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1.0 Introduction

In May 1991, DOE awarded grant DE-FG02-gIER14179 for the

investigation of stability and heat transfer in time-modulated flows. This

investigation involves modeling and characterization of unstable oscilla-

tions in a two dimensional oscillatory boundary layer.

The basic flow considered is a modification to the solutior_ of

Stokes's second problem. In the problem as formulated by Stokes [i] and

Rayleigh [2], the fluid adjacent to a rigid planar surface is driven into

motion by a time-harmonic in plane displacement of the surface. Modi-

fled problems usually involve consideration of the type of forcing and the

surface geometry. In wall bounded flows, the oscillatory motion is the

result of an externally applied pressure gradient. Deceleration of the fluid

at rigid boundaries results in the formation of a viscous boundary layer

adjacent to the surface. This layer is called the Stokes boundary layer.

For planar .surfaces. stability analyses have concluded 'hat tile

Stokes boundary layer is linearly stable to two and three-dimensional

vortical disturbances [3] [4] This body of work is based on the hypothesis

that the Stokes boundary layer becomes unstable at a threshold value of
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the streaming Reynolds number R The streaming Reynolds number R5' $

being defined as U2 /(a,,_). where _, is the kinematic viscosity of the fluid.

The variables _ and U represent the frequency and velocity amplitude ofoo

the excitation respectively. Thus far all have concluded that the Stokes

boundary layer is stable to disturbances having infinitesimal amplitude.

The absence of a bifurcation point according to linear theory has

motivated investigators to look at the effects of finite amplitude distur-

bances on the stability of the Stokes boundary layer. Recently Akahavan

et a/[4] concluded that instability of the secondary flow, generated by finite

amplitude linearly stable two-dimensional perturbations, may be respon-

sible for transition to turbulence.

In the allied problem of a Stokes boundary layer generated by the

transverse oscillation of a cylinder, Hall [5] theoretically obtained a bifurca-

tion point according to linear theory, This instability had been earlier

observed experimentally by Honji [6] and corroborated by Sarpkaya [7] lt

was found that convex curvature of the boundary gives rise to centrifugal

destabilization of the Stokes boundary layer. The relationship between

the boundary geometry and modulation amplitude has been investigated
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by Thompson et al [8] [c_]Ii0] This work has shown that the stability of

the Stokes boundary layer is a function of three nondimensional parame-

terse. R and Rs . The parameter _ represents the slope of the boundary.

The oscillatory Reynolds number R is defined as (ojH2///) 1/2, where the

length scale H° is taken to be the magnitude of channel's height variation

In channels having a slowly varying cross section, a viscous streaming

flow occurs for low amplitude excitation. For small values of_2R there isS

little interaction between the viscous streaming and basic flows. As the

excitation amplitude is increased, instability occurs. For a finite value of

2
the curvature c , three dimensional vortical disturbances bifurcate from

stability at T 2 equal to 16.92. where T2 is equal _2Rs/R1/2 More over if

T is further increased temporal chaos ensues. Therefore, when boundary

curvature is present, the Stokes boundary layer losses stability at a finite

amplitude.

During the November 1991-1992 period, the emphasis of the

research has been placed on theoretical and experimental models of modu-

lational instability. In addition sensitivity of modulational instability to

spectral content of the perturbing disturbance has been investigated.
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2.0 Technical Results

2.1 Chaotic secondary motion in oscillatory boundary layers

As the Taylor number T increases, the two dimensional oscillatory

flow in channel having walls with convex curvature undergoes subcritical

transition from 2-D Stokes boundary layer to a state where streamwise

oriented vortices appear. The temporal growth in amplitude of these

streamwise vortices is the result of the imbalance between the centrifugal

force and the pressure. The most unstable axial position along the chan-

nel corresponds to the location where the convex wall curvature is max-

imum. For a fixed value of the curvature, instability ensues above the

critical value T. These periodic vortices have a spanwise wavenumber ofc

Jcc. At T there is only one linearly unstablewavenumber. As the TaylorC

number is increased beyond T a continuous range of spanwiseC

wavenumbers are unstable. According to linear theory, the most unstable

of these wavenumbers remains h" . From this view point the dominance ofc

the least stable or primary mode should persist through amplitude satura-

tion.
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In any practical situation, the initial spatial wavenumber spectrum is

comprised of super and subharmonics K, . In such a case the growth andC

long-time behavior of the flow is mediated by the energy balance between

these modes. Some preliminary results describing the effect of the spatial

wavenumber content of the disturbance on Stokes boundary layer has

recently been presented by Thompson et al. [11] [12] The objective of this

work was to ascertain how sensitive the primary flow is to secondary dis-

turbances. At low amplitudes these secondary disturbances, according to

linear theory, would be stable or have a slow growth rate when compared

to the primary disturbance. The objective of this work was to 1)deter-

mine if the primary mode is dominant under broad-excitation. 2) identify

spatial bifurcations and detuning of the least stable wavenumber for

increasing Taylor number and 3)determine the relationship between spatial

and temporal bifurcations. To this end. secondary disturbances having

subharmonic spanwise spatial harmonics were considered.

The energetics and structure of the velocity field in the presence of

Fourier modes having integral multiples of _c/4 was examined. The ini-

tial energy amplitude of each Fourier mode was set to an equal value.



The growth in the energy amplitude of each mode was recorded for

increasing time. As time increases, each of these Fourier modes may be

considered as sanlples of the wavenumber spectrum.

lt was found [1:3] that the presence of subharmonics delayed the

onset of chaotic oscillations only slightly. However, we found that non-

linearity affords detuning for the least stable wavenumber _c . We haveC

observed that as T was increased above the critical value the unstable

streamwise oriented vortices had a wavenumber of 3_c/4 rather than the

value _ predicted by linear theory. In addition, as T is further increased,C

the Fourier mode having ge/2 is dominant. The detuning of the Fourier

mode having the maximal response is in qualitative agreement with obser-

vations of Honji [6] for the problem of flow instability of the Stokes boun-

dary for a harmonically oscillating circular cylinder.

2.2 Space--time evolution of unstable disturbances in a Stokes

boundary layer

In previous work, a local analysis valid near the point of maximum

convex curvature was used. Such analyses have been helpful in identifying



the basic instability mechanism and characteristics in the Stokes layer

problem. For a comprehensive description of the transition process the

development of a model that incorporates the axial variations in the basic

and unstable flow is necessary.

The stability of oscillatory flow in a channel having a gaussian vari-

ation in height h(x) described by

2 2
-c x/2

h(x)=e

has been examined. In this work the local value of the Taylor number

varies as

2 2) u2T2(x) = 7 2 1-_ _ h(x) (x)o

where T is the Taylor number at x equal to zero and u(x) is the ampli-O

tude of the axial component of the freestream particle velocity normalized

by its value at x equal to zero. For a disturbance having a finite amplitude

the threshold of instability occurs at 7-2 equal to 10. Using this result, we

find that instability occurs only in the region
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1/2 1/2

( )< xe < 1-10/T 2o O

For high enough values of TO the flow can exhibit bistable oscillations at

the edges of the region while semiperiodic and chaotic oscillations occur at

the interior. To properly resolve such axial variations in the velocity a

hybrid spectral and B-spline based numerical algorithm has been

developed. In the axial direction B-spline basis functions were chosen

because of their local support and high accuracy. The vertical and span-

wise decomposition was done using Chebyshev polynomials and Fourier

series respectively.

The resulting system of equations is rather unwieldy. However, sig-

nificant progress has been made in optimizing portions of this code. This

process has resulted in six fold speed increase and half the memory

requirement of earlier realizations. Preliminary results of these calculation

have been presented at national meetings of the Acoustical Society of

America [14] and tho. American Physical Society [15]

For R equal to 104. it was found that the unstable disturbances are

either periodic or semiperiodicfor T below (85) 1/2 for a disturbance fieldo



comprised of the spanwise Fourier mode _c and four of its integral multi-

pies. This disturbance field begins to exhibit chaotic oscillations at TO

equal to (85) 1/2 An examination of the modal kinetic energies show that

the _c mode dominates. The energy amplitude for increasing integralC

multiples of h_ decays exponenti__l!y' the ratio between the energy ampli-C

tudes of the _c and 5_ modes is O(10-4). The rapid decay in the modalC c

energies is taken as justification for truncating the Fourier series at six

modes. The structure of the disturbance velocity field for one period of

oscillation is illustrated in Fig. 2.2.1 by flow vectors. The velocity in the

x--y section at z = 0 is shown in Fig. 2.2.1(a), and a z-y section at

x = 0 is shown in Fig. 2.2.1(b). A single vortex spans the z-y cross-

section whose dimensions are=/(_ ) alongzand 20 boundary layer units' C

along y. Although, a second vortex does intermittently appear. The vor-

tices appear distorted, that is, they are not symmetric about the line

z = =/(2_'.c). A connection between the loss of spanwise symmetry and

temporally chaotic behavior is not clear since some asymmetry in the

spanwise vortices is present even for values of T for which the temporalO

behavior is periodic. The x-y cross-section reveals that the streamwise
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Figure 2.2.1 Velocity vectorsover one period for T, = (85)t/2
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component of the disturbance velocity is weak in comparison to the verti-

cal and spanwise components. The flow vectors show a streamwis_ vor-

tex with a positive streamwise vorticity component. The vortex appears

to be of finite length along the streamwise coordinate, i.e. the d _,,_rbance

velocity is found to decay rapidly beyond a certain streamwise position

x I > xc. This behavior is consistent with the change in the local value

of T along the streamwise coordinate due to a change in the boundary

curvature, if we predict the local value of T by making a rough estimate

of x from the flow vector plot. we find that the cutoff value of the TaylorC

number T(xc)falls between (10) 1/2 /2and (17)1 for ali cases investigated,

In the case where the disturbance field is composed of the mode

Kc/4 and four of its integral multiples, results indicate a non-linear

detuning in the spanwise wavenumber. For To = (25)1/2 the kinetic

energy in the 3_c/4 mode is dominant. This result is supported by the

experimental observations of Honji [6] In fact. we find that. for an initial

disturbance field consisting of modes with comparable kinetic energies.

only the 3/4_ c mode reaches an equilibrium energy amplitude. The

remaining modes experience a short perlod of growth followed by
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unabated decay. We note that this subharmonic mode saturates for an

energy level greater by a factor of 10. than that for the To (85) I/2, = case

mentioned above. Local analysis performed by Mulpur et.al [13] have found

that subharmonic spanwise modes generally allow for higher saturation

energies than superharmonic modes for fixed T. Since results show

wavenumber detuning while the time behavior is still periodic, we expect

spatial bifurcations to be independent of tempo,r.al bifurcations. The distur-

bance velocity field for this case is composed of spanwise vortices of

wavelength (87r)/3_ e. These vortices are localized to a region

x[-x c , ;_c ]' such that T(xc) = (11) 1/2.

2.3 Characterization of the velocity in chaotic unsteady flows

In the numerical model, axial variations in velocity amplitude are

expressed in terms of B-splines having local support. The disadvantage

of this representation is the large number of functions required. An

orthogonal decomposition of the velocity was carried out to determine if

an optimal set of basis could be obtained. Traditionally. this is done by
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applying the Karhunen-Loeve expansion on the time-averaged two-

point spatial correlation of the velocity [16] The use of the time-averaged

velocities is justified when tile underlying process is ergodic. The chaotic

flows investigated here do not satisfy this requirement.

The vector velocity coefficient of the n-th spanwise Fourier mode

n
is u .

M K

u"= :3
i=lj=l

The variation in the y direction is represented by Chebyshev polynomials

of the second kind T. and B. represents the B-spline basis. In a typicalj l

calculation K is equal to eight and M is equal to forty.

The dominant velocity components are identified by examining the

ensemble mean and variance of the Fourier coefficients as a function of

time. The vertical velocity components of the first three Fourier modes

were found to dominate the velocity field. The axial variation of the y-

averaged vertical velocity of the first Fourier harmonic <vi> is shown in

Figs. 2.3.1. In these figures constant amplitude contours are plotted as a
_

-



function ofx and time. Figs. 2.3.1(a) and (b) represent the periodic oscil-

lations that occur at T2 equal to 50 and the chaotic oscillations that occur

at 7_ equal to 85 respectively. The horizontal axis represents tile axial

distance and the vertical axis represents time.

The determination of the optimal set of modes necessary to

represent the flow was carried out by first constructing the average spatial

waveform for each velocity component. Samples of the waveform having

the same time-phase relative to the excitation were averaged over succes-

sive periods [17] This determines the ensemble mean value of the velocity

component at each spatial location. The length of the ensemble is taken

to be one cycle of the excitation signal. This overcomes the problem of the

nonstationarity of the ensemble. Typically 60 time samples per period of

the excitation are used. The spatial correlation matrix R(x.x',t) of the

averaged waveform was then computed for each time sample. The

orthogonal modes obtained from the Karhunen-Loeve decomposition

allow the optimal representation for the spatial velocity variations at each

time sample. Under the constraint that the coefficients U.. are delta corre-.--_j

lated, the optimal N number of modes ¢)n can be shown to be the normal-
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Fig. 2.3.] 1 Constant contour plots of the axial variation of y averaged vertical

velocj__, <v (t)>. Vertical axis represents time samples (a) Periodic oscillations
for 1-=50. (b) Chaotic oscillations for _ =85.
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Fig. 2,3,2 • Comparison of the percentage relative error between reconstructed and
original energy of <vi(t)> for ensemble averaged waveform of the chaotic case in

Fig. 2.3.1(b). Solid line depicts reconstruction under assumption of stationarity. Sym-
bols depict reduction in error when basis functions were computed for ali time signa-
tures.
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ized eigenvectors of R(x,x',t). The super set of the functions ¢_n is

obtained from the union of all of the realizations from each time sample.

This combination of functions can form a linearly dependent set. The

redundant functions are eliminated by using the Gram-Schmidt orthogo-

nalization process, The result of this process is the minimal basis set that

satisfactorily accounts for 90% of the signal energy content. Typically for

the case where 7-2 equals 85, fifteen basis functions were found to be

optimal. This allows B. to be replaced by the new set of functions _i'I

The Karhunen-Loeve basis do not satisfy the boundary conditions.

Therefore, linear combinations of these functions were used when

required. Fig. 2.3.2 shows the relative percentage error between the

I
reconstructed and the actual energy of <v > versus time. These results

are for the chaotic case of 7-2 equal to 85. The solid curve shows the

result when the basis functions were obtained under the assumption that

<vi> was statistically stationary. The time signatures used to derive the

basis set under the stationary assumption, were those that exhibited the

highest mean and variance in time. The symbols in Fig. (2.3.2) represent

the error when the optimal basis was the super set of the Gram-Schmidt
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process which was applied to the functions obtained from ali of the time

signatures in the average waveform. The relative error is within 10%

except at the first peak. which corresponds to a signal whose energy is at

the noise floor of the calculation.

2.4 Ultrasonic characterization of vortical structures

Vortical fluid structures in low mach number flows have been shown

'to be responsible for radiation and scattering of sound [18] [Ig] This study

is aimed at the quantitative characterization of the vortical disturbances.

by measurements of the scattered sound. The drawback in previous

theories is the neglect of the interference between the sound scattered by

different regions of the flow. This first order scattering theory has been

recently improved [20] to allow the computation of higher order effects.

Information on the spatial distribution of the disturbances can be deter-

mined when acoustic wavelengths are comparable to the vortex size. The

theoretical framework for analyzing the scattering problem at these scales

as well as methods for extracting the pertinent features of the flow field

have been developed. Simulations of acoustic wave propagation and
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scattering from vortical disturbances show that the spatial wavenumber

content of the velocity perturbations can be determined from far field

observations of the scattered field [21]

2.5 Construction and evaluation of the experiment

Preliminary experiments on instability in the Stokes boundary layer

are being carried out using a rectangular channel with a single open end.

See Figure 2.5.1. The channel is 3.81 m in length and its cross section

has dimensions 38 cm. x 21 cm. The channel is constructed from 3/4 in.

plywood. The interior walls are covered with formica to provide a smooth

surface. The lower boundary varies irl height in the axial direction with the

maximum elevation being lOcm. The maximum nondimensional curvature

2 )2_: es (0.2 .

The lower boundary shape is realized by overlaying a sheet of for-

mica on top of a shaped frame. The formica skin is supported and stif-

fened by spanwise ribs. The skin is held in place by contact cement and

the ribs are fastened at the ends to two gaussian shaped plywood panels.



r_Z.

. 21 ¢m

°.,

i.__.3__m.__N Z
SPEAKEPS

/1\

I...... ssi_..... _I
F -I

I I *

, J I l I 15,na-,"o o d\,
l qO mm: ...."]"!::i]GAUSSIAN ':"':""" .... -- 1t ....... .'" '" L_

.......:.:_SUP,FACE :;"':_'7,_: I ,I'

'_ zlomm
,!

I

TEST t

SECTION 1
\, Il

WITH \......................... ,

GAUSSIAN '_-------'--380mm
SUPFACE

2000mm

' __,_',\_,',,',_'_ MOL.i_T.NG

,_ , SPEAKER

_OOmmF.{,'q:',":",,,,.,.'_{,'%.,,.'"%.,'%',,,'_,,,,"",",_,,_,"_ iOmm----"

P,,,,<_,\,_._%9_,,':!,%,'q%_._t_,q_q\\-"
.\',_",>," ...... ;-.......... X\\"_',,",'_PEAKEP.: MOUNTED_'

_b,_ON THIS SECTION:
[ ,,,>:_,6S_EAKEP_. 3 TOP ,__

...... ,k_¢_
t,,'.\'-\x\.\,.x_,\\__,,\\\\x\-,"\.',',',X\\_4

k\' \',,',",',',,_",",,',"\'.'. .... "'.',-,,'.,"v, ,,,.,,x..;._._,.,',,,, ,,,,,,,,,..,,,,,,,,,,.,.,,,,..........,.,\'_'.,\\,,.,
l:::'&q,:,-&,,":,'::,:':b'S,.'&-:.:,::.:-,-&',_,"_L_",_,
,,''>,: .\\\\',\."',.",\\NX":." '._:q,,',:\\\\\',

i_,..',,,\,,,-,.,.,..',.x,_,,%-q.,'q..q._,,,,:,',,%%'%
.._.._._."',\\":",.',\','<",','_"<"<,",""Co,,',\\\ .............. -.....,c,._-_,._.,4_'q._._"b.

Figure 2.5.1 Schematic of experimental apparatus



II

I

22

Weather stripping is applied on the faces of these panels to eliminate

gaps.

The fluid in the channel is driven into harmonic motion by means of

six 15in. audio speakers. Using speakers as the driving source affords ease

in adjusting the frequency and amplitude of the fluid oscillations. The

speakers are positioned over symmetrically cut holes along the top and

bottom walls of the channel. Leaks were eliminated by applying weather

stripping between the outer perimeter of the speaker and the channel

walls• A sinusoidal signal from a Krohn-Hite 5100A function generator

amplified by a Techron 5530 power supply amplifier is used to drive the

speakers. Flow velocity measurements are made using a TSl constant

temperature anemometer (Model 1053B) and a TSl hot film probe

(Model 1232). A static calibration of the hot film was performed. The

1 offset, exponent, and gain were obtained from the calibration data using a

power law relation between the voltage and velocity amplitude.

During an experiment the anemometer signal is stored and pro-

cessed using a Masscomp 5550 data acquisition computer. Two analog

input channels are used. The first channel is used to sample the



anemometer signal and the second channel is used to sample the syn-

chronization signal from the function generator. The rising edge of the

synchronization signal is used to trigger the start of the data acquisition

process. This signal provides an accurate means for estimating the driv-

ing frequency. For a given sample rate, the number of samples taken over

a period corresponds to that between two consecutive rising edges. An

average of this value is taken over typically five cycles. Since the sam-

pling frequency is known, the source frequency is simply the sampling fre-

quency divided by the average number of samples per period.

The results for the axial velocity for two excitation amplitudes for

the frequency of 3.8 Hz are presented in Figures 2.5.2 and 2.5.3. These

measurements have been made at x = 10 cm and z = 0, where x = 0

corresponds to the zenith of the gaussian boundary. The position z = 0 is

at the midpoint of the spanwise width. Figure 2.5.2(a) shows one time

cycle of the total velocity in the streamwise direction, at five vertical posi-

tions. The zero position line is plotted for reference. The velocity signal

shows a single maxima during _he later half cycle. Because the hot film

sensor lies in the wake of the probe support during the first half of the



cycle we see no signal. From this measurement we compute the boundary

layer thickness to be approximately 3 mm and a peak velocity of about

I m/s. The laminar boundary layer thickness is approximately equal to

(2_/w) I/2. which corresponds to 1.6mm. The value of T(x=1Ocm) for

this case is equal to 1. The velocity signal exhibits small perturbations

superposed on an average profile during the later half of the cycle. These

perturbations can be extracted by subtracting the velocity waveform aver-

aged over fifty cycles f'.,m the instantaneous signal. The difference signal

is shown in Figure 2.5.2(b). The perturbations are small in magnitude,

with an amplitude of 8 cm/s and are the result of the electrical noise from

the anemometer. This noise appears as a constant fraction of the velocity

signal and is independent of location in the boundary layer. Hence, the

flow is laminar.

The flow exhibits higher amplitude oscillations when the excitation

level is increased. Results for this case are shown in Figure2.5.3(a). The

boundary layer thickness in this case is about 5 mm with a peak velocity

amplitude of approximately 3 m/s. This corresponds to local T(x=10cm)

value of (9) I/2 or the edge of the unstable regime. At x=0 T is equal to
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(20) 1/2 The variations superimposed on the velocity signal decay away

from the boundary. The difference signal is given in Figure 2.5.3(b). The

velocity variations are again greatest during the second half of the cycle.

We also note that these variations subside as we move away from the

boundary. The velocity perturbations reach amplitudes of up to 0.4m Is.



(a) total streamwisevelocity (b) perturbation velocity - (total - average) velocity

Figure 2.5.2 Streamwise velocity measurements.T = ]

,k_ ,,,,.,,,_,-,.;,,,, ve!ocity - (tntal - averal_el velocity
(a} total streamwise velocity _,_ v..................

Figure 2.5.3 Streamwisevelocity measurements.T : (9) I/2
_
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