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ABSTRACT

For antennas at the ion cyclotron range of frequencies (ICRF) modeling ina

vacuum can now be carried out to a high level of detail such that shaping of the

current straps, isolating septa, and discrete Faraday shield structures can be

included. An efficient approach would be to solve for the fields in the vacuum

region near the antenna in three dimensions by finite methods and to match this

solution at the plasma-vacuum interface to a solution obtained in the plasma

region in one dimension by Fourier methods. This approach has been difficult

to carry out because boundary conditions must be imposed at the edge of the

finite difference grid on a point-by-point basis, whereas the condition for outgoing

energy flux into the plasma is known only in terms of the Fourier transform of

the plasma fields. A technique is presented by which a boundary condition can

be imposed on the computational grid of a three-dimensional finite difference, or

finite element, code by constraining the discrete Fourier transform of the fields

at the boundary points to satisfy an outgoing energy flux condition appropriate

for the plasma. The boundary condition at a specific grid point appears as a

coupling to other grid points on the boundary, with weighting determined by

a kernel calculated from the plasma surface impedance matrix for the various
w

plasma Fourier modes. This boundary condition has been implemented in a

finite difference solution of a simple problem in two dimensions, which can also

be solved directly by Fourier transformation. Results are presented, and it is

shown that the proposed boundary condition does elfforce outgoing energy flux

and yields the same solution as is obtained by Fourier methods.



1. INTRODUCTION

Ion cyclotron range of frequencies (ICRF) antennas are complicated, three-
o

dimensional (3D) structures whose performance can be affected by details of the

geometry. The modeling of such antennas in vacuum is now sophisticated enough

that minute details of the structure can be treated, including curved current

straps, isolating septa, and discrete Faraday shield structures. This is typically

done using finite difference or finite element computer codes (KRESS e_ al., 1991;

RYAN e_ al., 1990). The presence of the plasma near the antenna is a critical

feature, since induced currents in the antenna structure influence the spectrum

of power radiated into the plasma. In turn, calculations with two-dimensional

(2D) models (BATCHELOR e_ al., 1992) have shown that radio-frequency (RF)

plasma currents induce their own image currents in the antenna, which can cause

significant discrepancies between the loading and radiated spectrum calculated

from self-consistent antenna/wall currents and the values predicted from vacuum

measurements and calculations. It is generally not computationally feasible to

include the plasma region in a 3D finite difference code because of the large

" plasma volume relative to the wavelength and the complexity of the plasma

constitutive relation. In any case, from the antenna coupling standpoint, the

plasma is essentially one-dimensional (only radial variation is important), so

that 3D calculation of the RF fields inside the plasma by finite methods is an

unnecessary computational burden.

A logical approach would be to solve for the fields in three dimensions near

the antenna and to match this solution to a plasma solution which, because of

the lower dimensionality of the plasma, can be obtained by Fourier methods.

It has been difficult to carry out such a program because boundary conditions

must be imposed at the edge of the finite difference grid on a point-by-point

basis, whereas the condition for outgoing energy flux into the plasma is known

only in terms of the Fourier transform of the fields in the plasma. We have now

developed a technique by which a boundary condition can be imposed on the

. computational grid by constraining the discrete Fourier transform of the fields

at the boundary points to satisfy an outgoing energy flux condition appropriate

" for the plasma. The boundary condition at a specific grid point appears as a

coupling to other grid points on the boundary, with weighting determiined by



a kernel calculated from the plasma surface impedance matrix for the various
Fourier modes.

In Section 2 we give a derivation of the method for coupling a 3D finite

difference solution in a vacuum region to Fourier representations of the field

solution in a semi-infinite slab plasma. In order to verify that this scheme does

indeed impose the expected boundary condition, we have implemented a 2D

finite difference model and applied it to the case of a simple current strap over

a conducting ground plane, radiating into a slab plasma--a problem for which

a solution is also available using Fourier methods. Section 3 describes the 2D

model. Section 4 gives results of the finite difference model and compares them
to the solution in terms of Fourier transforms.

2. DERIVATION OF THE BOUNDARY CONDITION

We consider the situation illustrated in Fig. 1. The region x < 0 is vacuum

containing an arbitrary 3D antenna structure. The computational domain

extends over poloidal length 0 < y < a and toroidal length 0 _ z _< b. Wc

assume the fields to be periodic in the y (poloidal) and z (toroidal) directions.

It is not necessary that a extend to 27rRmin or that b extend to 27rRT (Rmin -"

minor radius, RT = major radius) in order to adequately model the antenna in

cases for which the fields fall rapidly to zero with distance from the antenna. A

magnetized plasma exists in the region x _ 0, which is uniform in the poloidal

and toroidal directions, n,(x) = n,(x),Bo(x) = Bo(x)_,, where ns is the particle

density of species s and B0 is the equilibrium magnetic field.

The field in the vacuum region is presumed to be obtained from a finite

difference or finite element solution of Maxwell's equations in three dimensions,

VxE=iwB,

V x B = -iwE - iW#OJext , (1)

subject to appropriate boundary conditions on the metal structure, periodic

boundary conditions at z = 0, b and at y = 0, a, and conditions of outgoing

energy flow at the plasma-vacuum interface, x = 0. The task at hand then

is to impose such outgoing energy boundary conditions on the finite difference

solution in terms of the Fourier representation of the field in the plasma region.
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This boundary condition involves imposing the proper linear relation between the

wave electric field and magnetic field (or equivalently between the wave electric

field and its derivatives) at the edge of the computational grid. Precisely which

field components are needed depends on details of the numerical implementation.

For concreteness we assume that BT, the tangential components of B, are to be

expressed in terms of ET, the tangential components of E.

In the plasma region the fields satisfy a wave equation of the form

VxE=iwB,

V x B = -iwE- iw#oJP , (2)

where Jp is the wave-induced plasma current. Typically we assume Jr' to be of

the form ,lp = E • E, where E is the cold or warm plasma conductivity tensor.

Nothing in the formulation, however, prevents ,lp from being a more general

operator, such as an integral operator that requires no small Larmor radius

expansion. In view of the uniformity of the plasma in the y- and z-directions, E

and B can be expanded in a Fourier series,

E(x)--- E --aAmnI_'mr_(X)e2"i(my/a'Fnz/b)-a , (3) "
mn_

where a = 1,2 indicates the two independent polarizations at the plasma edge.

Equation (2) then becomes a set of ordinary differential equations for each value

of m, n, a. For given rn, n there are in general several modes that propagate in

the plasma, for example fast and slow cyclotron waves and, in a warm plasma,

Bernstein waves. When a warm plasma is treated the temperature profile is

taken to go smoothly to zero at the plasma boundary, so that the solutions are

determined uniquely from the tangential components of E (or B) at the plasma

boundary. Bernstein waves, if present, are excited by the fields penetrating

into the plasma. The zero temperature boundary condition then ensures that

Bernstein waves propagating in the direction of negative x are totally reflected

inside the plasma.

Equations (2) are solved for each m, n, a, imposing on each solution a
p

boundary condition of outgoing energy flux at large x and an initial magnetic

field polarization at x = 0, ..

bT" = BT(z O)m" '_"_= = byo 1/+ b_o"r. •
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mn

A convenient choice for the polarization eigenvectors is (b_ = 1, b_'_ = 0) for

a = 1 (slow wave excitation), (by_" = 0, b_ = 1) for cr = 2 (fast wave excitation),

although such a choice is not required. By this process we obtain the plasma
m,

eigenfunctions E_n(z) of Eq. (3) with the A_" representing coefficients to be
determined.

Evaluating E'_n(x = 0), we can construct an effective plasma surface

impedance matrix Z mn which expresses for the m, n Fourier mode the tangential

electric field at the plasma-vacuum boundary in terms of the tangential magnetic

field, E_" = Z 'n'_ • B_". Introducing the 2D electric field polarization

eigenvectors,

m, m, (x = 0) = Em,_-e_ -ETa y_ y + E_an_ ,

we have, in particular,

mn Zml'l mne a = •b a ,

so the tangential part of Eq. (3), evaluated at x = 0, can be expressed as

= F_, '
llrl IlO" ml'lO"

. (4)
whereas

• BT(0, y,z) = Z mn mn 2ni(my/a+nz/b)A_ b_ e . (5)
wing

Fourier transforming Eq. (4) with respect to y and z, we obtain

Z "-aAmn-mnea= a"'bl/ dy dz Er(O,y,z)e -2ni(m_/a+nz/b) . (6)
O'

Since the ,nnea , a = 1, 2 are linearly independent, we can construct a set of

adjoint eigenvectors eta'nn such that

elmn mn• e_, =6_,. (7)

For example, if one chooses for the magnetic field polarization vectors b_m__"l=

(1,0) and barn__"2= (0, 1), the adjoint eigenvectors are simply given by

., -,,Piton= [Zmn]-a • e,,m"

. Using these, Eq. (6) can be solved for the A mn to give

1 f ptmn Z)-2niCmy/a+nz/b)Am, J= ab dydz_a .ET(O,y, e . (8)



Substituting Eq. (S)in Eq. (5) gives

BT(0,y,z)= _ b._"ei'_i(_Yl"+":Ib)
mflcr

l • t
x --_I dy'dz'-fm"%, •Ez(0, y', z )e -2'r'(my la+nz'/b) (9)

--/dy'dx'H(y - y',z - z') . ET(O,y,z),

where the dyadic kernel H(y- yt, z - z') is given by

_ ,-- t_- 2_i ,-(_-_')l°+.(_-_')Ib]
H(y y',z-z')= Eb_ e,, e [ . (10)

mN_

Equation(9)constitutesthedesiredcondition,whichenforcesoutgoingenergy

fluxintotheplasma.Sinceourinteresthereistoimposethisboundary condition

on a finitesolutioninthevacuum region,Eq. (9)must be discretizedinsome

manner. Again,thepreciseway inwhich thisistobe done dependson thedetails

ofimplementationofthenumericalfinitesolution,forexample,on whetherthe

solutionisby finitedifferencesorfiniteelements.For concretenesswe consider
e

a finitedifferencesolutionsuchthatthefieldquantitiesaredefinedon a gridof

mesh points (xi,yj,zk). The integral in Eq. (9) is obtained from a quadrature
rule of the form

BT(0,y,, = Zw,i;,,,. (11)
lm

where W ii;t_ are the weights of the quadrature rule.

In the special but important case of grid points uniformly spaced in y and z,

one can dispense with the integral quadrature altogether and represent the fields

at the grid points directly in terms of discrete Fourier transforms. Denote the

grid points on the plasma-vacuum boundary as yi = ia/N_, 0 < i <_ Ny and

z i = jb/Nz, 0 < j <_Nz, where Ny and N_ are the number of grid points in each

direction. Then Eq. (4) can be expressed as

ET(0, yi, zj) -- E .tia,,mn_mneae2_ri(mi/NY"i-nJ/N') (4 t)
¢,

Fn no"



and similarly for Eq. (5). Taking a discrete Fourier transfotzn of this equation

" gives
N),N,

" E Am"-"_" 1--" % = NvN_ _ ET(O'yi'zj)e-2_i(mi/gJ'+nJ/g_')'_=0,_=0 (6')

Ny < m < N.._g_y N, < n < N._._.
2- -2' 2- -2

From the Nyquist sampling theorem we know that N + 1 sample points will

serve to define N + 1 Fourier harmonics, which we take in Eq. (6') to lie in the

range-(Ny/2) _< m < (Nv/2),-(g_/2) < n < (g,/2). Equation (6')can De

solved for the A_" using the adjoint eigenvectors, as Eq. (8) was. When these

coefficients are used in the discrete Fourier representation for BT(0, y, z), one

obtains an equivalent of Eq. (9),

N) ,Nz

B.r(O, yi, zj) = E H(yi - y_,zj - z'k). ET(O, yt, zk) , (9')
l,k=O

where

. ._z N_z
2'2

H(w - y_,zj- z_,)= _ B_"%)m"_q=(_-0/N,+-O-k>/N,l. (10')
- =---g*,---ce,-

Thisis precisely what would be obtained from Eq. (11) in the case of equally

spaced grid points where the quadrature formula is the simple trapezoidal rule

with increments h v = a/N) and h, = b/N,. Then the weights Wij;tm are simply

Wii;t= = hvh,H(vi - Vt, zj - z_) . (12)

Equation (11) [or Eq. (9') for the case of a uniform grid] constitutes the

desired discretized boundary condition on BT in terms of the values of ET

evaluated at the grid points.



3. APPLICATION TO A SIMPLE 2D PROBLEM

3.1. Reduction of the Boundary Condition to Fast Wave
#4

Propagation in Two Dimensions

In order to verify that this scheme does indeed enforce the expected condition

on energy flow, we have developed a finite difference solution of the simple 2D

problem sketched in Fig. 2. The plasma region, x > 0, is again uniform in y and

z. A sheet, y-directed current distribution is present at x = --XA,

a_,t(x, z)= J_ (z) 6(x + _a)Y, (13)

and a flat conducting wall is located at x = -xw. Further, we restrict con-

sideration to the TE mode of propagation, or fast wave, for which E(x, z) =

Eu(x,z)fl and B(x,z) = Bz(x,z)F_ + B_(x,z)£,. In this case, it is convenient

to eliminate B using Faraday's law,

10Ey - 10Ey (14)B= = iw Oz ' B= = iw Oz "

We then work with the second-order equation for Ey alone,

_d2

VYE_ + -_f Ey = -iwJ_ , (15) .

where V 2 = (o1o +

ORNL-DWG 92M-3971 FED
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In the plasma region we can write Ev(x , z) as

Ev(x'z) = Z A,E'_(z)e _'_¢_ , (16)
n

m

where K = 2ltb, En(x) is the outgoing energy solution of the ordinary differen-

tim equation

+ k_(_,_)E"(_)=0, (_7)
and k_(x, n) is the fast wave solution of the plasma dispersion relation

D(w, x, kz, lc:,- nK) -- O.

For the finite difference solution of Eq. (15) we will require a boundary

condition relating E_v(x,z)[or equivalently B_(x,z)] to Ev(x,z ). Here the prime

refers to differentiation by x. Differentiating Eq. (16) gives

E'.(_,z)= _ a.E'"_)_:'""_,
tl

or, introducing the notation f,., - E'n(O) and en - En(O), we have

E_(O,z)= _ a._._'"" , E'_(O,_)=_ A.S._'""". (_S)

Note that for this problem the plasma surface impedance matrix of Sect. 3
'* n gl n

reduces to a scalar surface impedance Z" = iwen/.f, such that E v (0) = Z B, (0).

We can solve for An in the first part of Eq. (18) by Fourier transformation,

1 fob -'"r'E tOAn = _ dz e v_. ,z) ,
(19)

which, when used in the second part of Eq. (18), gives

fn einKz _obE'_(0,_)= _ be. dz'e-'""_'E'(O'_')
" (20)

= e_,_r(z_ _')E_(O,_'),

where the kernel tI(z- z t) is given by

fneinK(z-z') (21).
n
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Equation (20) is, of course, the reduction to this problem of the more general

boundary condition expressed in Eq. (9). If the inte_ al in Eq. (20) is performed

using trapezoidal rule quadrature with increment h:, the discretized version of

Eq. (20) can be written

E,(0, (22)
J

It is instructive to consider a case in which a single Fourier mode in z is present,

Jy(z) = ei"h':. Then Ev(0, zi ) = E0ei'*K:_ and Eq. (22) can be expressed as

N, N, fm eimK(:i_:i )einKzi

j=l j=l m

N. (23)

em
m j--1

The second sum is a geometric series that can be evaluated to yield N,8,n-n,_N,

for z.....- 0, +l, 5:2,..., so that Eq. (23) reduces to

r ] "E;(O, zi) "-Eo fneinK:' t fn.N"'-""_"ei(n+N')h':' _" Yn-N--""_sei(n-N')h':' + "'" . (24)
!. en en+N_ en-N_

The correct value, _E_(0, zi) = Eof,/e,e i"t¢:' is obtained only if the sum over m

in Eq. (23) is restricted to the range 0 < Iml < N_/2 and n itself is restricted to

0 < Inl < g:/2 - 1. This is the expected result in consideration of the discussion

following Eq. (6').

3.2. Implementation in a eD Finite Difference Code

A finite difference solution of Eq. (15) is to be obtained in the vacuum region

(-x_ < z < 0,0 < z < b) on the mesh xi = -xw + ihz,zj = jh, for i = O,Nr,j =

0, N:, where h: = z_/N:,h: = b/N:. Defining Eij _- E_(xi,zj), we can write the

finite difference form of Eq. (15) as

_-_.(Ei+l,) + E,-1,))+ _. (E,,i+l + E,,)-1)+ - 2 + Ei,j = -A-_-J,,j .

(25)
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Imposing perfect con,tuctivity on the wall gives E0,j = 0. Periodicity at

z = 0, b gives Ei,o = Ei,:,,,. And continuity of OEu/Oz at z = 0, b gives Ei,N.+I =

Ei,a,Ei,0-1 = Ei,N.-a. Ac the plasma-vacuum boundary, i = Nz, Eq. (25)i

requires EN,,+I,j, which is obtained from the finite difference representation of
E Iy_

1

E'_(O,zj) = 2h---_(EN.+I,j - EN.-1,j) •

Using Eq. (22) and solving for EN.+Ij gives

EN.+ld = EN.-1,j + 2hzhz Z Hi,jEN.,j , (26)
J

where
Nz/2

m=-N./2 _exp 27ri _-

Equation (25), with the associated boundary conditions discussed above,

constitutes a linear system for Ei,j which is solved using a standard matrix

inversion package.

D

4. RESULTS OF 2D CALCULATION AND DISCUSSION

The problem sketched in Fig. 2 is 2D only because of the z-dependence of the

antenna current, the inhomogeneous term of Eq. (15). As a result the problem

can easily be solved by Fourier transformation in the z-direction. In the plasma

region, the field is again given by an expansion of the form of Eq. (16). In the

two vacuum regions, region _: = (-x_ <_x < --XA), region II = (--xa <_x <_0),

the expansion is of the form

EZ,.(., = +y
* rl

" where _. is the wave number obtained from the vacuum dispersion relation

(w2/c 2) = x_2 + n2K 2. Imposing the conditions of vanishing E v at z = -xw,
J

continuity of the field and its derivative at the plasma-vacuum boundary, and the

jump condition E_(--xA+) -- 'Ey(--xA-) = -wJy at the strap location, one can
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eliminate the unknown coefficients C_, A. and obtain a complete solution. In

particular, the expansion coefficients A. in Eq. (16) are given by

-
An = -WpoJ, f ,.,/b, sin (_¢,x,,,) + i_¢, cos (_¢,xw) ' (28)

where J. is the nth _bu:,:i_:-rcomponent of Jy(z).

To compare the tw:_i,computations we have plotted the field at the plasma

boundary Ey(O,z) versus z as obtained by the Fourier method of Eq. (28),

Fig. 3a, and by the 2D finite difference method, Fig. 3b. The plasma parameters

are representative of a modest-size tokamak: he(0) = 4.5 x 1019 cm -3 with a

parabolic profile, n,(x) = n,(0)(1 - x2/a2), a = 60 cm, B0 = 2 T. The

cold plasma conductivity was used. ))he geometric parameters were chosen for

convenience of comparison of the two calculations: b = 1000 cm, XA = 5 cm,

xw = 15 cm. The strap current distribution is constant, with a width of

200 cm, and is centered in the domain, at z = 500 cre. The RF frequency is

fRF = 125 MHz. Figure 3a was calculated with 150 Fourier modes. One can

see that the field is small except in front of the current strap and that there

are oscillations at the ends of the strap due to Gibbs phenomena. The solid

curves are Re{Eu(O,z)} , and the dashed curves are !m {E_(0, z)}. Figure 35

was calculated with 30 grid points in each dimension. The discrete nature of

0.299 ORNL-DWG0_M.3072FED
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Fig. 3. Electric field at the plasma-vacuum boundary, ReE:,(0, z) (solid

curves) and ImEy(0, z) (dashed curves), obtained from (a) the Fourier solution

and (b) the finite differencc solution.
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the solution is evident. The important point is that the field amplitudes agree

" to within about 1_. The Poynting flux at the first grid point inside the vacuum

region obtained from the finite difference solution is shown in Fig. 4. We see that

" the small-amplitude oscillations appearing in Fig. 3b away from the antenna do

not result in a nonphysical power flow there. Another important comparison is

the total radiated power in the two models. Summing the power radiated into

each mode of the Fourier solution yields Ptot = 0.754 W.A-I.m -1. Integrating

the real part of E. 3 along the current strap for the finite difference case gives

Ptot = 0.736 W.A-I.m -1, an agreement of 2%. We conclude therefore that the

boundary condition proposed above does indeed yield a well-conditioned linear

system and does enforce the proper energy flux on the finite difference solution.

Figure 5 shows a plot of the kernel function of Eq. (27), Hi,0, which is a

measure of the coupling between points on the boundary with spacing Z_x = ihz.

The function is purely imaginary and highly peaked at i = 0. This strong

coupling of each boundary point to itself and the lack of much interesting

structure in Hi,o away from i = 0 cause one to wonder whether the coupling is

in some sense trivial and whether the structure of Hi,j is really significant. To

ORNL-DWG92M-3973FED
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14

ORNL-DWG92M-3974FED
Q

0.123 I I" t, I I

=,
t,
• m

0.107 - _,
lm

III
ma

0.081 - ,," -
Ii

mm

o.o -- i! -

mm

0.027 - :: -

1,.

m30 --18 --6 6 8 30
Z

Fig. 5. Kernel function Hi,0 versus point spacing, i as calculated for Eq. (27)

using the correct number of Fourier modes, -N=/2 < n < Nz/2. .,

investigate this, we have run the same cas( _.',_;bown in Fig. 3 but with the sum

" in Eq. (27) extending over different ranges of m. Figure 6a shows Hi,0 calculated

taking one less term at each end of the sum range, -(Nz/2-- 1) < n < (N=/2- 1).

The difference between this and Fig. 5 is rather subtle; however, the effect on

the solution, shown in Fig. 6b, is striking compared to Fig. 3b. In this case the

imaginary part of the solution is completely unstable, and the calculated power is

Ptot = 1.67 W.A-I.m, a factor of 2.2 error. Taking an additional term in the sum

over m has a smaller but still significant effect.

We anticipate extending this calculation to three dimensions and including

all three electric field components. To do this, some computational issues must

be resolved. The matrix structure is block-tridiagonal except for the equations

connecting to the plasma boundary points, which are dense. Clearly it will

not be feasible to solve the complete system arising from the 3D problem as a °

dense matrix. Since the coupling to non-nearest-neighbor points through the

kernel is weak, one could imagine solving the uncoupled problem using sparse

matrix techniques, then solving with coupling by iteration. In any case, there are

opportunities here for creative linear algebra.
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shown in (a).
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