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Abstract

to deal with high data rates. In order to avoid having to

write out all data that is occurring online processors, triggers, are used to cull out the uninteresting data. These triggers
are based on some particular aspect of the physics being examined. At times these aspects are often equivalent to simple

pattern recognition problems. The reliability of artificial neural networks(ANNSs) in pattern recognition problems in

many fields has been well demonstrated. We present here the results of a study on the feasibility of using ANNs as an

online trigger for high energy physics experiments.

Elementary particle physics experiments often have

1. Introduction

ators are capable of producing vast numbers of particles in their energetic
collisions. The events of interest are often imbedded in large numbers of uninteresting events. The proposed Large

Hadron Collide C) and the future replacement for the Superconducting Super Collider (SSC) will have event rates

on the order of 10° events per second with the majority of these events being of no interest. As it is impossible to

collect such large numbers of events with their complete data description, it is necessary to have a method to eliminate
unwanted events. Often the events of interest exhibit some particular aspect that can be cast into a pattern recognition
problem. At the SSC, the decay of the Higgs particle would evidence itself in the production of jets of highly energetic

particles. These jets of particles would then be seen in the detector as clusters of energy deposition. Artificial neural

networks are useful for cluster detection and thus are a prime candidate as a hardware trigger to filter the incoming data.

Elementary particle acceler

Pigam 1. SOC Calocimeter Sshamatio ’ o ol
igure 2 ical o Jet event

The deposition of the particles' energies would ocour in the calorimeter segment of the detector. An example

of the such a detector is shown in Figure 1. This detector would have been built by the Solenoidal Detector

Collaboration at the SSC and is fully described in Reference 1. The calorimeter portion of the detector is segmented in

azimuth and polar angle. The result of projecting these segments into a plane is pixel array of size 32 by 30. As
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mentioned previously, events of interest would show up in this calorimeter projection as towers of large energy
deposition.
As no actual data exists from the SSC, Monte Carlo events were generated usmng the program ISAJET [2].
Two classes of events were generated: 1) Minimum-bias events, i.e. events that are effectively background, and 2) Two
jet events, i.e. events that would most closely resemble the decay of the Higgs particle. An example of a two jet event is
shown in Figure 2. Details of the event generation procedures can be found in Reference 3. The generated events were
then projected into the calorimeter and the energy depositions recorded. Events of both types were used both in the

training and testing portion of this study.

IL Artificial Neural Network Development

A three layer fully connected artificial neural network was used in this study. The input layer consisted of 960
nodes, as dictated by the 30 by 32 calorimeter configuration. The networks tested varied in hidden layer size from as
few as 10 hidden layer nodes to as many as 1000 hidden layer nodes. Only one output layer node was required as the
output was either positive(two jet event) or negative(minimum-bias event). All network training and testing was done
using the NeuralWorks Professional II/Plus software package [4]. 1500 events, 750 of each type, were used for training,
while 2000 events, 1000 of each type, were used for testing the neural network.

The optimal size of the hidden layer was determined by considering its proficiency in identifying two jet
events, since those are the events that would be kept for further analysis. Table I summarizes the average test set
performance of the networks tested for five attempts at training.

TABLE 1: Determining Network Size

Percent Correct
Hidden Layer Nodes Minimum Bias Two Jet
10 95.7% 94 9%
20 98.1% 94.0%
30 98.3% 89.4%
40 99.5% 88.6%
50 97.3% 92.2%
60 98.8% 90.3%
70 97.2% 87.5%
80 96.4% 92.3%
90 99.5% 86.7%
100 98.4% 91.2%
1000 99.5% 78.6%

It is apparent from this table that all the networks were capable of identifying minimum bias events quite well.
It is also clear that the smaller networks were better at identifying two jet events. This can be attributed to the fact that
larger networks tend to memorize data while the smaller networks generalize the information.

These results indicate the 10 hidden node configuration to be best at identifying two jet events. For this
reason, it was selected as the network used in all further research.

IIL. Network Pruning

A fundamental problem in using artificial neural networks is that there are more variables (weights) to be
determined than there are parameters (training sets). It should be possible then to improve the determination of the
variables, and thus network performance, if the number of variables are reduced. This process is referred to as pruning,

Pruning alters the neural network drastically, so care must be taken when determining which weights to
eliminate. The obvious choice is to eliminate weights that are close to zero in magnitude, as they contribute little or
nothing to the results. Assigning these weights a zero value eliminates them from being active in results calculation or
learning. However, deciding which specific weights to eliminate is more complex.

For the 10 hidden layer node configuration used, only weights from the hidden layer to the output layer were
considered for elimination. This was done to prevent the possibility of completely cutting off an input node which,
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while it may not have been important for the input patterns the network was trained with, cou!d be highly active for an
unseen test event. Howe: c. there was a benefit to eliminating the weights to the output node; since there was only one
output node, eliminating a weight effectively cut off the associated hidden layer node completely, and thus also the 960
weights that served as input to that node. No input layer nodes could be cut off with this method unless all the
connections to the output were severed, which would render the network useless.

A pruning algorithm was then written to eliminate nodes to the output layer. Those weights which were
smaller in magnitude than an adjustable percentage of the absolute average of the weights to the output layer were set to
zero. The harshness of the prune was varied to see its effects.

The pruned network was then tested to show the effects of the pruning, and then, without altering the weights,
retrained. The new network was then repruned and retrained in an iterative process to obtain the ideal network
configuration.

The results of this pruning scheme were disappointing. The network showed a slow decline in performance as
weights were eliminated and retraining occurred. As a result, the network was left unpruned for the remainder of

modeling.
IV. Improving Data Simulation

In the original simulations, it was assumed that all the energy from a particle was deposited into a single
calorimeter detector element. This is a poor assumption, as the energy is spread from the actual location in a nearly
Gaussian fashion. This energy spreading is due to particle interactions inside the calorimeter detector element. For this
reason, new data sets were developed using three different approximations for energy deposition to assess the ability of
the network trained on data more closely resembling reality.

As a first attempt at energy smearing, it was assumed that each particle's energy deposition occurred in the
center of the calorimeter detector element which it hit. Arbitrary percentages were chosen to distribute the energy such
that the primary detector element was highly activated and swrounding elements were slightly activated.

A second method for energy smearing was to assume that all the particles impinged the calorimeter at the
intersection of four calorimeter detector elements. This led to an equal distribution of the energy in each of the four
elements around the intersection point.

These first two methods, while more spread than the original Monte Carlo data, do not provide a very accurate
depiction of the real physical processes that are occurring. It i1s known that almost all of a particle's energy should be
deposited within a relatively small circle around the impact point but at a certain depth into the calorimeter detector
element. This depth was chosen as the position used for producing a more realistic simulation of data. The Gaussian
energy distribution around the hit location was modeled by considering the distrihution as a large number of individual
hits with a corresponding small energy. Thus it was possible to distribute energy around the impact position by adding
a random amount of energy to the detector element within the distribution radius. This was repeated until the total
energy was distributed. These events were far more smeared.

V. Results of Data Smearing

A set of 1000 events was created from each of the spread approximations. These data sets were tested on the
network trained with the rudimentary data. Table I summarizes the results. The network performed on- the same level
for all smeared data as it did on the original data. This is indicates the smearing does not affect the pattem recognizing
abilities of the network significantly. The Monte Carlo results show the network should perform well at identifying
actual events.
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TABLE II: Performance of Smeared Simulations
Center Smear Approximation
Number Events Events Identified Percentage
Min-Bias Events 500 472 95.8%
Two Jet Events 500 487 97.4%
Intersection Smear Approximation
Number Events Events Identified Percentage
Min-Bias Events 500 483 96.6%
Two Jet Events 500 480 96.0%
Monte Cario Approximation
Number Events Events Identified Percentage
Min-Bias Events 500 489 97.8%
Two Jet Events 500 485 97.0%
VI. Potential Network Flaws

The disparity in energy deposition in the calorimeter between the minimum bias and two jet events, the two jet
events are roughly a factor of 400 higher in energy deposition, brings into question the criterion for discrimination
between the two classes of events. It is possible that the network was simply acting as a discriminator between the
energies of the event types and not considering the pattems involved.

This possibility was investigated in two ways. First the events the network failed to identify were examined for
any pathological behavior. No pathology was evident from the failures, particularly any relating to energy scale. A
second more rigorous test was then conducted. The energies of the two jet events were scaled down by a factor of 100.

This reduced two jet energies to roughly the same order of magnitude as the minimum bias events. A set of
1000 events containing regular minimum bias and scaled two jet events was created for testing. If the network were
only using energy levels to separate the events, results should show very poor results for scaled two jet data. This is not
the case, as shown in Table II:

TABLE III: Results of Energ Scaling

Number Events Events Identified Percentage
Min-Bias Events 500 482 96.4%
Two Jet Events 500 365 73.0%

The performance of the network trained on unscaled events is not up to the level of previous tests, but this is
expected. The network is clearly using the energy as one criterion to distinguish events, but is obviously not ignoring
the pattern of the events.

To demonstrate the network's ability to recognize pattems, it was retrained on the set of 1000 scaled events.
An additional set of 250 scaled two jet and 250 minimum bias events was crated to test the network. Table IV details
the results of these tests.
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TABLE I[V: Test of Pattem Recognition Ability
Number Events Events Identified Percentage

Min-Bias Events 250 248 99.2%
Two Jet Events 250 236 94.4%

The results obtained are very close to those obtained by the original network. This indicates that the network’s
pattern recognition abilities pose no problem to the results.

VII. Conclusions

The results for two jet identification coupled with the evidence for pattemn recognition indicate that a neural
network of only 10 hidden layer nodes may be successfully used as a trigger. A hardware designed network should be
capable of the speed required for the luminosity of SSC generation particle accelerators.

However, there are still areas that can be refined. Only one pruning algorithm was tried. A different pruning
method may improve results. Event simulation could still be further improved.. In addition, the networlg could be
trained using the most realistic data simulations, hopefully providing better results. As a final step, testing of the neural
network built into a VLSI hardware trigger using real data should be done.
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