SADGY-ofsIc_— Sk -AY0IPE--

PROBABILITY MAPPING OF CONTAMINANTS

C. A. Rautman and P. G. Kaplan
Sandia National Laboratories
Albuquerque, NM 87185

M. A. McGraw J. D. Istok
University of California Oregon State University
Berkeley, CA 94701 Corvallis, OR 94331

J. M. Sigda

New Mexico Institute
of Mining and Technology
Socorro, NM 87801

ABSTRACT

Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descrip-
tions of the nature, extent, and level of contamination, as well as decisions regarding proposed remedia-
tion activities, must be made in a state of uncertainty based upon limited physical sampling. The
probability mapping approach illustrated in this paper appears to offer site operators a reasonable, quanti-
tative methodology for many environmental remediation decisions and allows evaluation of the risk asso-
ciated with those decisions. For example, output from this approach can be used in quantitative, cost-
based decision models for evaluating possible site characterization and/or remediation plans, resulting in
selection of the risk-adjusted, least-cost alternative. The methodology is completely general, and the
techniques are applicable to a wide variety of environmental restoration projects.

The probability-mapping approach is illustrated by application to a contaminated site at the former
DOE Feed Materials Production Center near Feraald, Ohio. Soil geochemical data, collected as part of
the Uranium-in-Soils Integrated Demonstration Project, have been used to construct a number of geo-
statistical simulations of potential contamination for parcels approximately the size of a selective remedi-
ation unit (the 3-m width of a bulldozer blade). Each such simulation accurately reflects the actual
measured sample values, and reproduces the univariate statistics and spatial character of the extant data.
Post-processing of a large number of these equally likely, statistically similar images produces maps
directly showing the probability of exceeding specified levels of contamination (potential clean-up or
personnel-hazard thresholds).

INTRODUCTION

Cost-effective remediation of a contaminated site is partially dependent upon the accuracy of site
characterization. Without a reasonable understanding of where contaminants are located and where they
are not, the only remediation alternatives available are to treat the entire region or to incur what may be an
unacceptably high risk of failing to meet regulatory requirements, followed by consequent fines and other
penalties. An understanding of the location, magnitude, and spatial variability of contamination may also
be important in designing an effective remediation program and in developing appropriate personnel-pro-
tective measures.

However, complete characterization of a contaminated site is never possible. Inevitably, descriptions
of the nature, extent, and level of contamination are incomplete, and decisions regarding what areas to
clean up and what technology to use must be made in a state of uncertainty, based upon limited physical
sampling. Because sampling and the resulting factual knowledge are limited, it is important not only to
make use of the information contained in the actual data values themselves, but also to extract significant
other information that is contained in the spatial relationships between and among the individual sample
values. Geostatistical simulation is a relatively new technique that can provide powerful tools for investi-
gating contaminant levels, and in particular, for identifying and using the spatial interrelationships among
a set of isolated sample values. This additional information can then be used to assess the likelihood of
encountering contamination at unsampled regions within a site. A quantitative assessment of this risk can
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then be used to allocate resources between additional site characterization work and the restoration of
areas identified as “likely” to be contaminated. The objective is to achieve the minimum cost combination
of site characterization and site remediation for a given level of risk.

THE FERNALD SITE

Past operation of the DOE Feed Materials Production Center near Fernald, Ohio, has resulted in
extensive contamination of surficial soils by natural uranium. Soil geochemistry and other non-invasive
techniques are being used to characterize the nature and extent of the surficial contamination as part of
the Uranium-in-Soils Integrated Demonstration Project. (1)

Numerous individual areas within the Fernald site have been identified as contaminated, and these
form the focus of an on-going restoration effort. In this paper, we have evaluated the spatial correlation
patterns and uranium concentration levels existing at a site referred to as the drum baling area using only
the soil geochemical data. We have then produced a set of geostatistical simulations (stochastic images)
that are equally likely and indistinguishable from one another based upon what is currently known about
the site. Any one of these simulations could represent the actual distribution of uranium contamination in
the drum baling area. However because of their individual and collective similarity to the sample data,
there is little basis for choosing among the set of alternative, replicate images. Yet it is within this uncer-
tain context that the site manager will need to designate certain regions to be excavated and treated while
other areas will be left as-is. To assist in this decision (on a preliminary basis), we have produced maps
showing the expected uranium values and the probability of exceeding several different levels of contam-
ination for individual 3 m-square parcels that may represent the smallest individually treatable region (a
selective remediation unit).

Data

Standard soil-geochemical data (2) have been collected systematically at approximate'y 15-m inter-
vals along a partial grid covering the drum baling area [Figure 1(a). As summarized in statistics associ-
ated with the histogram [Figure 1(b)], the samples are typical of those obtained in many geochemical
sampling programs. The data reflect contamination levels from near background to several thousand
picoCuries per gram of soil (pCi/g). Additionally, they appear somewhat log-normally distributed, with
many low and a few extremely high values. However, as will be discussed below, univariate normal pop-
ulations need not exhibit normal (Gaussian) multivariate spatial behavior.

Geostatistical techniques provide a method for extracting additional information from the interrela-
tionships of the scattered data by providing a quantitative description of how a property of interest varies
in space. This description, or spatial continuity model, is typically derived by computing what is known
as a variogram (3, 4) from the sample values and their location coordinates. Variograms can be thought of
as plots of the variance for all pairs of samples separated by a given distance, plotted as a function of that
separation distance.

Sample variograms have been constructed using the soil geochemistry data from the drum baling
area. Two versions of the sample variogram are shown in Figure 2. Figure 2(a) is the classical variogram
computed using the actual sample values (in pCi/g). Although the figure is somewhat noisy, due in part to
the small sample size, there is a definite suggestion that the variogram value increases with increasing
separation between samples. At large separation distances greater than about 45-60 m (150-200 ft.),the
variogram appears to oscillate somewhat erratically about the overall population variance. This distance
represents the range of spatial correlation. More revealing is the indicator variogram plot shown as Figure
2(b), which uses a transformed variable (6) that emphasizes whether the sample value is above or below a
particular cut-off level (here corresponding to the three quartiles of the data [from Figure 1(b)]. This
transformation technique is useful with some data precisely because of its emphasis on values of similar
magnitude. In effect, the question being asked is do low uranium concentrations tend to cluster together
and over what distance? median values? high values? It is possible to analyze data sets using indicator
transformations in which high values are correlated differently in space than low values, (5) potentially a
very powerful technique in dealing with materials for which the elevated values (i.e., contaminants) were
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deposited by a very different physical process than the (natural) background levels. In Figure 2(b), the
erratic behavior of Figure 2(a) is somewhat reduced, and there is generally a more coherent increase in
the variogram value with increasing separation. The lack of symmetry between the variograms for the
first and third quartiles, contrary to that expected by theory, (6) indicates that the spatial behavior of these
data is not strictly as predicted by multivariate Gaussian theory (the indicator variograms for the first and
third quartiles should be approximately identical and with a lower sill than that of the median). The small
sample size, however, may explain some of this discrepancy, and we have assumed that Gaussian model-
ing techniques are adequate for the task at hand. Similar simulation methods that do not depend upon
assumptions of multivariate Gaussian spatial behavior are available for use in instances of more severe
non-normality. (5, 7)

The heavy solid curve in Figure 2(b) represents an isotropic, spherical variogram model (4) fitted to
the sample data with a range of 55 m (180 ft.), or approximately three times the nominal sample spacing.
It is this theoretical functional relationship that captures the interpreted spatial continuity patterns at the
drum baling area and which is used in further modeling of uranium contamination at unsampled loca-
tions.

Simulations

A sequential, Gaussian stochastic simulation technique (7) has been used to generate 100 alternative
models of the site compatible with the original soil-geochemical data. Three of these stochastic realiza-
tions are shown in Figure 3. Each realization reproduces (by construction) the original 63 conditioning
data at the original sample locations. In addition, the stochastic models are essentially indistinguishable
statistically from the original data. Figure 4 presents validation statistics for the simulation shown on the
left in Figure 3. The histogram [Figure 4(a)] appears quite similar to the histogram presented in Figure
1(b), and the descriptive statistics are virtually identical, given that there are only 63 sample data yet
3,600 simulated values. In a similar fashion, the spatial statistics captured by the indicator variograms of
Figuree 2(b) and 4(b) are similar. The sample variogram is much noisier, given the small sample size, but
the reproduction of the inferred spatial model (heavy line) is excellent. It is important to note that even the
slightly non-Gaussian spatial behavior of the data is reproduced in the simulation, even though the vario-
gram model provided as input to the simulation implied a purely Gaussian spatial model. These simula-
tion techniques are sufficiently robust that many deficiencies in the model of spatial continuity can be
overcome by adequate conditioning data.

Similar statistical comparisons may be obtained by evaluating any of the alternative stochastic models
of the site. Because the alternative images are indistinguishable based upon any factual knowledge (data
values, statistical character including spatial continuity patterns) and because the only identifiable differ-
ence between them is the initial random number seed used to begin the simulation, we may conclude that
all 100 realizations are equally likely models of the unkiiown true contamination pattern.

The set of simulations may be summarized in a manner similar to more conventional geostatistical
estimation, or kriging, to present a map of the expected uranium concentrations at any particular location
(Figure 5). Although this method of modeling spatially distributed data is more widely known, there are
some limitations to the technique. For example, because kriging and the computational method used to
produce the expected value map are essentially smoothing, or averaging algorithms, the statistical proper-
ties of the model may differ substantially from those of the data themselves. For example, the histogram
[Figure 5(b)] is substantially different in shape from that of the data [Figure 1(b)] or the simulation (Fig-
ure 4). Specifically, the quasi-log-normal appearance is not present in Figure 5(b). Although the vario-
gram of Figure 5(c) is not a particularly bad reproduction of the sample data, the probable non-Gaussian
distortion of the one quartile is particularly accentuated through the averaging process. The distortion is
especially noticeable for the first quartile values: the lower values (light pixels) are much more continu-
ous spatially in the expected value model than in the simulations (Figure 3). Also, the highest contami-
nant values are higher (darker) in the simulations than in the expected value map. This smoothing of the
data and lack of small-scale spatial variability in the expected value map seems geologically unreason-
able. Furthermore, knowledge of the actual variability and maximum concentration level may be impor-
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tant in designing the treatment facility if an input stream of relatively constant concentration is required
in processing the waste.

Uncertainty Assessment

One of the primary reasons for modeling uranium contamination at the Fernald site is to make deci-
sions regarding the restoration of contaminated areas. The variation among the many alternative realiza-
tions, such as those in Figure 3, suggests that there may be considerable uncertainty regarding the actual
contamination level of an individual pixel or selective mining unit. However, the point is not necessarily
to evaluate the actual level of contamination. The important aspect of environmental restoration of the
Fernald site is whether or not to clean up. The action level typically is specified by regulation or is nego-
tiated with the responsible regulatory body. Accordingly, the uncertainty probiem is actually simplified,
and it reduces to describing the probability, given a particular set of sample values, that a given parcel of
rea] estate is above (or below) a particular threshold level requiring action. For purposes of the remedia-
tion decision, it is not particularly important whether the actual contamination exceeds the action limit by
5 percent or 500 percent. The decision remains the same: clean it up.

Stochastic simulation methodology is particularly well suited to evaluation of this type of uncertainty
with respect to a go/no-go decision. If there are N equally likely alternative models of a site, it is a simple
matter to evaluate those alternatives pixel by pixel and to determine the fraction of the set that exceeded
threshold X at any individual grid block. If the replicate simulations are, in fact, equally likely representa-
tions of the real world, this fraction should approach the actual probability of exceeding the given thresh-
old as the number of simulations becomes large.

This post-simulation processing technique has been applied to the 100 simulations of the drum baling
area, and the results are presented in the probability maps of Figure 6. Each map represents the probabil-
ity, grey-scale coded from O to 1, that the indicated pixel exceeds the threshold. Two different threshold
levels are presented. Figure 6(a) indicates the probability of exceeding the tentative remediation level of
35 pCi/g of soil. If the regulatory criterion for remediation is 35 pCi/g, virtually the entire drum baling
area is contaminated and must be treated in some manner. Figure 6(b) uses a threshold level of 200 pCi/g;
as anticipated, the area that must be cleaned up to a criterion of 200 pCi/g is smaller for the same proba-
bility (grey-scale level). Note that the grey-scale values in Figure 6(b) in the regions farthest removed
from data (especially just east of the region occupied by some of the Fernald buildings) are medium grey
corresponding to about 50-percent probability. The inference is that the existing characterization program
has provided about as much information regarding whether or not these areas are above or below 200
pCi/g as tossing a coin. It then follows that the greatest gain in overall information may be had by sam-
pling in these regions of greatest uncertainty.

An important corollary of this line of reasoning regarding probability mapping is that these mapped
probabilities translate almost exactly into the risk assumed by the project manager in deciding whether or
not to remediate a specific parcel. A parcel in Figure 6(a) that is 90-percent likely to exceed 35 pC/g pre-
sents approximately a 90-percent risk of leaving contaminated material in place if it is not treated.
Because the cost of remedial treatment is a first-order function of the total area to be treated, the ability to
predict uncertainty, and thereby risk, provides an important tool for cost estimation.

Additional Output from Post-Processing

The collective set of simulations contains additional information that may be of value in designing
and executing an environmental restoration project. It is possible to modify the post-processing algorithm
slightly to compute the average, or expected concentration of the contamination for those areas (and indi-
vidual simulations) that exceed a particular threshold (Figure 7). This information may be useful for sev-
eral purposes. First, it may be necessary to provide physical protection from radiation and/or chemical
toxicity to personnel working in areas that exceed certain levels of contamination. These types of maps
can be used to identify both the likelihood of encountering significant personnel hazards and the expected
magnitude of that hazard. The highest absolute contaminant level to be encountered can be approximated
from the simple summary statistics of the composite simulated data set.
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Another use of this type of data may be in designing the physical processing facility for removing the
contaminant from the soil or other natural media. Depending upon the circumstances, the efficiency of a
remediation process may be dependent upon both the absolute concentration and the variability of that
concentration in the feed to the treatment plant. As noted earlier, the variability in input-stream concentra-
tion implied by the maps of Figures 3 and 5(a) is significantly different, even if over the long run the
“average” concentration level is very similar.

PROBABILITY MAPPING, DECISION MAKING, AND DATA WORTH

It is possible to build upon these probability mapping techniques to provide additional, quantitative
information that is useful in making environmental remediation decisions. Stochastic simulation and
direct probability mapping of contaminant levels provide much of the input needed to evaluate alternative
approaches to a remediation problem. Because the techniques are inherently probabilistic, the informa-
tion generated is closely allied with the risk of failure associated with a particular remediation approach.
The probability maps also provide site-specific information that relates directly to cost of a remediation
effort. The total area to be treated to achieve a 10-percent risk of failure (in Figure 6, the region subject to
10-percent risk would include all regions but those shaded very light grey) is intuitively significantly
greater than that necessary to be treated if one is willing to accept a 50-percent risk of failure (includes
only the area shaded dark grey to black). The mapping and evaluation techniques described above are
subject to the limitations of an existing state of knowledge. To increase that level of knowledge also costs
money and other resources.

If the investment of resources in increasing the knowledge level at a contaminated site results in a
more than commensurate decrease in the cost of the remediation program itself, for a given level of risk,
then the data that was acquired has worth. Conversely, additional data that do not change the extent of the
region to be treated (and which do not change the level of risk associated with that decision) have no
worth (in this context), and in fact serve only to increase the total expenditures on a site.

Building upon a conceptual decision framework developed by Freeze and others, (8) we can quantify
this cost relationship, and the implied decision model related to costs, as follows:

MINIMIZE: E [Ctotal] = Cchar + Ctreat +C ail % Pfail M
where
E[Cip1q1] = the expected total cost of the project
Cchar = the cost of the site characterization program
Cireas = the cost of the treatment or remediation program

the cost of failure (regulatory penalties, cost to repeat work, etc.)
the probability of failure?

Chail
P fail

The total cost of the project is uncertain principally because there is a non-zero probability of failure. Nevertheless,
it is generally possible, a priori, to make reasonable engineering projections of the various right-hand-side costs,
and, using probability mapping techniques, to estimate the probability of failing to completely remediate the site,
given a set of data.” In effect, Py,i1 becomes a management choice. The objective then becomes to minimize E[C,,.
w1l by considering a number of alternative characterization programs, and potentially a number of alternative treat-
ment programs as well.

The decision model of Equation 1 has some important implications. First, an initial sampling program
probably should be predicated on identifying broad areas of contamination across the entire region of
interest and on producing a reasonable statistical understanding (both univariate and spatial) of that con-
tamination, rather than on closely delimiting (supposedly) known contaminated regions from uncontami-

a. This expected value framework involving the value (cost) of certain outcomes multiplied by the probability of those outcomes is
widely used in economics and business.(9)

b. It is simplest 1o treat Cepyy Crreqy, and Cyy as single-valued deterministic quantities to be identified through engineering estimates,
as is assumed here. However, C,,,, is still an expectation, because of the finite probability of failure. The model is sufficiently gen-
eral that the right-hand-side costs could be treated as distributions (expectations) also, thus explicitly incorporating the uncertainty
in those engineering estimates.

/ul/users/carautm/reports/WPI_paper/wpi.doc Page 5 March 18, 1994 12:23 pm



nated ones. Second, additional sampling efforts should focus on reducing the region of uncertainty, that
area in which the decision to treat or not could result in the greatest cost savings from future classification
as uncontaminated. The goal of each additional sampling increment should be to assign formerly uncer-
tain territory to either the region requiring remediation or the area that will be considered “clean.” The
greatest benefit is obtained if analysis of each sampling increment can be conducted in near-real time,
without a significant lag for laboratory measurement and office study. Third, within limits, additional
sampling in regions of almost certain contamination requiring remedial efforts may not contribute value
in proportion to the additional cost incurred. Refining estimates of actual contamination within an area
that will be treated and cleaned-up adds sampling expense (C.y,,) Without reducing the remediation
expense (Cyyqp). Furthermore, including large numbers of these redundant samples may bias further sta-
tistical analyses. (10)

CONCLUSIONS

New and evolving geostatistical techniques that make use of simulation in contrast to estimation
(kriging) can be used to map directly the probability of encountering contamination of various types at
specific, unsampled locations given a set of isolated sample values. These techniques make use not only
of the basic statistical properties of the data set, but they extract additional valuable information from the
spatial continuity patterns that may be inferred directly from the locations of the data. The level for which
the probability of exceedance is mapped may be set at a regulatory threshold, a concentration related to
general health risk, or an exposure level significant to personnel involved in the remediation program.
Additional information regarding the local variability and expected overall concentration that may be
necessary in engineering a remediation program can be obtained by reprocessing the same information.

Because the probability of exceeding a specified threshold value is directly related to the risk of fail-
ure assumed by a project manager, these probability mapping techniques can be used in cost studies of
alternative site characterization and treatment scenarios. A fundamental concept that results from a deci-
sion-focused modeling effort is that only data which changes a decision (or reduces risk) has worth.

The techniques and concepts described in this paper are illustrated with an example from the Fernald
(Ohio) Uranium-in-Soils Integrated Demonstration Project. However, these methods form a basic frame-
work for analysis and decision-making. As such, they should be directly applicable to a wide variety of
environmental remediation activities
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Figure 2. Sample variograms for soil-geochemical data at the drum baling area. (a) Classical vario-
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Figure 3. Three equally likely simulations of uranium concentration at the drum baling area. Con-
centrations of individual 3.05 m by 3.05 m (10 ft. by 10 ft.) pixels are shown as grey-scale
coded values varying from O to 3,000 pCi/g (concentration scale bar). Each map is 183 m
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Figure 4. Validation statistics for one simulation from Figure 3. (a) Histogram of complete simula-
tion (compare to Figure 1(b)) (b) Indicator variograms for median, first, and third quartiles
compared with interpreted spatial model from Figure 2 (bold line)
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Figure 5. (a) Expected value map, grey scale in pCi/g, (b) validation histogram and statistics; (c) indi-
cator variograms. See text for discussion.
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Figure 6. Maps showing the probability of exceeding (a) 35 pCi/g and (b) 200 pCi/g of ura-
nium in soil at the drum baling area. Probability scale varies from O to 1.
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Figure 7. Average (expected) uranium concentration of parcels that exceed 200 pCi/g. Con-
centrations are grey-scale coded in pCi/g.
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