table 3.7: Comparative recall performance of neural networks derived by DNA and
FNA schemes

Problem Architecture Scheme Train. RMS Recall RMS
error error

Exclus- 2 x 2 x 1 DNA 9.9956E-03 0.00999
ive-nor 2 x 5 x 1 FNA 9.9278E-03 0.01831

2 x 10 x 1 FNA 9.7582E-03 0.01983

8-to-1 3 x 4 x 8 DNA 9.0636E-03 0.00906
decoder 3 x 8 x 8 FNA 9.3911E-03 0.03642

3 x 10 x 8 FNA 9.6355E-03 0.03849

As can be seen from Table 3.7, the networks trained with the DNA scheme did

a better job of generalization. This is reflected in their low recall RMS errors. The

bigger networks, trained to a similar level of accuracy, did not generalize well and

hence had a poor recall performance on noisy data. Also to be noted is that the

performance deteriorated as the size of the network increased.

Conclusions from the above experiments

The above experiments prove that DNA works well with backpropagation. They

also show that it is advantageous to use the optimum network architecture to solve
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a problem. A large network may train on the training set, but is not a very good

generalizer. This leads to poor recall performance on unseen patterns. The training

history for the various problems suggest that it takes more nodes to learn a problem

than to recall the same.

Having proved the viability of the DNA algorithm, it will now be applied to solve

the nuclear power plant diagnostic problem.
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CHAPTER 4. THE PROBLEM AND ITS SOLUTION

Introduction

The specific problem investigated in this thesis is the design of an Artificial

Neural Network (ANN) based nuclear power plant status diagnostic advisor. This

advisor is expected to correctly identify and classify seven distinct transients and the

normal operating conditions. This work is expected to demonstrate the viability of

ANNs to solve these types of problems. For a meaningful conclusion, the transients

investigated needed to be much varied in nature. ANNs which can recognize such

a diverse range of transients need to be able to draw information from a lot of

plant variables. The choice of accidents and variables were thus very important for

the project. Two major documents were consulted for the purpose. These were

' the Updated Final Safety Analysis Report, Chapter 15 : Accident Analysis i37] and

the Malfunction Cause and Effects Report [21], both by the Duane .\mold Energy

Center (DAEC). These documents describe most of the power plarlt transients of

interest. Intensive discussions between personnel at DAEC and fellow re,catchers at

ISU [18] resulted in a preliminary list of transients to be simulated an(l i)lant variables

to be monitored [29]. From these transients, seven distinct ones were-elected for

this work. A description of each of these transients is given in Apl)eIl(lix A. These

transients are the design basis loss of coolant accident (RR15A), main feedwater line
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break inside primary containment (FW17A), loss of feedwater heater (MS14), High

Pressure Coolant Injection (HPCI) steam supply line break inside the HPCI room

(HP05), trip of condensate pump (FW02), main steam line break inside primary

containment (MS03) and trip of main circulating water pump (MC01). The data

were obtained from the DAEC operators training simulator.

Data Collection and Processing

Data were collected for eighty-one plant variables at intervals of one second as

the simulated transients progressed. These variables were selected from the complete

list of computer points available on the simulator [27]. They were decided to be

sufficient to diagnose the transients currently being investigated [29]. A listing of

these variables can be found in Table 4.1. The data consisted of the numerical values

of these eighty-one variables and the time corresponding to each set of values. The

data also consisted of a boolean that indicated the onset of the transient. The data

before the transient started related to normal, plant operating conditions. The raw

data, off the simulator, was in a very unusable form. Codes written by Lanc [29]

and myself were used to reformat the data in a form that could be used by neural

networks.

Normalization of the Data

Neural networks require normalized data as input. One of the options available

was to normalize the values of each variable based on the range of that variable over

the seven transients. But this approach would be cumbersome for future work. As

the scope of the project increases to investigate more transients, the data would need
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Table 4.1: The eighty-one plant variables used

No. Variable Description

i) A041 Longitudinal Power Range Monitor 16-25 Flux
Level - Channel B

2) A091 Source Range Monitor - Channel B
3) B000 Axial Power Range Monitor - Flux Level -

Channel A
4) B012 Reactor Total Core Flow
5) B013 Reactor Core Differential Pressure
6) B014 Control Rod Drive System Flow
7) B015 Rx Feed-Water Loop A Flow (Temp. Corrected)
8) B016 Rx Feed-Water Loop B Flow (Temp. Corrected)
9) B017 Clean-up System Flow

I0) B022 _, Total System Flow
ii) B023 Clean-up System Inlet Temperature
12) B024 Clean-up System Outlet Temperature
13) B026 Reclrculation Loop A1 Drive Flow
14) B028 Recirculation Loop B1 Drive Flow
15) B030 Rx Feed-Water Channel A1 Temperature
16) B032 Rx Feed-Water Channel B1 Temperature
17) B034 Recirculation Loop A1 Inlet Temperature
18) B036 Recirculation Loop B1 Inlet Temperature
19) B038 Recirculation Loop A1 Wide Rang_ Temperature
20) B039 Recirculation Loop B1 Wide Range Temperature
21) B061 Rx Jet Pumps 1-8 Flow (Channel B)
22) B062 Rx Jet Pumps 9-16 Flow (Channel A)
23) B063 Reactor Outlet Steam Flow - Channel A
24) B064 Reactor Outlet Steam Flow - Channel B
25) B065 Reactor Outlet Steam Flow - Channel C
26) B066 Reactor Outlet Steam Flow - Channel D
27) B079 RRP A MTR vibration
28) B080 RRP B MTR vibration
29) B083 Control Rod Drive Drive-Water Differential

Pressure
30) B084 Control Rod Drive Cooling-Water Differential

Pressure

31) B085 Torus Air Temperature Sensor #1
32) B086 Torus Air Temperature Sensor #2
35) B087 Torus Air Temperature Sensor #3
34) B088 Torus Air Temperature Sensor #4
35) B089 Drywell Temperature at AZ EL750
36) B090 Drywell Temperature at AZ245 EL750
37) B091 Drywell Temperature at AZ090 EL765
38) B092 Drywell Temperature at AZ270 EL765
.39) B093 Drywell Temperature at AZ270 EL765
40) B094 Drywell Temperature at AZ180 EL780
41) B095 Drywell Temperature at AZ270 EL830
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Table 4.1 (Continued)

No. Variable Description
ii

42) B096 Drywell Temperature at CENTER EL750
43) B098 Torus Water Temperature
44) B099 Torus Water Temperature
45) B103 ILRT Drywell Pressure
46) BI04 ILRT Torus Temperature
47) B105 Torus Water Level
48) B120 Torus Radiation Monitor A
49) B121 Torus Radiation Monitor B
50) B122 Reactor Water Level
51) B125 Reactor Water Level
52) B126 Reactor Water Level
53) B137 Torus Water Level
54) B138 Torus Water Level
55) BIS0 Core Spray A Flow
56) B151 Core Spray B Flow
57) B160 RCIC Flow
58) B161 HPCI Flow
59) B162 Reheater A Flow
60) B163 Reheater B Flow
61) B154 Drywell Radiation Monitor - A
62) B165 Drywell Radiation Monitor - B
63) B166 Post Treatment Activity
64) B168 Pre Treatment Activity
65) B171 Analyzer A - O Concentration
66) B172 Analyzer A - H 2 Concentration

67) B173 Analyzer B - O22 Concentration
68) B174 Analyzer B - H_ Concentratlon
69) B180 Clean-up System Flow
70) B196 Reactor Water Level in Fuel Zone A
71) B197 Reactor Water Level in Fuel Zone B
72) B247 Turbine Steam Bypass
73) B248 Turbine Steam Bypass
74) E000 4160V Switchgear Bus 1AI A-B
75) F004 Condensate Pump A&B Discharge Pressure
76) F040 1P-IA Rx Feed-Water Pump Suction Pressure
77) F041 IP-IB Rx Feed-Water Pump Suction Pressure
78) F042 lP-lA RX Feed-Water Pump Discharge Pressure
79) F043 1P-1B RX Feed-Water Pump Discharge Pressure
80) F094 Feed-Water Final Pressure
81) G001 Generator Gross Watts
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to be renormalized, lt was decided to normalize the values of each variable based

on the maximum and minimum possible values of that variable [31]. In this way,

there is no need to renormalize the data as more scenarios are investigated. Also,

when the advisor is actually taken out to the plant (or simulator) at a later stage,

the normalization of the input data will be needed to be done in real time, and this

approach will make that possible. It is to be noted here that the normalization was

done in the range 0.1 to 0.9. A look at the sigmoid function (Figure 2.5) shows that

it is relatively easy to reach an output of 0.1 or 0.9, but it might be difficult to train

the network to output in the extremities 0.0 and 1.0. In the same spirit, the input

is also limited between these two values. A normalized value of 0.9 corresponds to a

meter reading -f 100% for the particular variable.

Final Data Set

The trained ANN would be classifying seven transients and normal operating

conditions. The trained advisor would be expected to identify if the plant was in a

normal operating condition, and if not, which of these seven transients it was going

through. This requires eight distinct output patterns which can be formed by three

booleans. One pattern was assigned to each of the seven transients and a pattern

was assigned to all the normal conditions.

The final data set was put together for all the seven transients which consisted of

the input patterns at each time-slice and the expected output for that pattern. Each

time-slice input pattern consisted of the values of the 81 plant variables at the time

the pattern was collected. This pattern had no temporal information in it. Some

sample patterns are included in Appendix C. The final data set had 2566 patterns
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corresponding" to the entire length of simulation of the seven transients.

Developing the Advisor

Training

The values of the eighty-one variables at any given time was expected to contain

enough information to make it possible to look at them at any instance of time

and diagnose the plant status [2][3]. The problem dictated that there were 81 input

nodes and 3 output nodes. The training set was chosen in an iterative manner. In

the first trial, one pattern at the beginning and one at the end of each simulation

were taken to form the training set. Training was initiated with one hidden node.

As the training progressed, the DNA scheme added more nodes and finally gave an

optimum architecture with 7 hidden nodes for the first trial. This first trial had 14

training patterns and was trained to an RMS error of 0.10. This trained network was

now used to recall on the whole length of the seven simulations, and the RMS errors

of the outputs for each of the patterns was plotted out. Obviously. the network did

not do a very good job of classifying all the patterns. The patterns with the worst

recall errors were added to the training data set and the network frotll the previous

trial was trained further. This process was continued until the netw_rk could detect

and classify ali the transients within a reasonable amount of time. ('are is taken

so that pal;terns too close to the initiating events are not includecl iu the training

set. This is because these patterns correspond to a highly unstable l_lant condition.

Inclusion of these in the training set might make the network grow iii ,ize in an effort

to memorize them resulting in decreased generalization capabilities oi'the network.

It is to be noted here that this problem is slightly different froin conventional
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Table 4.2: Training information of the advisor

Trial No. of training Starting Ending

pat tern s arc hi t ect ure arc hi t ect ure
1 14 81x lx3 81x 7x3

2 56 81x 7x3 81x 13x3

3 90 81x 13x3 81xl7x3

4 127 81x 17x3 81 x22x3

5 169 81x22x3 81 x24x3

6 193 81x24x3 81 x26 x3

7 230 -.. 81x26x3 81 x30x3

8 " 246 81x30x3 81 x30x3

9 262 81x30x3 81 x35x3

i0 264 81x35x3 81 x36x3

problems that are solved using neural networks. In most cases, a training set is given,

and a network is trained based on that. The recall set is not known beforehand, and

the trained r.etwork is then used to recall on unseen patterns. But in this case, the

recall set is known from the simulations. We then try to define the training set so

that it is a fairly accurate representation of the recall set. In fact, through the various

trials, we force it to be so. Consequently, good generalization is extremely important

in order to keep the number of patterns in the training set to a minimum. In the

polynomial interpolation analogy (see page 29), this is comparable to finding the

smoothest interpolation curve for the given points, and then adding the points that

are off the curve and finding the interpolation curve all over again.

Results

Table 4.2 contains information about the various trials. As can be seen there,

the final architecture of the advisor was 81 x 36 x 3. The advantages of the DNA

algorithm can be appreciated here. Suppose a conventional fixed architecture scheme
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were used to solve this problem. Then, for the first trial, a few architectures need

to be guessed at, training done on ali of them, and the architecture with the best

performance used for later trials• But the training set changes, in fact increases, with

each trial. So there is no guarantee that the best architecture for a given trial will

also be good enough for the following trials. Table 4.2 shows that the network size

needs to increase as the training size increases. A fixed node architecture scheme

would have been extremely inconvenient in developing the advisor.

The recall RMS errors of the advisor over the seven simulations can be seen

in Figures 4.1 through 4.7. Information about the seven transients can be seen in

Table 4.3.

As can be seen, ali the transients are detected within a reasonable period of

time. The only exception is the trip of the main circulation water pump. This

transient took over 75 seconds after the initiating event to be diagnosed by the

advisor. A look at the transient description in Appendix A shows that this transient

first manifests itself in the electrical components of the plant. An examination of the

plant variables monitored (Table 4.1) reveals that not many variables pertaining to

electrical components were monitored. This might be why the transient required so

much time to be diagnosed.
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Table 4.3: Network output, simulation time, time to scram, and time to diagnose
for the seven transients

.............. i

Transient scinario Desired output Trans. Initi- Time@Time to @
nods activation simula- ating to diag.

.... tlon event scram trans.
time

I 2 3 (sec) (see) (sec) (sec)
--

'e

Recirculation loop 0.I 0.1 0.9 304 63 i 17
rA' rupture inside
primary containment

(RR15)

Maln feedwater line 0.1 0.9 0.I 316 Ii 4 22
rA' break inside of
primary containment

(FWl7)

Loss of extraction 0.I 0.9 0.9 346 17 213 32
• steam to feedwater

heater

(MSt4)

HPCI steam Supply 0.9 0.1 0.1 78 5 -- 15
line break inel.de
HPCI room

(HPO5)

Condensate pump 0.9 0.I 0.9 764 6 -- 38
rA' trip

(FW02)

Main steam line 0.9 0.9 0.1 165 5 8 14
rA' rupture inside
primary containment

(MS03)

Main circ water 0.9 0.9 0.9 586 6 -- 75

pump rA' trip
(MC01)

Normal condition 0.1 0.1 0.1 .........

@ : Time since the initiating event.
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CHAPTER 5. CONCLUSIONS

The first major conclusion from this thesis is the viability of a derivative im-

porrance function based Dynamic Node Architecture scheme to derive the optimum

network architecture for any given problem. This work also demonstrates the viabil-

ity of using neural networks to detect operational transients in boiling water reactor

(BWR) nuclear power plants. An ANN was successfully trained to detect and clas-

sify seven distinct transients and the normal conditions. The purpose of this thesis

was to develop the DNA scheme, and to apply it to the nuclear power plant status

diagnostic problem. This was accomplished in its entirety.

The DNA scheme evolved a systematic method to arrive at the optimum architec-

ture for a problem, lt eliminated the guesswork associated with preset architectures

used in conventional neural network training schemes. This helped in using neural

networks in solving an intractable problem of the kind involving nuclear power plant

diagnostics. The large amount of guesswork that would have been otherwise required

to come up with the optimum architecture was eliminated.

The demonstrations with the DNA scheme showed that the networks with the

optimum architectures had a better recall than larger networks trained to the same

level of accuracy, lt also showed the greater noise tolerance capabilities of the DNA

derived networks compared to FNA derived networks.
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The most important contribution of this work has been the demonstration of the

viability of using ANNs to solve the nuclear power plant diagnostic problem. The

advisor designed here was successfully able to recognize and classify seven distinct

transients in reasonable amounts of time. The ANN utilized the values of all the

eighty-one variables for which data were collected. The seven transients used for this

study were much varied in nature. The network did a very decent job of detecting

all of them, other than the one (MC01) for which the proper variables were not

monitored.

Possible Future Work

This work opens the doors to a lot of possible future work. One of the first

steps would be to widen the scope of the transients investigated. Along with an

increase irt the transient list, it will be imperative to look at more plant variables.

One possible approach is to group the transients into lesser number of categories and

use a base network to identify the category of a transient. Smaller networks can be

trained to identify transients within a category once the category is decided by the

base network.

Another avenue for research is to identify which plant variables are important

to identify the transients, and which variables are redundant and confuse a network.

Work done by Lanc [29] is important in this respect. The derivative importance

function presented here and in [5] was used to cut this very same list of eighty-one

variables down to twenty to recognize three of the transients. This indicates that

ali the eighty-one variables might not have been necessary for the present problem.

If results presented in [29] are taken into consideration, the use of ali the eighty-
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one variables might have even made the training problem difficult. If transients are

classified into different groups, then some variables might be important to identify

transients in a certain group, while they might be totally unnecessary or misleading

for another group• Thus research in this field will be important for the successful

design of a broad-based nuclear power plant status diagnostic advisor.
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