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ABSTRACT

Recent experiments by Larsson et al.1have conf'tmaed the prediction 2 of a highenergy ( 9.5 eV) peak in the cross section for dissociative recombination of H3 .
'1"

This peak is caused by four doubly excited resonance states of H3. Electron scattering
calculations using the complex Kohn method provide resonance positions and widths
as functions of the internuclear geometry. This information was used as input to a
wave packet calculation for the dissociation dynamics on a fit to the resonant state
potential energy surfaces. The resulting cross sections agree well with this experiment.

INTRODUCTION

A great deal of theoretical work exists on the dissociative recombination (DR)
of diatomics. 3 In contrast there is little work on polyatomic systems. We have

initiated a study on the resonant dissociative recombination of I-I_4,5:

+ *

e-+ H3 _ H3 --_ H2(v, J) + H
--4H+H+H

To our knowledge this is only ab initio treatment of DR that includes more than one
nuclear degree of freedom. There has been considerable interest in the dissociative
recombination of H_ due to its importance in low-energy plasmas, particularly in the
modeling of Jovian atmospheres and the interstellar media. In recent measurements of
the DR cross section a high energy resonance peak was reported near 9.5 eV. 1 In
earlier theoretical studies 2 a resonance in this energy range was found and predicted to
contribute to the DR process. In resonant or 'direct' DR, the electron is captured into
a resonance state of the neutral molecule. After capture, the molecule begins to
dissociate. During this time, the molecule can autoionize, leaving the ion in a
vibrationally or rotationally excited state. Once the resonance curve crosses the ionic
curve and becomes bound with respect to the emission of an electron, autoionization
can no longer occur, and the system evolves into asymptotic final states. Thus to
describe the direct DR process one must know the energies and widths of the resonant
states and describe the dynamics of the dissociative process. We will first describe
how the potential surfaces and widths were determined, then how the dynamics was
performed, and finally summarize our results.
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CALCULATION OF RESONANCE POSITIONS AND WIDTHS
t

+

The ground state equilibrium geometry of H3, an equilateral triangle'*, (1_h
symmetry) with bond lengths 1.65 a0 is shown in Figure 1.

H

F1 O

H H
r

Figure 1: Coordinate system used in calculation. The equilibrium geometry is
defined by req= 1.65a0, Re4 = 1.4289a0, O = 90 °.

The electronic configuration is lal'2. The resonance states correspond to the
capture of an electron into the low-lying doubly degenerate e'orbital, with the
simultaneous promotion of one of the al" electrons to the same orbital:

+ "2)H3 (lal + e --_ H3 (lal'le'2)

Because of the degeneracy of the doubly occupied orbital, four distinct
molecular configurations are possible.

If we allow the molecule to distort keeping two of the bond distances equal,
the D3h symmetry is broken. In the resulting CXvgeometry there are four distinct
states, tWO 2A1 states:

2
clla12a21 + c21allb 2

and two 2 B2 states:

c31al(2allb2) 1_ c41al(2allb2) 3

where the superscript in the last two cases represents the spin coupling of the two electrons
in the parentheses. The coefficients, ci, vary with nuclear geometry. We have found that
all four states contribute to the observed peak in the DR cross section.

We carried out both restricted configuration-interaction (CI) calculations and
+

. electron-H 3 scattenng ca! _ ations using the complex Kohn variational method 5 to
. map out the four resonance potential energy surfaces from the Franck-Condon region

to the points where they cross into the bound state manifolds. These latter calculations
are more complete because they correctly include the coupling of the resonance states
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to the background and allow the determination of the resonance widths as well as
' positions.

The basis set used was the same as in our calculations 6 for dissociative
+

excitation of Hy At the equilibrium geometry of the ion (shown in Figure 1) six
natural orbitals were selected, using the procedure outlined in Reference 6. At each
new geometry, calculations on H3 were carried out with these orbitals in the extended
basis, with the restrictions that the 1al orbital remain singly occupied and not more
than one electron is excited to the virtual space. This eliminates contributions from the

background lal2 ka 1 and la_ kt h states which represent a free electron in the field of
the ion core. The results for these resonance states near the equilibrium geometry of

H_ are shown in Figure 2. The two 2B2 states differ only by the spin-coupling of the
two excited electrons, either singlet or triplet, and the curves are roughly parallel. By
comparison there is a strong interaction between the two 2A1states with an avoided
crossing exactly at the D3h geometry. At these same points, the lowest 2B2 and 2A 1
states become the degenerate components of the 2E" state, leading to a triple
intersection of electronic states along the symmetric stretch seam of the potential
energy surface.
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Figure 2: Cut through the H3 potential energy surfaces. O is fixed at
90", r is fixed at 1.65 a0. The solid curves are for A1 symmetry, the
dotted curves are B2 symmetry, derived from bound-state calculations.
The symbols (X A 1, • B2) are derived from electron scattering
calculations.

In order to validate these bound state resonance calculations and obtain the
+

resonance (autoionization) widths, electron scattering calculations from H3 were
can'ied out at a small number of geometries using the complex Kohn variation
method. 5 The details of this method and its application to the dissociative excitation of

+

• H3 have been described elsewhere. 6 The scattering calculation explicitly includes the
effects of the continuum background. Carrying out scattering calculations at a series

of energies, we can fit the eigenphase sums to a Breit-Wigner form to obtain the
' resonance widths and positions. For both symmetries we found it necessar 3, to fit the



Q

two resonances simultaneously. A typical example can be seen in Figure 3, where the
+

• eigenphase sum for elastic scattering of an electron from H3 in A 1 symmetry for the
molecule at its equilibrium geometry. The results for the potential energy surfaces of
the resonance are shown in Figure 2. The two methods give the same shape for the
surfaces with a shift of no more than ~ 0.5eV due to the coupling to the background.
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Figure 3: Eigenphase sums for electron - H_ elastic scattering at
the equilibrium geometry of the ion in A1 symmetry. Solid circles are
the calculated points, and the line is the fit to the sum of two Breit-
Wigner resonance lineshapes.

In addition we carried out scattering calculations for Jacobi angle of 80°. The
surfaces was found to be relatively fiat near the C2v geometries in this antisymmetric
stretch degree of freedom. Therefore, the neglect of this degree of freedom should
cause little change in the width or magnitude of the DR cross section.

DYNAMICS OF THE DISSOCIATION

Our calculation was carried out in C2v geometries, thereby restricting the
problem to two degrees of freedom. The dynamics was calculated using a wave
packet method which involves the direct integration of the time dependent Schr'6dinger
equation.

ih--_t = l-l_ (11

In Jacobi coordinates, shown in Figure 1, the initial wave function is defined on an r,
R, grid, where r is the bond distance, and R is the distance from the remaining H to
the center of mass of the H2 bond. 0 the angle between r and R was held fixed at 90°.
In these coordinates, the Hamiltonian for the nuclear motion is given by,

1 22 1 22

' H(r,R) = 21.tl_r 2 21-t2_R 2 + V(r,R) (2)

0
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where lXl is the reduced mass of H2, I.t2is the reduced mass of H + H2. The potential
' energy is:

iF(r,R)
V(r,R) = V0(r,R) +_ (3)

where Vo is the real part of the resonance energy, and F(r,R) is the complex portion
(the resonance width). This is necessary since the resonant state can autoionize during
dissociation. 7 The kinetic energies are evaluated by finite difference, and the time
propagation was carried out using the Cheb_yshev polynomial method.

Our treatment of dissociative recombination is a generalization of the time
dependent treatment of photodissociation given by Kulander and Heller 8. At t--0, the
wave packet is defined to be

_0(r,R) = _dPo(r,R) (4)

]r(r,R) ,n (a
=_ 2FI v., ,)_i(Qb) (5)

where ¢o(r,R) is the initial vibrational wave function on the resonant state surface,
taken to be the simple product wave function of harmonic oscillator wavefunctions,

and ej(Qb) in the symmetric stretch and bending normal modes of H_ for each(i)iCQs)
initial vibrational state of interest.

From the time propagation of the wave packet on the dissociative surfaces, we
can determine the total capture probability and the resonant dissociative recombination
cross section. The total dissociative recombination cross section is calculated by
projecting the final wave packet onto final states.9 For example, when dissociation
produces to an atom and a diatomic one can define:

S2(E) = _. S,(E) (7)

where the Si(E) are the final state probability distributions given by:

s,(E)o,lISdrdR i R)12 (8)

where El(r) is a vibrational state eigenfunction of the diatomic, and _r(R) is the
translation function describing the motion of the atom from the molecular center-of-
mass, t is chosen large enough that the dissociation is complete, i.e.-the fragments are
no longer interacting. This expression, when summed over all bound vibrational final
states, yields the branching ratio into the two-body channel, Sz(E). Once the sum in
Eq.7 is extended to include the continuum H2 states the result is the total dissociation
cross section.

In Figure 4 we show the individual contributions of the four resonance states
• and the total DR cross section as a function of impact energy. These results are in

quantitative agreement, both for the position of the peak and its shape and magnitude,
,i
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with the ~ 9.5 eV peak reported by high energy cross section measured by Larsson
, etal.l
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Figure 4: Total (heavy solid line) and partial resonance DR cross
sections as a function of incident electron energy: 12A1 (solid line),
12B2 (long dashed line), 22A1 (medium dashed line) and 22B 1 (short
dashed line).
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