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PREFACE

The Office of Industrial Processes (OIP) of the Department of Energy

(DOE) has supported research at the Pacific Northwest Laboratory (PNL) since

FY 1986 to develop sensors for aluminum electrolysis cells in conjunction with

efforts to develop and test cermet inert anodes. Based on discussions with

DOE/OIP, the scope of the Sensors Development Program was narrowed in FY 1990

to the development of an alumina sensor. Specifically, various digital signal

analysis (DSA) methods were to be evaluated as the possible basis for measur-

ing alumina concentrations. This approach has the advantage that the data are

collected from existing components of the electrolysis cell. Consequently, no

new probes or materials have to be inserted into the molten electrolyte and,

therefore, evaluated for chemical compatibility or corrosion resistance.

This report summarizes the results of one type of DSA study. In this

study, DSAapproaches based on "chaos theory" were applied to dat_ collected

from two types of experiments" I) bench-scale laboratory tests, and 2) a

full-scale pilot cell test. The objectives were to determine if any of the

computed analysis parameters exhibited sensitivity to the alumina concentra-
o

tion and if that sensitivity showed consistent trends with concentration and

time. In this way, the results could be used to assess the feasibility of an

alumina sensor based on chaos theory. This study was initiated in January

1990. Another set of DSA analyses are being performed using more classical

methods and was discussed in a separate PNL document (Windisch et al. 1990).
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SUMMARY

Four chaos-related digital signal analysis (DSA)methods were applied to

the analysis of voltage and current signals collected from aluminum electroly-

sis cells. Two separate data bases were analyzed: bench-scale laboratory

. experiments and a pilot-scale test. The objective was Lo assess the feasibil-

ity of using these types of data and analysis methods as the basis for a non-

intrusive sensor to measure the alumina content in the electrolysis bath.

This was the first time chaos theory approaches have been employed to analyze

aluminum electrolysis cells.

In the first approach, phase space plots were developed from the data

bases. Results for the laboratory experiments were inconclusive because no

distinct patterns were found in the plots. Although the pilotl cell test data

exhibited distinct and recognizable patterns, there was no apparent correla-

tion with the alumina concentration in the electrolyte bath. Adequate sensi-

tivity was exhibited, but consistency was insufficient, and the approach was
thus not successful.

The second app;_oach employed the Hurst exponent analysis, which gave

'obvious results fo,Yothe laboratory tests, and simply detected the rectifier

period in the pilot cell test data.

The third and fourth approaches concerned multifractal analyses based on

thermodynamic and probabilistic arguments, respectively. The thermodynamic

approach was applied only to the laboratory data, and showed adequate sensi-

tivity and encouraging consistency, despite the lack of computational accu-

racy. An order of magnitude increase in computational accuracy was obtained

from the probabilistic multifractal approach, which showed that the lack of

reliable consistency in the results had originated from the scatter in the

' laboratory data itself, lt was thought that an improved method of data col-

lection during the pilot cell test would provide the desired consistency, but

" this was not the case. lt appears that the physical phenomena occurring in

the pilot cell test were much too complex to be detected adequately by the



measurement of the current and/or voltage from just one of six inert elec-

trodes. Recommendations for future work are provided at the end of this

report.
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1.0 INTRODUCTION

The purpose of the work described in this report was to assess the fea-

sibility of developing a non-intrusive alumina sensor for the Hall-He_oult

cells used in the commercial (a) production of aluminum. This report

. describes results from the analysis of data from two types of experiments:

I) laboratory bench-scale experiments pe_ Formed at Pacific Northwest Labora-

. tory (PNL)(b) during FY 1990, and 2) a full-scale pilot cell test performed at

the Reynolds Metals Company in Sheffield, Alabama, during August 1991.

The primary motivation for developing a new method of sensing the alu-

mina content in an aluminum electrolysis bath originated from the results of

previous laboratory tests. Those tests showed that cermet inert anodes

required high alumina roncentrations (near saturation) in the bath to ensure

stable operation over long periods of time. However, a high alumina concen-

tration is exactly the regime where standard alumina sensing methods exhibit

their lowest sensitivities. The objective of this work was to find a better

approach to sensing the bath alumina at higher (near-saturation)
o

concentrations.

As noted above, it is important that the new method be "non-intrusive."

This means that the alumina concentration would be sensed indirectly by mea-

suring the current and voltage imposed on the electrolysis cell. The advan-

tage of such an approach is that no new materials (i.e., probes) need to be

introduced into the bath, and thus no new materials interactions or corrosion

problems need to be solved.

Classical DSA approaches have been applied to the problem but have shown

inadequate sensitivity in the past. The classical approaches employ treatment

{a) Since this technology is being evaluated in conjunction with inert
' anodes, the laboratory cells used in this work differ from the present

commercial design in that they use the cermet inert anodes being
de_eloped by the Pacific Northwest Laboratory (PNL). These anodes have
the nominal composition NiO-NiFeoO.-17% Cu.

(b) Operated for the U.S. Department_f Energy by Battelle Memorial
Institute under Contract DE-ACO6-76RLO1830.
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of the lower order statisticalmoments(a)in the data to develop

correlationsbetweenaluminacontent and process controlvariables,such as

cell currentor voltage. The low sensitivityof measurementsin the high

aluminaregime,when accompaniedby the usual experimentalnoise, can lead to

difficultiesin deducing an aluminaversus processvB_iablecorrelationthat

will be useful in industrialpractice. From researchperformedin the past,

it was concludedthat applicationof the classicalmethodsdid not yield a

definitecorrelation,despitethe relativelylow noise factor in the

I aboratory data.

PNL has also sought alternative DSAapproaches that would exhibit the

needed sensitivity at high alumina concentrations. The methods selected were

based on applications of the thec_ry of chaotic phenomenato the analysis of

time series data. Chaos theories are a relatively recent development that

combines features of classical mechanics with certain aspects of statistical

mechanics and topology. The term "chaos" was attached to this combination of

sciences in the mid-1970s. For the purposes of this report, chaotic phenomena

may be viewed as the manifestation of order within highly nonlinear behavior,

in the form of patterns in phase space plots, or in the form of patterns

within intermittent (noisy) time series signals. These features will be

described in more detail in the following section. However, it is most

important at this point to realize the unique feature of the DSA-chaos

approach that makes it different from standard DSAmethods" the chaos

approach generally employs very high order statistical moments in the data

base to develop the needed correlations between alumina and process variables,

whereas the standard approach employs lower order moments, lt was believed

that the high order moments could provide the needed sensitive measure of

alumina content. Application of these methods to analyze the behavior of

aluminum electrolysis cells is the subject of this report.

(a) Lower order statistical moments include the mean, standard deviation,
kurtosis, etc. Higher order moments do not have commonnames.
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2.0 EXPERIMENTALPROCEDURES

The experimental apparatus and methods employed to collect data during

the bench-scale laboratory tests and from the full-scale pilrot cell test are

described in the following two subsections.

o

2.1 LABORATORYEXPERIMENTS

• T_e laboratory cell used at PNL to collect the bench-scale data is shown

in Figure 2.1. An IBM AT computer and an Analog Devices, Inc. RTI-860 high

speed simultaneous anal'og input board (for signal condit_ioning) were used with

the HEMData Corp. Snapshot Storage Scope software to collect, display, and

store the data. The inputs to the IBM AT were current and voltage signals

taken from a PAR 173 potentiostat, which was operated in the potentiostatic

(potential control) mode in these experiments. The electrochemical cell was

similar to that used in previous sensors development work at PNL. lt con-

sisted of a graphite crucible that served as the cathode, and a cermet anode

(sheathed with boron nitride) of nominal composition NiO-NiFe204-!7% Cu (Hart

et al. 1987). No reference electrode was employed. The best configuration
, I

for reducing instrumental noise was to operate the cathode as the working

electrode. Consequently, in this work, the working electrode terminal was

connected to the cathode and the counter and reference electrode terminals

were connected to the anode. To compensate for this "reverse" configuration,

the potential was set at negative potentials in order to drive the cermet

electrode anodically. The exposed surface area of the anode was one square

centimeter. The initial bath was prepared by mixing appropriate amounts of

reagent grade materials to give a bath ratio equal to 1.15" 5.5% (by weight)

Cafb, 1.0% MgF2, and the desired concentration of alumina. A temperature

controller/furnace/thermocouple was used to control the bath temperature at

983°C. The bath ratio and temperature were effectively constant throughout

these short-term experiments. In a given test, the anode was inserted once
o

the bath became molten, the temperature was allowed to re-equilibrate, then

the anode was polarized potentiostatically to give the desired current

density.
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FIGURE 2.1. Apparatusfor CollectingDigital Signalsfrom
Bench-ScaleAluminumElectrolysisCells

Current and voltage signals were collected for cells with different

alumina concentrations, cell voltage/anode current densities, and anode-to-

cathode distances (ACD). These tests were labelled "ACD Tests." Every com-

bination of the following nominal values for these parameters was tested'

Alumina Concentration (weight percent): 0%, 1.5%, 3.0%, 4.5%, 5.1%,
5.G%, and 6.0% (where 8.0% is approximately saturation).

Current Density (A/cre2) ' 0.25, 0.50, 0.75, and 1.0.

ACD (in.)" 3.0, 2.25, 1.5, and 0.75.

Data for a given set of conditions consisted of I0,000 sequential signals col-

"lected over a period of 0.5 s (20 KHz sampling frequency). The digital sig-

nals were stored as files on 1.4 Mb floppy discs. In addition, for each set

of conditions,one file was collectedwithoutany additionalvoltage signal

applied,and two files were collectedwith a _+_10mV AC "ripple"superimposed

on the controllingvoltage. The frequenciesof the rippleswere 10 Hz and
tl

I KHz. These rippletests were performedto simulate a "noisy cell, as would

most likely occur in industrialpractice.
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Another set of data was also collected. These data, labelledthe "DSA

Tests,"completedthe data setswith conditionscloser to alumina saturation

and over a wider range of aluminaconcentrations. Theyemployed a +-50mV

ripple insteadof the +10 mV ripple as a possibleway to improvesensitivity.

The nominalconditionsfor the DSA testswere:

' Alumina Concentration(weightpercent): 4.0%, 4.4%, 4.8%, 5.2%, 5.6%,
6.0%, 6.4%, 6.8%, 7.2%, 7.8%, and 8.0%.

• CurrentDensity (A/cre2)' 0.5 and 0.66.

ACD (in.): 1.5 only.

As in the ACD tests, for each set of conditionsone file was collectedwithout

any additionalvoltagesignal appliedand two files were collectedwith the

+_50mV ripple at frequenciesof 5 and 10 Hz. In addition,another setof

files was collectedusing a standard2-ohm resistorto determinethe extentof

instrumentalnoise. The "resistordata" were collectedat currentdensities

of 0.5 and 1.0 A/cm2.

Not all of the above files (over 3 million lines of data) were able to

be analyzed using the chaos theory approach becauseof time and fundinglimi-

tations. However, enoughof the data were analyzedfor selected cell condi-

tions to be able to draw conclusionsconcerningthe viabilityof the four

chaos approaches° For example, if the scatter (of a computedparameter)

within groups of data at the same aluminaconcentrationwas larger than the

• difference between groups at different concentrations, at the 95% confidence

level, then the computed parameter was obviously not suitable as an alumina

sensor.

2.2 PILOT CELL TEST

' The pilotedexperimentwas conductedat the ReynoldsMetals Company

(RMC)ManufacturingTechnologyLaboratoryin Sheffield,Alabama, during August

. 1991. The objectivesof this test were the pilot-scaleevaluationof the

•inertanode material currentlyunder developmentat PNL and the collectionof

data relatedto the developmentof a non-intrusivealuminasensor. Although

the experimentalfacilities,methods, and procedureswere described in
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Windischet al. (1991),the followingabbreviateddescriptionof the experi-

mentalprocedure is i_cludedFor completeness.

The pilot cell at the RMC facilityin Sheffield,Alabama, is a small

self-heated,aluminumreductioncell with the capacityfor runningtwo

industrial-sizedcarbon anodes. During the pilot cell evaluationof the inert

anodes,one industrial-sizedcarbon anode was run in conjunctionwith a "six-

pack" of inert anodes. The inert anodes had the same compositionas the cer-

met anodes that were evaluatedin the laboratoryexperiments,but were

manufacturedby CeramicMagnetics,Inc., of Fairfield,N.J.

The arrangementof the carbon anode and the inert anode cluster is shown

in Figure2.2. The inert anode clusterconsistedof six cermet anodes,each

with a radius of about 3 in. and a height of 3 in. in the center,with an

additionall-in. lip on the upper edge. All edges were roundedto reduce

corner effects.

The electricalbuss allowed individualcontrol of the current to the

carbon anode and the i_lertanode cluster. Current througheach of the inert

' anodes could not be controlledseparately,but was monitored(througheach

anode) throughoutthe test using six 500 A, 100 mV currenttransducers.

As indicatedin the next section,the laboratorytest results suggested

that better correlationsmight be obtainedby collectinglarger data sets

(i.e.,50,000to 100,000points of simultaneousvoltageand current readings)

than collectedpreviously in the laboratoryexperiments. To collect this num-

ber of points,data acquisitionhad to be restrictedto one inert anode

becausethe computermemory capacitywas limited. Since, even by restricting

data collectionto one inert anode,only 10,000 data points could be obtained

at a time, six successivedata acquisitionswere performedand then these data

were chainedtogether. The resultingdata sets (collectedover a period of o

20 min to half an hour) consistedof 60,000data points.

The anode in position A (shown in Figure 2.2) was selectedfor collect-

ing the chaos theory data. The data were collectedbetweenAugust 23 and

August 28, 1991, which was the third week of operationwith inert anodes°

Duringthis time, the actual anode that was in positionA was labelled
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Alumina Feed

FIGURE2.2. Top View of Pilot Cell Anodes Showing Relative Anode Positions

Anode E2. Anode E2 was placed into position on August 20, 1991, and was in

the pilot cell until the end of the test on August 31, 1991. (For the sake of

simplicity, in this report, the anode under study is referred to as Anode A

for its position). Between August 23 and August 27, the anode was operated

under "normal" conditions, i.e., at about 60 amps and with alumina as close to
J

saturation (about 8 weight percent) as possible. On August 27, alumina feed

was stopped and the amount of alumina in the bath began to drop. Data for
i

chaos theory analyses were collected during this time also.

Other conditions for the pilot cell test operation were summarized in

Windisch et al. (1991). Analyses of G',her data from the pilot cell test are
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not yet complete but indicatenumerous other variationsof operatingcondi-

tions with time (otherthan aluminaconcentration)that may have affectedthe

resultsof this signal analysisstudy. A completeanalysisof the effects_of

these other variationsis beyond the scope of this initialstudy, but for the

sake of completeness,it is worth noting that they includedvariationsin ACD

and the depth of immersion,variationof currentand potentialon the carbon

anode and on other inert anodes,variationsin bath propertiesdue to ledge

formationand mucking, and significantchanges in the anode itself due to

Corrosion.

The pilot cell power supplieswere essentiallyunfilteredDC (actually,

6-phase rectifiedAC) output units capable of thousandsof amps in the 5 to

10 volt range. The supplies"floated"with respectto the buildingelectrical

ground, so common mode voltagesexistedthat were not controlled. The pilot

cell voltage and currentsignalswere derived from dividers and shuntscon-

nected directly to the pilot cell, and so floatedwith it. This electrically

noisy environmentand the heat generatedby the pilot cell during operation,

combinedwith the naturallyoccurringheat and humidityof summer in Alabama,

presenteda challengeto accuratedata acquisition. An additionalproblem was

that the recordingcomputerwas operated from a room about 100 ft from the

pilot cell_ requiringa long cable to connect it to the signal sources.

The equipmentfor data collection is shown in the block diagram in Fig-

ures 2.3a and 2.3b. The equipmentincludedan IBM AT and an Analog Devices

RTI-860high-speedsimultaneousanalog input board with Analog Devices3B40-00

and 3B41-00 isolationamplifiers. HEM Data Corp. SnapshotStorage Scope soft-

ware was used to collect,display,and store the data. Inputs to the signal

conditioningmoduleswere availableover 16 channels. Two of the channels

were used for collectingthe chaos theory data: a) one channel for the cur-

rent throughAnode A and b) one channelfor the voltagebetween the electrical

tap at the top of Anode A and the cathode voltagetap. The remaining14 chan-

nels were availablefor collectingdata for other signalanalysis studiesdur-

ing the pilot cell test.
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The amplifiers had an isolated, floating i,'put that allowed direct

attachment to the voltage dividers and shunts on the pilot cell without con-

cern for ground loops or commonmode voltages. The nominal 0-10 kHz bandwidth

of the a.mplifiers was reduced to 0-25 Hz (3 dB point) using plug-in filters,

This bandwidth selection was based on previous experiments, which indicated

, that all useful sensor frequencydata occurredbelow 25 Hz.

The output of the amplifierswas not isolated,nor was the input on the

computer. The approximately100 ft of cable run betweenthe two units allowed

both inducedand commonmode noise to cause problems. These problemswere

nearly eliminatedby selectingan amplifier'scurrentoutput ratherthan its

voltageoutput. Experimentingwith combinationsof the groundinglocationof

the output cable shieldand the AC power outletused for the amplifierseli-

minatedthe rest of the noise.

The currentsignalfrom the isolationamplifierswas changedto a volt-

age signalwith a resistormounted at the input to the analog data input board

used in the computer° By making the conversionat the computer input,the
J

effect of any voltagedrop or inducedvoltagesalong the cable was eliminated,

This would not have been possibleusing a voltagesignal from the amplifiers.

The Analog DevicesRTI-860data acquisitionboard provided16 channels,

as indicatedabove,with 12 bit resolution(I part in 4096) at rates up to

200 kHz per channel. For the chaos theory analysis,data were collectedfrom

the single inert anode positionA at 20 khz over a period of 0.5 s (for a

total of 10,000 currentand voltagemeasurements). The 20-kHz samplingfre-

quency was sufficientlyhigher than the 25-Hz bandpassof the amplifiersto

avoid "aliasing"effects,but low enough to keep data files from exceedingthe

computer and softwarelimitations, The board was mounted in the IBM AT which

ran the softwarefor data acquisition,scaling,and file storage._

w

In some of the analysesreportedhere, a correctionwas appliedto the

voltagedata. This was done to see if the sensitivityof the data to alumina

concentration could be improved by subtracting out components of the voltage

known (or suspected) to be independent of alumina. In cases where the correc-

tion was applied, two components of the voltage were removed' the voltage

drop through the connector rod (V) and the back emf of the anode (V_)'
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V = Vm - Vc - Vb (2,1)

where V is the voltageused in the analysis and Vm is the measured voltage.

Vc was calculatedusing the equation

6

V_' : 0 '100_ (2'2)

where I is the currentthroughanode A. The factor0.002 was derived from an

independentmeasurementof resistancethrough the connectorrod. Vb was

obtainedby extrapolating(assuminglinearity)a volt-ampcurve for anode A to

zero current. During the time the chaos theorydata were collected,Vb was

found to be 3.70 Volts. The reason Vb is significantlylarger than the rever-

sible potentialfor the electrodereaction (2.20 V) is becauseof the influ-

ence of the large carbon anode in the cell. During these measurements,the

carbon anode was operatingat 3.5 KAmps.

Data collectedfrom the test cell includedthe currentfor anode A and

the voltagebetween the top of the connectorrod For Anode A and the electr.i-

cal connectionat the cathode. The currentand voltagesignalswere collected

simultaneouslyat 20 khz over a O.5-s interval(10,uOOGaLa points) and stored

in files on a 1.4 Mb floppydiscs. There were six such files collectedwithin

30 min at each data recordingsession,and a total of 16 such sessionsfor the

chaos theory data. The aluminaconcentrationwas measured as weight percent

by samplingthe bath. The weight percent valueswere convertedto percent

saturations(of alumina in the bath under each set of temperature/bathcondi-

tions during which the sample was taken) using the formula by E, Skybakmoen

et al. (1990). The aluminaconcentrationwas assumednot to vary

significantlyover the period of a recordingsession. The data base is shown

in Table 2.1. A plot of the percent saturationof aluminaversus time (days
I

from start of the test) is shown in Figure 2.4. Only data for which chaos

theorydata were collectedare shown. "Day 20" correspondsto August 23,

1991, at about 10 a.m.
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TABLE2,1. Pilot Cell Test Data Files Collected for Analysis by Chaos Theory

Nora. Nom,
D__a_at_ee _ Name_ _ Amps %AIumip_ comments

8/23 0929 RWIA 6.14 80 76.55
0935 RWIB 6,12 80 76.55

' 0939 RWIC 5.97 BO 76.55

0943 RW2A 5.90 83 76,55

• 0947 RW2B 5,83 83 76,55
0951 RW2C 6,21 83 76,55

8/24 1007 RW3A 5.16 72 85.25 E&F Out
1012 RW3B 5.11 69 85,25 E&F Out

1017 RW3C 5.09 69 85,25 E&F Out

1021 RW4A 5,09 69 85.25 E&F Out

1026 RW4B 5.09 69 85.25 E&F Out

1030 RW4C 5,14 68 85.25 E&F Out

8/24 1355 RW5A 5.24 66 84.95 E Out
140i RWSB 5,18 66 84.95 E Out

1406 RW5C 5.17 68 84.95 E Out

1411 RW6A 5,16 67 84,95 E nut

1416 RW6B 5.14 65 84.95 E Out

1420 RW6C 5,14 68 84.95 E Out

8/25 0733 RW7A 4.74 58 79,80
0738 RW7B 4.78 57 79,80

0743 RW7C 4.80 58 79.80

0747 RW8C 4,79 58 79.80

0753 RW8B 4.77 57 79.80

0757 RW8C 4.80 56 79.80

8/25 1603 RWgA 5.68 68 83.30
' 1608 RWgB 5,67 69 83.30

1612 RWgC 5,64 70 83.30

, 1616 RWIOA 5.66 71 83,30

1620 RWIOB 5.65 73 83.30

1625 RWIOC 5.63 70 83,30

2,11



TABLE2,,_. (contd)

Nom. Nom,
Date Time Name Yg.lt_.Es .Anlp_ %Alumina Comments

8/26 0955 RWIIA 6,18 59 84.60
1001 RW11B 6,17 58 84,60

1009 RWIIC 6,63 56 84,60
1015 RWI2A 6,84 53 84,60

1021 RW12B 6.05 54 84,60

1025 RW12C 5,60 42 84,60

8/26 1724 RW13A 5.18 Unknown 82.1.0 B Out
1728 RWI3B 5,17 Unknown 82.10 B Out
1732 RWI3C 4,92 Unknown 82.10 B Out

1737 RWI4A 4.93 Unknown 82.10 B Out
1742 RWI4B 4.90 Unknown 82.10 B Out

1745 RW14C 4.96 Unknown 82.10 B Out

Alumina Feed Stopped at 0400 Hrs on 8/27
8/27 0921 RWI6A 4.94 55 48,46 B Out

0926 RWI6B 4.89 53 48.46 B Out
0930 RWI6C 5.00 68 48.46 B Out

0934 RWI7A 5.01 61 48.46 B Out
0939 RW17B 5.00 57 48.46 B Out

0943 RWI7C 4.96 61 48.46 B Out

8/27 1038 RWISA 5.01 57 48.46 B Out
1042 RWISB 5,01 57 48.46 B Out
1046 RWISC 5.01 57 48.46 B Out

1052 RWIgA 5.23 67 48.46 B Out
1056 RWIgB 5.29 72 48.46 B Out

1101 RW19C 5.27 68 48.46 B Out

+

8/27 1216 RW20A 5.29 69 48.46 B Out
1221 RW20B 5.27 68 48.46 B Out

1225 RW20C 5,28 69 48.46 B Out .
1232 RW21A 5.25 65 48.46 B Out

1237 RW21B 5.22 67 48.46 B Out
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TABLE 2,1. (contd)

Nom, Nom.
_ Name Volts _Amps..... _Alumlna _omments

8/27 1242 RW21C 5,26 68 48,46 B Out

, 8/27 1412 RW22A 5.75 82 52.24 B Out
1417 RW22B 5.73 80 52.24 B Out i
1421 RW22C 5.62 78 52.24 B Out i

1426 RW23A 5,59 78 52,24 B Out

1431 RW23B 5,6C 70 52,24 B Out
1436 RW23C 5.54 78 52.24 B Out

8/27 1556 RW24A 5.29 74 53,75 B Out
1600 RW24B 5.21 71 53,75 B Out

1604 RW24C 5.22 71 53,75 B Out
1610 RW25A 5,22 70 53,75 BOut

1615 RW25B 5.30 72 53.75 B Out
1619 RW25C 5.32 71 53.75 B Out

8/27 '1954 RW26A 5,24 78 47.46 B Out
1958 RW26B 5.37 82 47.46 B Out '
2002 RW26C 5.38 82 47.46 B Out

2007 RW27A 5.34 83 47.46 B Out
2011 RW27B 5.34 83 47.46 B Out

2016 RW27C 5.30 82 47.46 B Out

8/28 0859 RW29A 5.65 59 31.82 B Out
0904 RW29B 5,67 57 31.82 B Out

0908 RW29C 5.63 57 31.82 B Out
0913 RW30A 5.78 67 31.82 B Out

0918 RW30B 5,08 72 31,82 B Out

0922 RW30C 5.64 68 31.82 B Out

8/28 1112 RW31A 5.36 77 31.82 B Out
1116 RW31B 5,38 76 31.82 B Outt

1120 RW31C 5.34 77 31.82 B Out

1125 RW32A 5.37 75 31.82 B Out
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TABLE2.1. (contd)

, Nom. Nom.
Date Time Name Volts Amps %Alumina Comments

, ,

8/28 1130 RW32B 5.36 75 31.82 B Out
1134 RW32C 5.34 76 31.82 B Out

J

8/28 1321 RW33A 5,19 80 23.00 B Out
1326 RW33B 5.03 80 23.00 B Out
1330 RW33C 5.03 80 23.00 B Out

1334 RW34A 5.15 83 23.00 B Out

1334 RW34B 5.15 84 23.00 B Out
1344 RW34C 5.21 83 23.00 B Out

100

: 80 _--_
k,

= 60

" .

40.=_

2
._ 20

0 v I ' I " I

20 23 24 26

Time, Days

FIGURE2.4. Alumina Concentration Versus Time for the Pilot Cell Test
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3.0 DATAANALYSISUSING CHAOSTHEORY

The four approaches to data analysis using chaos theory are described in

the following subsections. In each case, these descriptions are followed

immediately by the results obtained from the laboratory data and from the

pilot cell data, although not necessarily in the chronological order of

application.

3.1 PHASESPACEPLOTS

The foundations of this approach originate from classical mechanics,

where phase space plots have long been used to study complicated dynamical

systems. "Phase space" means that the variables of a process are plotted

against each other, e.g., the position of a pendulum versus its velocity. The

resulting plots often exhibit certain specific patterns, such as a spiral for

a damped pendulum. If the system is "chaotic," the pattern may be more com-

plex, but nevertheless recognizable, and is called a "strange attractor."

This means that the system is dynamically attracted to a specific set of

"orbits" or to a specific region of phase space. An example is the famous

Lorentz attractor, which resembles a butterfly or an owl's mask.

Phase space plots were envisioned as the simplest approach to employ.

They were the context in which applications of chaos theories to an alumina

sensor were first discussed. Because simple solutions are easier to apply in

industrial practice, this method was attempted first. Conceivably, a plant

operator could monitor a "pattern" on a video screen. A certain pattern indi-

cative of acceptable alumina content would signify proper cell operating con-

ditions. Any deviation from this pattern would alert the operator to make

sufficient adjustments in alumina concentration to bring the pattern back to

. "normal." High-speed data acquisition, processing, and display would be

required to facilitate _uch an operation.

. The phase space approach involves plotting the cell electrical resis-

tance (R) at time t versus the resistance at time t+1, or t+2, etc. This is

also sometimes known as a "characteristic diagram" in classical Fourier
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analyses. Resistance was computed by simply dividing the instantaneous cell

voltage by the instantaneous current, and plotting the results as described

below.

3.1.I Results for Laboratory Experiments

The expectation was that some recognizable pattern would emerge as a

function of alumina content. However, no such pattern could be found. The

plots appeared equally scattered, with a generally higher data point density

along a line at a 45 degree angle across the plot area. Although further

analysis using the method of Poincare sections (a slice through the data

perpendicular to the plane of the plot) could have been attempted to search

for such patterns, the approach did not appear to be promising given the

appearance of the phase space plots, lt was decided that the next stage of

analysis would address the full spectrum of R(t) versus R(t+b) correlations

(where b varies by several orders of magnitude) that were possible in the

laboratory data base. The results of that effert are described in Sec-

tion 3.2.1.

3.1.2 Results for Pilot C_.II Test

Two series of phase space plots were generated from the pilot test data,

as follows. The first series consisted of a set of standard plots for the raw

data, corrected for the voltage drop through the anode connection and the back

emf as described in Section 2.2. Representative results are shown in Fig-

ures 3.1 to 3.4 for alumina concentrations of 85%, 76%, 48%, and 23% of sat-

uration, respectively, lt is apparent that a distinctive pattern has occurred

for these data. This pattern could be recognizable and useful to an operator

in an industrial setting if it also exhibited consistent changes as the alu-

mina content changed. However, this was not the case" Figures 3.1 to 3.4

show only one of the many observed pattern changes as a function of alumina
b

content, lt must be noted that any minor differences that may be seen in

these plots are due to scatter in the data, rather than a discernable correla-
o

tion versus alumina content. For example, there is no significant difference

between Figure 3.1 (85% alumina) and Figure 3.4 (23% alumina).
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The same conclusions can be reached from the second series (Figures 3.5

to 3.8, which are phase space plots constructed from the derivatives of the

above plots. This variation of the method was attempted in an effort to

amplify any differences in the above plots.

3.2 HURST EXPONENTS
|

This method has its basis in about 2000 years of observationsof clima-

. tologic and hydrologictrends throughoutthe world, lt was first formally

investigatedby Hurst (1951),who empiricallycorrelatedthese observationsin

terms of simplestatisticalparameters'

R/o = (_/2)_ (3.1)

where R is the range of observations,c is the standarddeviation,T is the

time lag betweenobservations,H is the Hurst exponent,and O<H<I. For

H = 0.5, the processis entirely analogousto a random walk, as in diffusion

processeswhere the variable (Dt)°'soccurs. For O.O<H<O.5,the processtends'

to overcompensateby frequent reversalsof direction,and a "noisy"curve

occurs (called"antipersistent").For 0.5<H<I.0,a smoother,less noisy curve

occurs, and the processis called "persistent"becauseit exhibitsa general

increasingor decreasingtrend that only occasionallyreversesdirection.

Most natural processes,such as regionalrainfalls,exhibitan H of about

0.72.

3.2.1 Resultsfor LaboratoryTests

The PNL laboratorydata were analyzedusing the Hurst concept,varying T

over five orders of magnitude. The resultssuggestedthat the electrolysis

• processeswere antipersistent(noisy)in the short term (smallT), but per-

sistent (controlled)in the long term. These resultswere not surprising,

. however. They can be deducedby simplywatchingthe process in practice. The

signals are noisy, but the process remainsunder control.
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FIGURE 3.5., DifferentialPhase Space Plot for File RW3A of the
Pilot Cell Test
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3.2.2 Results for Pilot Ce,ll 'Test

Figures 3.9 and 3.10 show plots of data analyzed using Equation (2.2)

for the first and last data files, at 76% and 23% alumina, respectively. The

averaged value of H (slope of the curve in the figures) is not significantly

different for these two cases, indicating a lack of sensitivity with respect

to aluminaconcentration,or a small signal-to-noiseratio.

Figure3.11 shows a plot of H versusthe time lag T. This plot exhibits

classicbehaviorin that H generallydecays from a high value of about 0.9 at

small time lags, to an H of about 0.5 at long time lags, The high H at small

lags indicatesa high "memory"of eventsthat occurred a short time in the

past, and an H approaching0.5 indicatesthat the system exhibitsrandom

behaviorat long time lags, with no memory of past events. T = 500 corres-

ponds to about 25 m sec.

lt is interestingto note that effect of the period of the six-phase

rectifier (operatingat 60 Hz with a period of 2.8 milliseconds)on the anode

is clearlydetected at a time lag of about 50 data points (2.5milliseconds).

This is the only exceptionto the otherwisestandardappearanceof the H

versus time lag plot. Although it does serve as a check that 'theHurst method

is workingproperly,the rectifierperiod has no relationshipto the alumina

content. Consequently_these resultsgave no new informationthat could be

used to develop a non-intrusivealuminasensor.

3.3 MULTIFRACTALS

Since the simpler chaos-related approaches described above were either

not promising or gave self-evident results, it was necessary to implement more

complicated mathematical methods. These methods fall under the category

called "multifractals." After a brief outline of fractal concepts, the two i

multifractal approaches employed in this effort are described.

A fractal is a geometric object with non-integer dimension. That is, it

describes geometric complexity in terms of transitions between the Euclidean

integer dimensions. The same concepts also apply to time series plots, a

simple model for which is shown in Figure 3.12. In this case, the total
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signal (resistance integrated over time) is divided up as follows, The area

(_f the bar at the top of the figure is the total integrated resistance over a

time t (the length of the bar), lt is divided up into two parts in the second

line In Figure 3,12: the bar on the left is 25% as long as the original bar,

and the bar on tile right is 40% as long, Sixty percent of the area Is

, assigned to the left bar_ and 40%to the right bar, thus conserving the total

bar area (integrated signal), This process is repeated again on the next

line, and so on, The restIIt is that the total signal is redistributed on a6

broken-up line called a Cantor bar, l his is also a model for intermittent or

noisy time series, where the length represents time, and the signal spikes are

thus distributed over time in a fractal fashion, Since the horizontal axis

was divided into two parts, tile cell dynamics are thus being modeled by a bin-

ary process, If' Fi'gure 3,12 is turned upside down and some randomness is

included, the resemblance to the cell current versus time in Figure 3,13 is

obvious, This similarity provided the motivation for attempting this method.

By embedding a large number oi: fractals (such as shown in Figure 3.12) within

each other, a multifractal is collstructed, and a typical noisy time series

plot can be produced that more closely resembles the actual data.

An important question is just how multifractals can be used to unravel

information from a noisy time series plot and use lt to develop an alumina

sensor. There are two ways to approach this: a thermodynamic way and a prob-

abilistic way. These are described in the following subsections, along with

results from their applications to the data,

3.3.1 Thermodvnami_cFormalism

Halsey et al. (1986) published a paper that describes the thermodynamic

method, which is essentially the reverse of the above embedding procedure. In

this approach (whose only description possible is mathematical), the general-
i

ized dimensions (Dq) are first defined, based on the generalized entropies
(Frisch and Parisi 1985):
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1 lim inVaP q(b) (3,2)Dq = --q-I b-.O in (b)

where q is the order of the moment (-oo<q<oo)and is analogousto the inverse

temperature(_ : I/kT) of statisticalthermodynamics,and P(b)is the measure

(total integratedcell resistance)in a "box" of size b within the time

series. The keys to the analysisare two-fold: i) P is normalizedto unity,

as in probabilitytheory, and 2) the box size b varies over at least three

decades. The mechanicsof computingDq from the cell time seriesdata
involvesdividingthe normalizedtotal resistanceinto boxes of size bl, then

of b2<bl, etc., and computingthe above limit. This is describedby Meneveau

and Sreenivasan(1987) in modeling turbulentFlows.

The next steps are to define the "mass exponent"(T):

= (i- q) Dq (3,3)

and the "free energy" (c_):
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= a-/aq (3,4)

and then to combine these in a Legendre transform to get the "entropy" (f):

, f : -,: (3,5)

v

Note that there is a range of alpha values and a range of f values, each

pair of f-alpha values corresponding to a particular moment q. Although each

f Is thermodynamically an entropy, it is also the dimension of one of the

"nested" fractals (Figure 3.12) that make up the entire multifractal
structure.

The truly remarkable result of Halsey's paper is that when f is plotted

versus alpha, a "universal" curve is found for an extraordinarily large vari-

ety of data bases and physical phenomena. Such an f-alpha curve is sketched

in Figure 3.14, and has the following general features. At the top of the

unimodal curve, the value of f is Do, the zeroth order moment in the data. Do
is also the fractal dimension of the overall structure, and is the dimension

that is most familiar in the literature. Ali other f values are the dimen-

sions of fractal sets embedded within the overall multifractal. Most inter-

esting is the value at q=l, where DI is formally Shannon's information
entropy, lt has also been used as the fractal dimension of fracture surfaces

(e.g., Williford 1988).

lt is noteworthy that Do and DI are essentially invariant (always the
same for a given phenomenon) if the data are normalized as described above.

The result is a lack of sensitivity for lower order moments in the data, which

, also impacts the classical DSAmethods as discussed in the Introduction.

The intercepts of the curve in Figure 3.14 with the horizontal axis

' define two values of alpha. These values, O_mln and C_max, are the dimensions of

the two competing energetic processes that form the binomial distribution.

They produce the apparently chaotic time series signal because of their com-

petition for dominance. In essence, the electrode/electrolyte system could be
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viewed as undergoing a bistable process that hops back and forth between these

two more fundamental processes. Examples of two processes that may contribute

(but whose roles are not proven here) are anode film formation/dissolution, or

bath bubble formation/collapseo lt is the values of _min and O_max that

describe the high order moments in the data base, ;tnd hence are unique to the

multifractal DSAmethods.

Results for Laboratory Tests

Although severalmathematicalcombinationsof O_min and Olmax coulc1be

employed as a measure of aluminacontent,the ratio C_max/C_m_nwas selected

because it simplifiedthe analysis,as follows. Note that C_min =

In(Pmax)/In(b) and emax= In(Pm_n)/In(b)'where b<<1 and O<P<I. If the dynamics

of the process are rapid enough so that the two competingprocessesmay occur

: on the same substructure (i.e., for the same value of b, where b = l,/l and 1

is the characteristic size of the electrode roughness, or bath bubble, etc.),
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then the variable b cancels out of the resulting alpha ratio. This gives a

correlation parameter involving only the P values (i.e., only the energetics

of the process). This hypothesis was tested on the laboratory data, and the b

values for C_mln and C_maX were found to be nearly equal, as proposed. Other

parameters are discussed i',I later subsections.

, A typical example of an f-alpha curve computed from the laboratory data

is shown in Figure 3.15. Several features of the curve are to be noted.

• First, the discontinuity at q = I (near the top of the curve) was thought to

represent a phase transition, but in fact was apparently a computational

deficiency in the method. Second, the curve is smooth because the Dq were
developed frown curve fits to the results from Equation (3.2). This introduces

some computational uncertainties into the resulting f-alpha curve. Third, the

curve in Figure 3.15 does not intersect the alpha axis, and must be extrapo-

lated to obtain values of emin and C_maX. This is another source of uncertainty
in the results and is discussed below.

Figures 3.16 and 3.17 show the results of computing C_max/C_min on a typical

PNL data file for two values of cell current density, at an ACD (anode to

cathode distance) : 3 in., and for two values of the "ripple" imposed on the

current to simulate industrial noise. The most noteworthy feature of these

curves is the high sensitivity (large slope) at high alumina concentrations,

i.e., between 80% and 100% saturations. Although this could provide the

needed measure of alumina content, these results were subject to appreciable

uncertainties. The computational uncertainties alone were estimated to be

+10%, and the estimated scatter in the data base was +18%. Uncertainties of

this magnitude would normally render the results useless, but the recurring

trend (over several data sets) of high slope at high alumina is significant.

These results motivated further analysis of the thermodynamic multi-

" fractal method in an attempt to reduce the above uncertainties, lt was found

that this method inherently loses accuracy with refinements in the box size

• (b), simply because of tile way in which the mathematics are formulated.

Another limitation of this method is that it treats only binomial processes,

so multinomial processes (such as a distribution of many bath bubble sizes,

for example) could not be treated. Also, the computed moments were limited
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to ordersof -9<q<9becauseof computerprecis'ion.Extensionsto higherorder

momentswithout extrapolationof the f-alphacurve to the alpha axis would

requirerewritingthe computercode in double precision. The resulting

computationalrequirementscould eventuallyimpact industrialapplications.

In conclusion,the thermodynamicmultifractalanalysis appearedto give

a sensitiveand possiblyconsistentmeasureof aluminacontent at high concen-

trations,but uncertaintiesin the resultswere so large that the value of the

method in industrialenvironmentswas questionable. This deficiencywas con-

sideredseriousenough to lead to a search for an alternativemethod with

better accuracy. Such a method is discussednext.

3.3.2 ProbabilisticFormalism

, PNL staff obtaineda preprintof "ProbabilisticMultifractalsand Nega-

tive Dimensions"from A. Chhabraduring the August 1990 Gordon Conferenceon

Fractals. This method actuallyexhibits improvedaccuracywith refinementsin

the box size (b), contrary to the results from the thermodynamic approach
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described above, lt is also able to treat multinomial processes, such as a

distribution of bath bubble sizes, which may occur in the system under study.

In the probabilistic formalism, the division of the total normalized

signal (resis_tance integrated over time) into boxes is viewed as cascades of

smaller and smaller box sizes considered simultaneously. (This is different

from the thermodynamic approach, which considers a single box size at each

division.) As each box is divided into smaller and smaller sub-boxes, the

ratio between the total signal in successive sets of sub-boxes produces what

is known as a multiplier distribution, where the multiplier M has the value

O<M<I. The number of occurrences of each value of M is used to construct a

distribution of the probability, P(M) versus M, as shown in Figure 3.18. A

random sample from this P(M) versus M distribution produces the most probable

value of M, called M*. Alpha and f are computed as follows"

= -in (M*)/ln (b) (3.6)

f = DO + InP(M_) /ln(b) (3.7)

where DO is a reference chosen as unity in this work.

These equations arise from the use of the laws of large numbers, but

with the following interpretation. Values of f that are negative represent

events that occur less than once per box of size b in the data base. Conse-

quently, the very rarest of events in the laboratory cells can be used to
J

extend the f-alpha curves down past the horizontal alpha axis. This widens

the f-alpha distribution without the need for extrapolation, and in turn

renders the proposed measure of alumina content, _max/_min, more sensitive.

Also, the accuracy is dependent primarily on the number of samples (N) taken

from Figure 3.18, i.e., the error is proportional to N-I/2, as in standard •

Monte Carlo sampling techniques. Computation of moments of order --20<q<20

were found to be routine, so there was no need to employ double precision in

the computer code.
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FIGURE3.18. MultiplierDistributionfor 8192 Points

However, this method also has a limitation. The P(M) versus M distri-

bution in Figure 3.18 was generated with 8192 data points from a binomial dis-

tribution and is comparable to the experimental data bases of 10,000 data .

poirlts each. 'One would expect this to produce a smooth binomial distribution,

but it does not. Sampling from Figure 3.18 produces the f-alpha curve shown

in Figure 3.19. Although Figure 3.19 is accurate to within +1.5% (i.e., 4500

samples, as in the laboratory data shown below), the deficiencies of the data

are evident in the irregular nature of the f-alpha curve. This was originally

thought to be caused by an insufficient number of points in the data base, and

was the reason why the pilot cell data were collected in higher density, but

for only one anode because of computer memory limitations. However, subse-

quent analysis has shown that this deficiency was instead due to the lack of

"texture" in the data. That is, when an analog signal is converted to a digi-

tal signal, there must be enough digital resolution to adequately represent

' the nonlinearnature of the phenomenon. Insufficientdigitalresolutionmeans

that only a finite number of unique resistancevaluesmay occur in a digital

' record,rather than the infinitenumber providedby the continuumanalog

signal. The result is a narrow multiplierdistribution,from which it is dif-

ficult to sample weil.enough to producea smooth f-alphacurve. This is

demonstratedfurtherin the followingsubsections.
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Results for Laboratory Tests

The digital resolution employed to collect the laboratory data was ten

divisions of the full-scale signal. A typical multiplier distribution is

shown in Figure 3.20,,which is more narrow than desired. Such narrow distri-

butions contain fewer data in the tails, and in turn may affect the high order

moments in the f-alpha diagram, along with the smoothness of the curve. An

example of an f-alpha curve for the laboratory data is shown in Figure 3.21.

lt exhibits the roughness associated with the finite digital resolution.

However, an important objective of using the probabilistic formalism was to

eliminate the need to extrapolate the curve to the alpha axis, and Figure 3.21

shows that this was accomplished. In fact, the improved computational accu-

racy permitted the curve to be computed to f : -2 in order to improve the sen-

sitivity of the C2max and _mlnvalues. Also note that the postulated phase b

transition at q : I now appears to be of higher order in this particular data

set. The reason for this is thought to be due to the improved computational

accuracy of the probabilistic multifractal method.
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A plot of c_ma×/C_min versus alumina concentration obtained using the prob-

abilistic formalism is shown in Figure 3,22, As indicated by the error bars,

the computational uncertainties have been reduced by an order of magnitude,

The scatter (uncertainty) in the laboratory data base itself was estimated to

be +12% at the 95% confidence level, bnfortunately, this was still comparable

to the variations in the alpha ratio versus alumina shown in Figure 3,22,
g

Although the objective of improving computational accuracy was attained, it

revealed that the data were too scattered to permit definite conclusions to be

reached. However, the sensitivity of the alpha ratio at high alumina concen-

trations appeared to be retained in the data. This trend encouraged further

work using the probabilistic formalism to analyze the pilot cell test datai as
described below,

Results for Pilot Cell Test

The current and voltage data for Anode A of tile pilot cell test were

obtained with a digital resolution of twenty. A series of multiplier distri-

butions and their associated f-alpha diagrams are shown in Figures 3.23 to

3,30. These results are for 85%, 76%, 52%, and 32% saturation of alumina,

respectively. There are several things to note from these Figures, as
fol'l ows.

First, the multiplier distribution is wider with the higher digital

resolution (twenty) than it was with the lower resolution (ten) used in the

laboratory experiments, and the associated f-alpha diagrams are smoother.

This is true even for data sets as small as 5000 data points, and suggests

that other, lower density data collected during the pilot cell test may also

be suitable for chaos theory analysis. The curves in these diagrams also

reach f = -2 without the need for extrapolation, lt may be concluded that the

probabilistic formalism is more sensitive to the "texture" of the data than to

the amount of data. The connotation of texture refers to the analog versus

digital nature of' the data. This means that the method would be relatively

fast in an industrial application because fewer data would have to be col-

lected for each cell in the plant. Consequently, the same computer could ser-

vice more cells in a given time period.

3.22



,I,,I -- Corllpi.Jl_llloll / O,GIJAlum_, I,TV
Dq--...__. / (Ilo rll_l_lo)

,1,2- "., [ \ _;iiI,T""" '"

, c_nlll t
3,8

, _,o_,,, I _______////
a,2 1. __1 1

100 90 80 70 60 50
% Alumina

FIGURE 3,22. Typical Results for Alpha Ratio Versus Alumina Concentration
for Laboratory Data Using the Probabilistic Multifractal
Approach

3,0
Bcl_tls=2 I

l '
2,5 I

I

t,

_ 0,0 '
o.o o,I 0,2 o,s o,4 o,5 o,6 o.7 o,l_ o.o 1,o

Multipliera
4

FIGURE 3.23, Multiplier Distribution for File RW4Bof the Pilot
Cell Test, 85% Alumina

3,23



i

3,0

|l |

2.0 r\,l
a.
_ q

a... t,O

0,0 ------<::'_ _' ....... ' ................... '
o,o o,1 0,2 o,:_ o,._ o,5 0,5 o,7 o,B 0,9 ',,o

MulflpllerM

FIGURE 3,24., MultiplierDistributionfor File RW!A of the Pilot Cell
Test, 76% Alumina

2,5

2,0

m

t"-.9. 1,5 _ !

n to /, ,/\

/ ,
\

o,o / ' ' "
o,o o,_ 0.2 o,:_ o,,_ 0,5 o,{_ 0,7 o,a o,u _,o

MulflpllerM

FIGURE 3,__5, MultiplierDistributionfor File RW22A of'the Pilot Cell
Test, 52% Alumina

3,24



3,0

2,_5

2,0

o

a: _,o

o,5 ,J" , "/.
0,0 .......... ' ....... ' _ ' ' ',_ ,,_.... '-----

o,o o,I 0,2 0,3 0,4 o,5 0,6 o,7 0,8 0,9 1,o
MultiplierIvl

[_IGURE3,20., Multiplier Distribution for File RW29Bof the Pilot Cell
Test, 32% Alumina

1.5
Ba,Jls=2 Widthat f=O: 1,4553

Wldlhal I=-2:2,4870

1,0 .---.-------_-_...

//' ,, ,,O.5 / "\,
/// ', \

%-, o,o / \"\\,
.I: / \

"- O,5 '\\\

I \\\

--I,0 \\,,,

-I,5

/
-2,0 ' ,

o,o 0,5 _,o _,5 2,0 :',5
alpha

l

EI GURE__3_,2]j,f-Alpha Distribution for File RW4Bof the Pilot Cell
Test, 85%Alumina

3.25



Bm_l_=2 Wldthat f=O: 0,9225
Wldth mt f=-21 1,7B13

tO .....'--'--.../

// ".,,

0,5 ,

,_ 0,0 i

_ -0,5

'\
- L5 \\

I ' \\\
-2,0

o,o 0,5 1,o 1.5 _,o 2,s
, alpha

FIGURE3,28, f-AlphaDistributionfor File RWIAof the PilotCell
Test,76%Alumina

J

1,5 ......................
)mql_=2 Width at t=O: 1,4198

Width mt f=-2:2,3665
1,0

//__"-...,,,

0,5 / \\, X

\,\

_- -0,5 ,\
\

-1,0 \\

/ ,
-2,0

0,0 0,5 1,0 1,5 2,0 o

alpha
1

FIGURE3,29. f-Alpha Distribution for File RW22Aof the Pilot Cell
Test, 52%Alumina

3,26



Bu_I_=2 Wldtnat f=O; 1,4576

Width di f=~2; 2,4204

1,0 t..f-----_--_-_.

0,5 -,,,

\,,,,
'\o.o \

, = \

'_ -o,s \'\\

-1,0 '_\,
\

-1,5 \

i

-2,0 - _ _'
0,0 O,fi 1,0 1,5 2,0 2,5

alpha

FIGURE3,30. f-Alpha Distribution for File RW29Bof' the Pilot Cell
Test, 32% Alumina

Seqond, although the data are o£ good qualtty and the method appears to

show good sensitivity, there does rat appear to be a consistent trend in the

alpha ratio versus the alumina content. Thts can be seen by noting that Ftg-

ures 3.27, 3.28, 3,29, and 3.30 are only typtcal examples; other curves show

different dependencies on the alumina content. Further clarification is

obtained by plotting the alpha ratto as tn Figure 3.31. Each data point In

Figure 3.31 ts the average computed from stx ft les of 10,000 potnts each

(Table 2.1); the verttcal bar shows the typical uncertainty at 95% confidence,

The solid line in Ftgure 3.31 Is not a curve ftt, but is a guide for the eye

that indicates the trend in the alpha ratto versus the alumina content.. The

scatter in Figure 3.31 ts comparable tn magnitude to the change in mean value,

, again indicatingthat the data containnoise factorsthat are not accounted

for in the present analysis. Figure 3.32 shows the alpha ratio versus time

for a range of aluminaconcentrations. Each curve shows resultsfrom six

consecutivedata files collectedwithin 30 min (see Section 2.2). Although

the aluminaconcentrationis not expectedto change significantly
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over a period of 30 min, any trend in the curves shouldbe consistentlydown-

ward) as the alumina is depleted. The curves in Figure3.32 are thus an

indicationof the noise in the cell. This is true even when other factors

such as the anode current are factoredout (see Table 2.1). The above figures

are representativeof the balanceof the data from the pilot cell test" an

occasionalcorrelationsometimesappearsfor certainsubsetsof data, but by

and large the noise dominatesand there is no consistencyin the trends.

In the interestof thoroughness,nine more combinationsof O_min and O_max

were investigatedfor possiblecorrelationswith aluminacontent. These are

describedbriefly as follows"

" _in versus alumina,becausethe positivemomentshad more physical
meaning than the negativemoments

" _,ax" °_in,which is the true width of the f-alphadistribution

' (_ax + °_in)/2'which is the average positionof the distribution
e

3.28



16--
p 7.8 (79%_

15 --

o

max _ 3,4 (85%)

11 --

7
II 1,2 (76°/,)

6

5 --,' 1 I ] I I
0 4 8 12 16 20 24

Time (Minutes)

FIGURE 3.32. Alpha Ratios Versus Time for Selected Files from Pilot Cell
Test. Notation' 1,2 = file numbers in Table 2.1,
76% : alumina saturation

• the sum of alphas over the difference of alphas, which is analogous to
the mathematics of spinodals

• (C_max*O_min)z/z, which is the geometric mean

• the sum of alphas times the difference of alphas, supposing that a
quadratic form might correlate versus alumina

• the product of the two alphas, for the same reason
D

° C_max versus OLmin, with the alumina concentration as a parameter

• the derivative of the resistances, to amplify changes in the signals.
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None of the above attempts gave a successful correlation versus alumina con-

centration. The results were the same without the voltage correction

described in Section 2.2 and with the multinomial rather than binomial assump-

tion. The conclusion was the same as for the alpha ratio: there may be

sufficient sensitivity with this method, but consistency is not sufficient to

develop a useful correlation versus alumina content from these data.

The most important conclusion that can be reached at this stage of the

analysis is that these data do not support the feasibility of using this

method to develop a non-intrusive alumina sensor.

3.4 OTHERAPPROACHES

Three other approaches were briefly explored in an attempt to find some

type of correlation between a measured quantity and the alumina concentration.

The first of these approaches was a simple Fourier transform with a standard

Parzen window, as described in Press et al. (1986). This approach gave the

power spectral density of the resistance versus the frequency. A sample of

the result is shown in Figure 3.33 for. pilot cell test data. Figure 3.33

shows a generally featureless spectrum, rather than a distinct noise tail that

could be filtered out. The two apparent small peaks at the mid- and higher-

range frequencies are artifacts of a filtering attempt. These spectra do not

appear to contain any obviously useful feature other than the DC signal.

Thus, the second approach attempted was to try a correlation using resistances

computed from the nominal voltages and currents given for each data set in

Table 2.1. A null result was again obtained.

The third approach was designed as a test of the basic assumptions

employed in this program, lt has been assumed in this work that the alumina

was uniformly distributed throughout the cell, both in the laboratory experi-

ments and in the pilot cell test. If this is reasonable, then measurement by

any single anode would theoretically give the same result as any other anode.

However, if this is not true, then different anodes could give different mea-

surements. Furthermore, if the alumina variations are dynamic (i.e., oscilla-

tory or turbulent, rather than a static gradient in the cell), then a single

anode may not suffice unless the period of the oscillations are known, lt
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follows that a more cell;wide characteristic electrical resistance may provide

a better correlation. The best approach for this is to simultaneously measure

the current for each electrode, and then sum them to obtain the total cell

current versus time. This current could then be used with the simultaneuusly

measured cell voltage to compute the cell resistance in a manner quite similar

to that for a single anode. Although data of this type were not immediately

available for this report, an attempt was made to test the above hypothesis

using only the voltage, which was a characteristic of the entire cell. Once

again, a null result was obtained. The probabilistic multifractal approach

gave adequate sensitivity to an unidentified variable (the noise), but the

fluctuations in the alpha ratio could not be correlated versus the alumina

concentration.
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4.0 IFEASIBILI!YASSESSMENT

Figure 3.31 is useful in assessing the feasibility of using chaos-based

approaches to develop a non-intrusive alumina sensor, The slope of the alpha

ratio versus alumina can be estimated at about 0.036/% alumina. The scatter

at high alumina concentrations (>80% saturation) can be estimated at +10% (for

each group of six files shown in Table 2.1) to +25% (for the overall data base

in Figure 3.31). Both of these uncertainties are at the 95%confidence level.

• Multiplying a given alpha ratio (e.g.,15 at 90% alumina)by the uncertainty

gives valuesof 15 * 0.1 = 1.5 to 15 * 0.25 = 3.75. Thus, the signal to noise

ratio (fordetectingchanges in alumina)is about 0.036/I.5= 0.024 to

0.036/3.75= 0.009. These are not encouragingnumbers. However,if the

unidentifiednoise-producingphenomenoncan b'eunderstood,uncertaintiescould

conceivablybe reducedto the point where they were dominatedby the computa-

tional uncertainties(_+1.5%).If so, the expected error at high aluminacon-

centrationwould be about 15 * 0.015 = 0.022. This would give a signal to

noise ratio of slope/uncertainty= 0.036/0.022= 1.63, which is more encour-

, aging. Thec(Jnclusionis that the noise-producingphenomenonmust be identi-

fied and understoodto make furtherdevelopmentfeasible and possible.

If identificationof the noise is consideredpossibleand profitable,

the above signal-to-noiseratio can be improvedby simply increasingthe sam-

pling from the multiplierdistribution(see Section3.3.2). Other computa-

tional improvementsin accuracyalso appear possible.

Severalphenomenathat could affectthe results of signalanalyseswere

mentionedin Section 2. One of these possible noise sourcesmerits discussion

here to illustratethe type of effortthat must be expendedto eventually

develop a non-intrusivealuminasensor. This suspectednoise source is the

large carbon anode that was operatedsimultaneouslywith the inert anodes inD

the pilot cell test. The carbon anode used a separaterectifier. Standard

DSA of the pilot cell voltagesignalshave shown that the DC componentof the

carbon anode seriouslyinfluencedthe inert anode signals, lt is reasonable

to expect that the AC componentof the carbon anode had a comparableeffect,
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except that the time dependence appeared as noise. DSAmethods are often

suitable for quantifying such effects.

From another perspective, it is also interesting to note that although

the laboratory experiments and the pilot cell test were two separate experi-

ments of appreciably different size scales and performed with different facil-

ities, both experiments exhibited noise levels of comparable magnitude. This

prompts consideration of features that were commonto both experiments. One

of these features is described by the following scenario. Both experiments

involved bubbling, turbulent baths, lt is assumed that the presence of the

bubbles affects the resistivity of the bath. The bubble diameters in both

experiments were orders of magnitude smaller than the instruments (anodes)

used to measure the bath resistivity, lt is reasonable to expect that the

measurements were actually averages of many smaller ("bubble sized") fluctua-

tions in resistivity. If the micro-scale electrical/bubble processes occur-

ring on the anode surfaces were not uniform (i.e., heterogeneous distributions

of resistivity across the diameter of the anodes - 0.5 to I0.0 cm), the

' heterogeneity could not be measured by an instrument this large in either

case. The situation is analogous to measuring turbulence in a wind tunnel' a

small anemometer will be much more sensitive than a large windmill.

Recall that the probabilistic multifractal method is essentially a mea-

surement of very rare events. This is true for events of large amplitude

(q>O) and small amplitude (q<O). In either case, a "rare event" means that

all phenomena occurring on the anode surfaces are of the same type at the same

time. For example, all bubbles simultaneously collapsing or all bubbles

simultaneously growing to the same diameter at the same rate. The method

seeks out and quantifies both large spikes and periods of quiescence. If such

events are indeed sensitive to alumina content, this method should have

worked.

There are several possibilities to explain why the probabilistic multi-

fractal method was not successful for these data:

I. Extraneous noise, such as the carbon anode in the pilot cell test,
affected the results.
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2. The anodes were too large to measure the bath resistance fluctuations at
the proper scale (too much averaging).

3, The data were not of sufficient digital resolution to permit mathemati-
cal compensation for the anode size, as in the laboratory tests.

4. The alumina-induced bath resistance changes were of much smaller magni-
tude than the resistance fluctuations induced by the bubbling, turbu-

. lence, varying bath ratio_or varying temperature.

5. Measurementsusing only one anode were not representativeof the bath
aluminacontent.

The first three have been discussedabove. Industrialpractice indi-

cates that the fourthmight be true at the higher aluminaconcentrations. If

so, a multivariablestatisticalanalysismay be appropriate. However_assum-

ing for the moment that the bath resistance is sensitiveto high aluminacon-

centrations,the fifth item above may presentone last opportunity. Two

necessaryassumptionsare that the cell was large enoughto permit long-

wavelengthoscillationsin aluminaconcentration(on the order of the cell

diameter),and that the anode/celldiameterratioswere small enough so that

the cell fluctuationsappearedas noise. What is thus needed is a measureof

the resistancefor the entire cell, rather than for one location in the cell.

For the pilot cell test, this cell-widemeasurementcan be obtained by adding

up the simultaneouslymeasuredcurrents from all the inert anodes. Such a

cell-widemeasurementof resistancewould be consistentwith the argumentthat

the aluminacontent is characteristicof the whole cell. Pilot cell test data

that were collectedfor other signal analysiseffortscould be used for this

purposebut were not availableat the time this reportwas written.
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5.0 CONCLUSIONSAN_DRECOMMENDATIONS

Several conclusions can be reached from this first application of the

methods of chaos theory to the analysis of aluminum electrolysis cells, as

follows:

, • Amongthe four approaches attempted for data analysis, the first three
(phase space plots, Hurst analysis, and thermodynamic multifractals)
either gave null results or had insufficient accuracy to produce the
needed non-intrusive measurement of alumina concentration.

i

• The fourth approach (probabilistic multifractals) had sufficient com-
putational accuracy to reveal where improvements could be made in data
collection techniques (i.e., greater digital resolution of the analog
data). These improvements were implemented in the pilot cell test.

, The probabilistic multifractal approach also showed that the apparent
scatter in the results seemed to originate from the data itself, and
thus that there was some physical phenomenon that was not properly under-
stood or addressed in the data analysis. The result was that although
the computed analysis parameters (e.g., the alpha ratio) exhibited ade-
quate sensitivity to d_tect variations in this unidentified phenomenon,
there was no consistent correlation with the cell alumina concentration.
The plotted results had the appearance of noise. This was supported by
results from Fourier transform analysis and by the lack of correlation
between the nominal DC resistance and the alumina concentration.

° The present data base does not support the use of these chaos-based
approaches for developing non-intrusive alumina sensors.

The above conclusions also lead naturally to the following recommenda-

tions for further work:

° Analyze the data from all the available anodes in the pilot cell test
using chaos approaches, as described in Section 4.0.

• Werecommend that industry implement a low-cost "observation post" on
any selected cell(s), regardless of anode type, using the phase space
plotting method. The phase space method is suggested because of its
simplicity and generality. The objective of the observation post is to
permit long-term, low-cost collection of data in an effort to find pat-
terns that would be useful for alumina control and for understanding the
source of noise. Data collection could be as simple as taking an occa-
sional snapshot of the CRTscreen. However, it is important that the
responsible process engineer keep a notebook of regular observations so
that the trends in the data may be identified over long periods of time.
These observations could then be analyzed periodically, perhaps semi-
annually, with the hope of finding patterns useful for cell control.
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