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Abstract

Elementaryparticlephysicsexperimentsoftenhavetodealwithhighdatarates.Inordertoavoidhavingto
write out all data that is occumn8 online processors, triggers, are used to cull out the uninteresting data. These triggers
arebasedon someparticularaspectofthephysicsbeingexamined.Attimestheseaspectsareol_cenequivalenttosimple

patternrecognitionproblems.Thereliabilityofartificialneuralnetworks(ANNs)inpatternrecognitionproblemsin
many fieldshasbeenwelldemonstrated.We presentheretheresultsofastudyonthefeasibilityofusingANNs asan
onlinetriggerforhighenergyphysicsexperiments.

I.Introduction

Elementaryparticleacceleratorsarecapableofproducingvastnumbersofparticlesintheirenergetic
collisions.The eventsofinterestareoftenimbeddedinlargenumbersofuninterestingevents.TheproposedLarge

_on Collider_C) andthefuturereplacementfortheSuperconductingSuperCoIlider(SSC)willhaveeventrates
on theorderofI0 eventspersecondwiththemajorityoftheseeventsbeingofno interest.As itisimpossibleto
collectsuchlargenumbersofeventswiththeircompletedatadescription,itisnecessarytohaveamethodtoeliminate
unwantedevents.Oftentheeventsofinterestexhibitsomeparticularaspectthatcanbecastintoapatternrecognition

problem.AttheSSC,thedecayoftheHiggsparticlewouldevidenceitselfintheproductionofjetsofhighlyenergetic

particles.Thesejetsofparticleswouldthenbeseeninthedetectorasclustersofenergydeposition.Artificialneural
networksareusefulforclusterdetectionandthusareaprimecandidateasahardwaretriggertofiltertheincomingdata.
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The deposition of the particles' enersies would occur in the cldorimetersegment of the detector. An example
of the such a detector is shown in Figure 1. This detector would have been built by the Solenoidal Detector
Collaboration at the SSC and is fully described in Reference 1. The calorimeter portion of the detector is segmented in
azimuth and polar angle. The result of projecting these segments into a plane is pixel arrayof size 32 by 30. As
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mentioned previously, events of interest would show up in this calorimeter projection as towers of large energy
deposition.

As no actual data exists from the SSC, Monte Carlo events were generated _,ng the program ISA2ET [2].
Two classes of events were generated: 1) Minimum-bias events, i.e. events that are effectively background, and 2) Two
jet events, i.e. events that would most closely resemble the decay of the I-Iiggsparticle. An example of a two jet event is
shown in Figure 2. Details of the event generation procedures can be found in Reference 3. The generated events were
then projected into the calorimeter and the energy depositions recorded. Events of both types were used both in the
gaining and testing portion of this study.

IL Artificial Neural Network Development

A three layer fully connected artificial neural network was used in this study. The input layer consisted of 960
nodes, as dictated by the 30 by 32 calorimeterconfiguration. The networks tested varied in hidden layer size from as
few as 10 hidden layer nodes to as many as 1000 hidden layer nodes. Only one output layer node was required as the
output was either positive(two jet event) or negative(minimum-bias event). All network training and testing was done
using the NeuralWorks Professional WPlus software package [4]. 1500 events, 750 of each type, were used for training,
while 2000 events, 1000 of each type, were used for testing the neural network.

The optimal size of the hidden layer was determined by considering its proficiency in identifying two jet
events, since those are the events that would be kept for further analysis. Table I summarizes the average test set
performance of the networks tested for five attempts at training.

TABLE 1' Determinin[_Network Size ....

Percent Correct

Hidden La:/erNodes Minimum Bias ..... Two Jet

10 95,7*6 94.9%
20 98.1'/'0 94.0%
30 9s.3% s94%
40 99.5% 88.6%

......

50 97,3% 92.2%
60 98.8% 90.3%
70 97.2% 87.5%
80 96.4% 92.3%

,i

90 99.5% 86.7%
100 98.4% 91.2%

1000 99.5% 78.6%
i

It is apparent from this table that all the networks were capable of identifying minimum bias events quite well.
It is also clear that the smaller networks were better at identifying two jet events. This can be attributed to the fact that
larger networks tend to memorize data while the smaller networks generalize the information.

These results indicate the 10hidden node configuration to be best at identifying two jet events. For this
reason, it was selected as the network used in all further research.

IIL Network Pruning

A fundamental problem in using artificial neural networks is that there are more variables (weights) to be
determined than there are parameters (training sets). It should be possible then to improve the determination of the
variables, and thus network performance, if the number of variables are reduced. This process is referred to as pruning.

Pruning alters the neural network drastically, so care must be taken when determmirtg which weights to
eliminate. The obvious choice is to eliminate weights that are close to zero in magnitude, as they contribute little or
nothing to the results. Assigning these weights a zero value eliminates them from being active in results calculation or
learning. However, deciding which specific weights to eliminate is more complex.

For the 10 hidden layer node configuration used, only weights from the hidden layer to the output layer were
considered for elimination. This was done to prevent the possibility of completely cutting off an input node which,
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while it may not have been important for the input patterns the network was trained with, cou!d be hishly active for an
unseen test event. Howe_=, therewas a benefit to elimmatm 8 the weights to the output node; since there was orgy one
output node, eliminating a weight effectively cut off the associated hidden layernode completely, and thus also the 960
weishts that served as input to that node. No input layer nodes could be cut ot'fwith this method unless all the
connections to the output were severed, which would render the network useless.

A pruning algorithm was then written to eliminate nodes to the output layer. Those weishts which were
smaller in magnitude than an adjustable percentase of the absolute averageof the weights to the output layer were set to
zero. The harshness of the prune was varied to see its effects.

The pruned network was then tested to show the effects of the pruning, and then, without altering the weights,
retrained. The new network was then repruned and retrained in an iterative process to obtain the ideal network
configuration.

The results of this pruning scheme were disappointing. The network showed a slow decline in performance as
weights were eliminated and retraining occurred. As a result, the network was left unpruned for the remainder of
modeling.

IV. Improving Data Simulation

In the original simulations, it was assumed that all the energy from a particle was deposited into a single
calorimeter detector element. This is a poor assumption, as the energy is spread from the actual location in a nearly
Gaussian fashion. This energy spreading is due to particle interactions inside the calorimeter detector element. For this
reason, new data sets were developed using three different approximations for energy deposition to assess the ability of
the network trained on data more closely resembling reality.

As a ftrst attempt at energy smearing it was assumed that each particle's energy deposition occurred in the
center of the calorimeter detector element which it hit. Arbitrarypercentages were chosen to distribute the energy such
that the primary detector element was highly activated and surrounding elements were slightly activated.

A second method for energy smearing was to assume that all the particles impinged the calorimeter at the
intersection of four calorimeterdetector elements. This led to an equal distlibution of the energy in each of the four
elements around the intersection point.

These fgrst tWOmethods, while more spread than the original Monte Carlo data, do not provide a veryaccurate
depiction of the real physical processes that are occurring. It is known that almost all of a particle's energy should be
deposited within a relatively small circle around the impact point but at a certain depth into the calorimeter detector
element. This depth was chosen as the position used for producing a more realistic simulation of data. The Craussian
energy distribution around the hit location was modeled by considering the disL-ibvtion as a large number of individual
hits with a corresponding small energy. Thus it was possible to distribute energy around the impact position by adding
a random amount of energy to the detector element within the distribution radius. This was repeated until the total
energy was distributed. These events were far more smeared.

V. Results of Data Smearing

A set of 1000 events was created from each of the spread approximations. These data sets were tested on the
network trained with the rudimentary data. Table II summarizes the results. The network performed on- the same level
for all smeared data as it did on the original data. This is indicates the smearing does not affect the pattern recognizing
abilities of the network significantly. The Monte Carlo results show the network should perform well at identifying
actual events.
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TABLE IT:PerformanceofSmearedSimulations

........... Center Smear Approximation ....
.... "Number Events Events .Identified Percenta_,e

Min-Bias Events 500 " 472' 95.8% ....
. ,,, ,, ,

Two Jet Events 500 487 97.4%

,,,,, ,,,,

,, Intersection Smear Approximation '" , . ' ....
Number Events Events Identified Percenta_;e

...... Min-Bias Events '" 500 ...... 483 96.6% '
Two Jet Events 500 480 .... 96.0%

, ,,,

, ,J ,, ,,, ,

.... Monte Car!o Approximation.
Number Events Events Identified Percents. e

Mm-Bias Events 500 489 ..... 97.8%
Two Jet Events ..... 500 485 9'7.0*/0

i ii • i i ii i i i i

VI. Potential Network Flaws

The dispari_r in energy deposition in the calorimeter between the minimum bias and two jet events, the two jet
events are roughly a factor of 400 higher m energy deposition, brings into question the criterion for discrimination
between the two classes of events. It is possible that the network was simply acting as a discriminator between the
energies of the event types and not considering the patterns involved.

This possibility was investigated in two ways. First the events the network failed to identify were examined for
any pathological behavior. No pathology was evident from the failures, particularly any relating to energy scale. A
second more rigorous test was then conducted. The energies of the two jet events were scaled down by a factor of 100.

This reduced two jet energies to roughly the same order of magnitude as the minimum bias events. A set of
1000 events containing regular minimum bias and scaled two jet events was created for testing. If the network were
only using ene,.,_' levels to separate the events, results should show very poor results for scaled two jet data. This is not
the case, as shown m Table HI:

TABLE I]/. Results of"Erie Scalin_

.. . ., r_, ' ' Pe_'centage iNumber Ev.en_ ..... Events Identified

]
Min-Bias Events 5'00 .... _182 ' ' _}6.4% ' '1

''i Two Jet Event_ 500 365 73.0./i ....... I

The performance of the network trained on unsealed events is not up to the level of previous tests, but this is
expected. The network is clearly using the energy as one criterion to distinguish events, but is obviously not ignoring
the pattern of the events.

To demonstrate the network's ability to recosnize patterns, it was retrained on the set of 1000 scaled events.
An additional set of 250 scaled twojet and 250 minimum bias events was crated to test the network. Table IV details
the results of these tests.
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TABLE, IV', Test of Pa_em,,Recoj;nition,, , Abilit_
.......... Number Events Events Identified .... pei'centage ....

Mi.-Bi Ev&t 250 ..... 24s...... 20/o
'Two Jet _.vents 250 236 94.4_ ..........

iii ii , • , , ,

The results obtained are very close to those obtained by the original network. This indicates that the network's
pattern recognition abilities pose no problem to the results.

VIL Conclusions

The results for two jet identification coupled with the evidence for pattern recognition indicate that a neural
network of only 10 hidden layernodes may be successfully used as a trigger. A hardware designed network should be
capable of the speed required for the luminosity of SSC generation particle accelerators.

However, there are still areas that can be ref'med. Only one pruning algorithm was tried. A different pruning
method may improve results. Event simulation could still be further improved.. In addition, the network could be
trained using the most realistic data simulations, hopefully providing better results. As a final s)_p, testing of the neural
network built into a VLSI hardware triggerusing real data should be done.
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