
nlliIIflt--IIIII

Illll_llIll_Inll_inll_nm_



t

o



v" .s _ _//////

LA-UR- 9;-349

Title: DEVELOPEMENT OF THE AVERAGE LATTICE PHASE-STRAIN AND

GLOBAL ELASTIC MACRO-STRAIN IN AL/TIC COMPOSITES

LosAlamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity empldyer, is operated by the University of California for the U.S. Department of Energy

under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the UoS. Government retains a nonexclusive, royalty-free license to

publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory
requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

No. 836 R5
ST 2629 10/91

plS_RglilJTIDNOFTHISDOCUMENTIZ UNLIMIT__ _o_m



¢

I

DEVELOPMENTOF THE AVERAGELATHCE PHASE.STRAINAND GLOBAL ELASTICMACRO-STRAININ MJFIC
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LOS ALAMOS, NM 87545
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DEARBORN, MI 48121

ABSTRACT

The development of elastic lattice phase strains and global elastic macro-strain in a 15 volume percent (V%) TiC particle
reinforced 2219-T6 AI composite was modeled by finite element method (FEM) as a function of tensile uniaxiai loading. The
numericai predictions are in excellent agreement with strain measurements at a spMlation neutron source. Results from the
measurements and modeling indicate that the lattice phase-strains go through a _zigzag" increase with the appfied load in the
direction perpendicular to the load, while the changes of slope in the parallel direction are monotonic. FEM results further
showed that it is essential to consider the effect of thermal residual stresses (TRS) in understanding this anomaious behavior.
It was demonstrated that, due to TRS, the site of matrix plastic flow initiation changed. On the other hand, the changes
of slope of the elastic global macrostra£u is solely determined by the phase-stress partition in the composite. An analyticai
c_Iculation showed that both experimental and numerical slope changes during elastic global strdn response under loading
could be accurately reproduced by accounting for the changes of phase-stress ratio between the matrix and the matrix.

INTRODUCTION

Thermalresidualstresses(TRS)havebeenunderintenseinvestigationinavarietyof compositesforseveralyears(e.g.[i-
6]).They resultfromdifferencesinthecoefficientofthermalexpansion(ACTE) betweentheconstituentphasesduring
cooling.RecentinvestigationsindicatethatTRS has a profoundinfluenceon themechanicalbehaviorofmetalmatrix
composites(MMCs) [7-14].Ithas beensuggestedthatthe matrixplasticflowin MMCs isstronglyinfluencedby the
TRS [10,13,15],and thatthisinfluenceisresponsiblefortheobservedasymmetriccompositeconstitutivebehaviorbetween
tensionandcompression[8,10-12,14].Dislocationsinducedbyplasticrelaxationofthermalstressesduringcoolingmay result

insignificantstrengthening[7,9].Deformation-inducedchangesofresidualstresseshavealsobeenextensivelystudied[18,17].
Thesechangesinresidualstresshavebeenfoundtoafectthematerialperformanceundercomplexloadinghistories.For
example,undercyclicloadingsuchasa Bauschingertest,residualstressespolarizetheyieldingstressesinthetwoopposing
loadingcycles[18,19]•

The evolutionoflatticeelasticl>hase-strainunderauniaxialloadisimportantinstudyingthechangesofstressdistribution
incomposites.Sincephase-stressesarelinearly/relatedtotheelasticlatticephase-strains,when redistributionsoflocalfield

quantities(e.g.stressand strain)do notoccur,thelatticephase-strainincreaseslinearlywiththeappliedloadirrespective
ofthestatedeformation,i.e.eitherelasticorplastic.Therefore,any deviationfromlinearityindicatesstressredistribution
inthecomposite,commonlyreferredtoasaloadtransfer,whichisimportantforthestrengtheningofcomposites•

Recently,Allenetal.measuredin8ituload-inducedlatticeelasticphase-strainsinAI/SiCparticulate-and whisker-reinforced
compositesusingneutrondifraction[20].Thistechniqueenablesadirectobservationoftheresponsesfromindividualphases
underload.They foundthatdiffusionstressrelaxationisan importantmechanisminunderstandingtheresponsesofthe
load-inducedlatticestrains.However,theinfluenceofTRS on theevolutionofelasticphase-strainhasneverbeenstudiedin
detail.

Foranyductilesolid,thetotalstrain(e*°*.l)understaticloadingconsistsofelastic(ce)and plastic(e_) components,i.e.,
etota,_ ze+_p_.The elasticstrainiscompletelyrecoverablewhiletheplasticcomponentisameasureofpermanentdistortion.
Fora singlephasematerial,theglobalelasticstraincomponentisalwaT/8linearlyrelatedto theappliedload,and willbe



completely recovered upon unloading. The unrecoverable strain component after unloadins, ep_t, is defined as the plastic

strain (ePt). This is the strain component resulting, ideally, from material flow in additior to the elastically stretching of the
lattice.

In a multiphase material in which the mechanical properties of each phase are different, a similar global elastic strain behavior
is usually assumed, i.e. the global elastic strain component is linearly related to the applied load. However, experimental
observations of the evolution of the load-induced global elastic strain component during elasto-plastic deformation have not
been made, and its implications not been carefully studied.

Neutron diffraction is a suitable technique for measuring elastic lattice phase-strains in MMCs. It has a greater p_letration
depth than x-rays. For example, the penetration depth differs by approximately 3 orders of magnitude in A1. In contrast to
the more commonly available reactor sources, neutrons from a spallation source offer advantages by virtue of their production
in a series of discrete pulses. Using time of flight (TOF), a unidirectional strain component can be determined from the
changes of lattice spacing from all possible diffracting planes in one measurement.

In this investigation, the evolution of lattice phase-strain and elastic global strain under uniaxial tensile loading of a particle-
reinforced A1/TiC composite was studied. A numerical analysis was performed using the finite element method (FEM) to
model the influence of TRS on the evolution of the lattice elastic phase-strains both parallel and perpendicular to the loading
direction. The correlation between the phase-stress partition and the global elastic strain was investigated. The results were
compared with the neutron diffraction measurements obtained using a compact stress rig at the Manuel Lujan, Jr. Neutron

Scattering Center (LANSCE) of Los Alamos National Laboratory.

EXPERIMENTAL BACKGROUND

The material used in this study was a 2219 AI alloy reinforced with 15 volume percent (V%) TiC particles. The average
diameter of the reinforcement was about 3/_m [21]. The composite was produced in situ by Martin Marietta using the XD TM

process. The as-received composite was first rolled into plates, heat treated in T6 condition, then machined into a standard

cylindrical tensile test specimen with a gauge length and diameter of 12.27 and 1.0 cm, respectively. The gauge length was
arbitrarily selected for a free passage of the neutron beam without interference from the grips.

During diffraction measurements, lattice strains were measured as a function of applied uniaxial tensile load. A gauge length
of 1.4 cm was illuminated by the neutron beam corresponding to a total irradiated volume of 1.1 cm 3. Initially, a tensile load
of 200 MPa was applied, followed by unloading, to detect modifications of residual strain induced by a small load. Then, the
specimen was incrementally loaded to 327 MPa sufficient to induce 1% total strain as recorded by a strain gauge attached
to the specimen. The loading results in a total plastic strain of 0.67% upon unloading. The loading process was divided
into intervals of approximately 50 MPa. During each measurement, the specimen was controlled at a constant cross-head
displacement. Lattice strains, both parallel and perpendicular to the loading direction, were measured from both phases.
Each measurement took approximately 5 hrs, during which, the stress relaxation was less than 1% except near the maximum
stress level (> 300 MPa), at which 1.5% reduction in stress was detected by the load cell.

Strains determined from individual lattice reflection may be affected by the matrix texture [22, 23]. To minimize the effect
of texture, we employed the Rietveld profile refinement, which entails a fit of all the lattice reflections to give a global lattice

parameter that responds to the applied load based on the collective behavior from all lattice planes [24].

FEM MODELING

The composite was assumed to be an infinite three dimensional (3-D) cubic array of periodically distributed cubic particles
embedded in the matrix with volume fraction of 15 V%. By invoking symmetry, an equivalent unit cell may be used where
a standard periodic boundary condition was employed [25]. Tests with spherical and cubic particle shapes were performed.
The difference in the responses of the average elastic phase-strain between the two particle morphologies was not significant.
As compared with spherical particles, cubic particles induce stress concentrations near the particle corners. However, the
stress concentration is localized. The effect is averaged out in a volume-weighted averaging process, which is required for
comparison with the diffraction results. For simplicity, we choose to report the cubic results.

Another approach to simplify the geometry of the problem is to consider the reinforcements as a cubic array of equi-axial
cylinders and construct the unit cell as an axisymmetric cylinder. Although the material continuity is sacrificed at the cell
boundary, the unit cell is axisymmetric which can be reduced to a 2-D model for calculation. This technique has been used
extensively, (e.g. [17]). In this analysis, both axisymmetric and 3-D calculations were made. The composite bulk responses
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of elastic phase-strain were modeled by the 3-D unit cell model. For the evolution of the local matrix plastic flow, the
axisymmetric model was used, for it is much simpler to display the distribution of the field quantities in 2-D. Figure 1
displays the composite stress-strain curves predicted by these two models. On!y small difference can be detected.

During FEM analysis, the TiC was assumed to be elastic throughout the loading process, and the AI matrix followed the
elastic/linear-plastic bilinear stress-strain relationship and the isotropic-hardening rule. The Von Mises yielding criterion was
used. The material properties were obtained from [26, 27]. Average lattice phase-strains were approximated by a volume-
average of the elastic component of the total strains. The mesh size was chosen when the dependency of the generated
stress-strain curve was negligible on the mesh-size refinement. Time-dependent deformation was not incorporated in the
analysis so that the effect of creep-type stress relaxation was not considered.

INFLUENCE OF TRS ON THE EVOLUTION OF LATTICE PHASE-STRAIN

To understand the impact of TRS, two different loading histories were examined. In the first case (History I), the composite
was assumed to be stress free at 200°C. A total temperature drop of 180°C was uniformly applied in steps to all the nodal
points in the FEM mesh. After the cooling, a tensile uniaxial load was applied incrementally along the x2 direction. To
model the loading history employed in the experiment, the following sequence was applied: 0 :_ 200 :_ 0 _ 327 _ 0 MPa.
The FEM results indicated that the initial loading, 0 :_ 200 :_ 0 MPa, had little influence on the subsequent composite
stress-strain responses. To compare with a hypothetical composite devoid of the influence of TRS, a separate second loading
scheme (History II) was employed, which did not include the cooling history, and the initial loading cycle of 200 MPa was
ignored, for it gave little difference. Figure 2 displays the stress-strain curve generated by the FEM under History I and the
experimental stress-strain values at which the diffraction measurements were taken.

Phenomenological Responses of the Lattice Elastic Strain

The FEM results under the History I are shown in Fig. 3 along with the diffraction profile refinement data. Excellent
agreement was achieved between the prediction and the experiment. Along the perpendicular direction, as the average elastic
strain in the particle increased, the m,,gnitude of the slope of this increase became larger prior to the composite global
yielding, and smaller as the composite started to macroscopicMly yield [Fig. 3(a)]. On the perpendicular m,,tr_xelastic strain,
an opposite trend was observed. The mag,,itude of the slope decreased with an increasing load before a final increase upon
global yielding [Fig. 3(b)]. This behavior may be characterized as a "zigzag" increase, i.e. the changes of the slope were
nonmonotonic. This zigzag behavior may be best viewed through the three representative stages as defined in Fig. 3(b)
distinguished by their slopes.

In the parallel direction, on the other hand, the behavior of elastic strains in both phases was different from that of the
perpendicular strains. For a given amount of matrix lattice strain increase, the corresponding changes of the stress reduced
as the load increased.

To assess the influence of the TItS on the morphology of the strain variations, the History II was implemented, where the effect
of ACTE was not considered. Figure 4 displays the predicted increases of elastic lattice strains as a function of the applied
stress, where the applied stress extends to 350 MPa to reveal clearer effects of a full matrix plasticity. The material thermal
history had a significant impact on the morphology of the elastic lattice phase-strain response as compared with Fig. 3. The
changes of slope of the elastic lattice strains in both phases were monotonic in the perpendicular direction [Fig. 4(a)], while
those parallel to the loading direction were nonmonotonic (i.e. "zigzag increases") [Fig. 4(b)]. These differences as a result of
excluding the effect of &CTE indicate that TRS is important in understanding the phenomenological responses of the lattice
elastic strain.

Matrix Plastic Flow

To further study the influence of the TRS and understand the origin of the morphology of the phenomenological response of
the lattice phase-strain, the evolution of the matrix plastic flow was investigated through a 2-D axisymmetric FEM model.
It was shown that plastic flow first initiated at the side of the particle, and propagated toward the top of the particle as the

applied load increased. Figure 5(a) shows the effective plastic strain contours (_,, = 2 ,, p_/_ij_,) of the matrix at appliedan

load of 270 MPa under the History I, showing the initiation of the matrix plastic flow.

When TRS was not considered (History II), the development of the matrix plastic different. The matrix start to flow at the
top of the particle to compensate the rigidity of the particle. As shown in Fig. 5(b), in contrast with the History I, a large
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plastic flow gradient appeared at the top of the particle under the same applied load level (270 MPa), whereas the rest of the
matrix remained elastic.

By comparing the plastic flow initiation shown in Figs. 5(a) and 5(b), it is evident that a major influence of TRS is to
dominate the location of the plastic flow initiation. With initial TRS, the plastic flow starts at the side of the particle,
whereas, if the composite is TRS-free, the initiation of matrix plastic flow occurs at the top of the particle. The shift of
plastic flow initiation site due to TRS causes the observed zigzag elastic phase-strain evolution.

GLOBAL ELASTIC MACRO-STRAIN AND PHASE-STRESS PARTITION

For displacements along the boundary of a domain D, the following expression can be obtained from Guass's theorem:

/DO.U,6ikdD= _lD u_8..n.dS, (I)

whereu,isthedisplacementalongtheithdirection,and ziisthecoordinateinthejthdirection.The [D[istheboundary
ofthevolumeD. The repeatedsubscriptindicesaresummed over1,2 and 3.The ak denotesa partialderivativeoverzk.
When i= j,thenormalstrainsintheintegratedvolumeD arerelatedtothefar-fielddisplacementuiby Eq.1.Inreality,the

globalstrain(e.g.ofatensilebar)may be obtainedby dividingthefar-fielddisplacementby thesampleoveralldimension,
andbe relatedtotheinternalstrainsby Eq.1.

Fornormalphase-strainsina two-phasematerial,thefollowingmean-fieldexpressionsmay beobtainedfromEq.I:

(I-f)(d.,+ f(d.=_, (2)

wheref isthevolumefractionofthereinforcement.The edenotesthenormalstrain.The carats"()"implyaveragesover
theappropriatevolume.The "-"representscorrespondingaverageofthefar-fieldquantitiesovertheappropriateboundary.
In theremainderofthispaper,the# and i representthefar-fieldstressand theglobalstrainderivedfromthefar-field

displacement,respectively.The subscripts"m" and %" standforthematrixand reinforcement,respectively.Equation2
indicatesthattheglobalnormalstraincanbereadilyrelatedtothematerialphase-strainsbya simplevolumeaveragingrule.

Fordisplacementinducedby theelasticstraincomponent,Equations1 and 2 alsoapply.That is,theglobalelasticstrain
componentcan beobtainedby anvolume-averageoftheelasticphase-strains,asinEq.2.

The globalstrainsobtainedfromneutrondiffractionthroughEq.2isnonlinearwiththeappliedload(squaresinFigure6).
Thisiscontrarytothebehaviorofa monolithicmaterial.To understandthisinterestingcharacteristic,we needtoconsider
theplasticdeformationprocessinamultiphasematerial.When a compositeplasticallydeforms,theproportionoftheload
sharedbythestifferreinforcementincreases[20,25].Therefore,itislogicaltoinvestigatethecorrelationbetweenthechanges
ofloadsharingand theslopechanges.

Duringloading,everyincrementofappliedstress,A_.ij,invokesinternalstresspartitionbetweenthetwophasesinacomposite.
Thismay be givenby [28]

(1- f)A(GrO)m% fA(_rO)r- A/Y,,, (3)

whereA_ri_arethestressincrements.Forasphericalcompositewithloadingalongza,theaveragenormalstressesalongthe
axesoftheglobalcoordinatesaretheprincipleaveragestresses((_n),im 1,2or3).Ifwe formulatearatiooftheincrements
ofreinforcementand matrixstresses(R - A(_r,)r/A(_rl)m),thisratiocanbe usedasa measureoftheinternalphase-stress

partitionortheloadsharing.To expressinatensorform,we have

/_ = AbrAb/, 1= 67,A_e,(A_,)-I 67__ (4)

where C is the stiffness tensor; the A_ and A_' are the increments of the average stress and elastic strain tensors, respectively;
the/_ is the tensor of the load sharing ratio, where the tilde """ denotes a tensor quantity. In/_, only the diagonal elements
are non-zero, and they are functions of both the material properties and the stresses.

Considering Eqs. 2 and 3, we can obtain the following by substitution of Eq. 4:

,x_ = [i + f(R - i)],xb,,,; (5)

A¢. = [i + f(O;_ k& - i)]z_,. (6)
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Notice that the tangent modulus along the loading direction, "L_s', of the stress-elastic-strain curve in Fig. 6 is defined as
L_s _ By considering Eqs. 5 and 6, we may get

L' = z,b(_i.) -_ = [i +/(k- i)]_,,,[i + f(c7_iicm - i)] -t (7)
where L t is the tensor of tangent moduli of the composite in the stress-elastic-strain relationship. Using the reduced indices
notation, the tangent modulus of the elastic strain curve along xs direction is

L[3 - (Am + 2Gm)[1 + f(R3a - 1)] (8)

where A isthe Lame's constant,the G and E arethe shearand Young'smoduli.Taking derivativewith respectto R33,we
obtain

all3 f(1- f)(A,,_. 2Gin)(1- x.+2o.
= _ J (9)

aR. [i+s( -
InEq. 9,thederivative,_ ispositive(> 0)when Er/E,,_isapproximatelylargerthan 0.5.That is,thetangentialstiffness,

L[s,increaseswith the loadsharingratio,R, forcompositeswith the stiffnessoftheinclusionsatleast50% ofthatofthe

matrix.The Ltbecomes secantmoduli when/_ istakenasthe cumulativephase-stressratio.Figure6 displaystheevolution

ofthe globalelasticstraindeduced from Eq. 8 inwhich the cumulativephase-stressra_ioata correspondingloadlevelis
obtainedfrom FEM. The globalelasticstrainsasa functionofthe applieJloadobtainedfrom FEM and neutrondiffraction

arealsoshown. A verygood agreementwith the measurement isobtained.The slopechangcinFig.6 can bestbe explained

by thefactthatthe reinforcementina compositetakesmore loadwhen plasticflowstartsinthe matrix.Figure7 shows the

cumulativephase-stressratioobtainedfrom FEM and neutrondiffraction.

There isan importantimplicationon theone-to-onecorrespondencebetweentheloadpartition"/_"and the tangentmoduli

uLt" inEq. 8.The loadsharingratio,R, between the reinforcementand thematrixincreasesasthe matrixina composite

startstoplasticallydeform,whileitdecreasesupon particlefractureand interracialdebonding.Therefore,thesetwo processes

aredistinctduringtheevolutionoftheglobalelasticstraincomponent. Incontrast,forthedevelopmentoftotalstrainduring
a simpletensiletest,the contributionsfrom both processesaresimilar.They make the materialmore compliant.Therefore,

when supplementedby propermicro-analyses,thischaracteristicispotentiallyimportantinidentifyingthe onsetofparticle

fracturingduringplasticdeformation.

CONCLUSIONS

From thiswork,the followingconclusionscan be made forthe presentAI/TiC composite:

(1) Good agreement has been achievedbetween the diffractiondata and the FEM modeling on both the averageelastic

phase-strainand the globalelasticmacro-strain.

(2)The slopechangesintheload-inducedlatticephase-strainarenonmonotonicintheperpendiculardirection,whiletheyare

monotonic inthe paralleldirection.The FEM model indicatesthatthisanomalous behavioroflatticephase-strainresponse
can bestbe predictedby consideringtheeffectsofTRS. The TRS inducesplasticflowinthematrixneartheparallelparticle-

matrixinterface,while,ina compositedevoidofTRS, thematrixplasticflowinitiatesneartheperpendicularparticle-matrix
interface.

(3)The slopechangesthe globalelasticmacro-strainfollowthe same trendas thechangesoftheloadsharingratiobetween
the reinforcementand the matrix. There isan one-to-onecorrespondencebetween the phase-stressratioand the tangent

modu!.usinthe stress--elastic-strainrelationship.
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