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NOTATION

The following is a list of the acronyms, initialisms, and abbreviations (including units
of measure) used in this report.

DQO data quality objective

EPA U.S. Environmental Protection Agency

f foot (feet)

GIS geographic information system

GUI graphical user interface

m meter(s)

MWLID  Mixed Waste Landfill Integrated Demonstration
PC personal computer

pdf probability density function

TEVES Thermally Enhanced Vapor Extraction System
UCAP unlined chromic acid pit



ADAPTIVE SAMFPLING STRATEGY SUPPORT FOR THE
UNLINED CHROMIC ACID PIT, CHEMICAL WASTE LANDFILL,
SANDIA NATIONAL LABORATORIES, ALBUQUERQUE, NEW MEXICO

by

R.L. Johnson

ABSTRACT

Adaptive sampling programs offer substantial savings in time and
money when assessing hazardous waste sites. Key to some of these savings
is the ability to adapt a sampling program to the real-time data generated
by an adaptive sampling program. This paper presents a two-prong
approach to supporting adaptive sampling programs: a specialized object-
oriented database/geographical information system (SitePlanner™) for data
fusion, management, and display and combined Bayesian/geostatistical
methods (PLUME) for contamination-extent estimation and sample location
selection. This approach is applied in a retrospective study of a subsurface
chromium plume at Sandia National Laboratories’ chemical waste landfill.
Retrospective analyses suggest the potential for characterization cost
savings on the order of 60% through a reduction in the number of sampling
programs, total number of soil boreholes, and number of samples analyzed
from each borehole.

1 INTRODUCTION

Characterizing hazardous waste sites is an expensive and time-consuming process
that typically involves successive sampling programs. Tre total cost per sample can be
prohibitive when sampling program mobilization costs, drilling or borehole expenses, and
sample analysis costs are all included. Adaptive sampling programs present the potential
for substantial savings in the time and cost associated with characterizing a site. Adaptive
sampling programs use recent advances in sensor technologies to generate real-time
information on the extent and level of contamination. This information can take the form of
nonintrusive geophysical survey results, down-hole and cross-bore sensor information, and
field laboratory data. By using field laboratory techniques, adaptive sampling programs
reduce the cost per unit of information collected. By using information that is generated and
analyzed in real time, sampling programs can be guided interactively, thereby reducing the
number of samples to only those absolutely necessary to satisfy characterization needs.
Finally, site characterization based on adaptive sampling programs can often be brought to
closure after one or two field visits, thus eliminating the mobilization costs associated with



the staged, repetitive characterization approach traditionally used. Mobilization costs can
be significant, including safety and health compliance documentation, field work plans, and
final reporting requirements.

In adaptive sampling programs, "adaptive" refers to the ability to change or adapt
a program while underway to accommodate new data as they are being generated. Adaptive
sampling programs demand a means of rapidly integrating, visualizing, and analyzing data.
This report describes the combined application of a commercial object-oriented
database/geographic information system (SitePlanner™) specifically designed for site
assessment work and a smart sampling strategy methodology (PLUME) to the problem of
supporting decision making in adaptive sampling programs (Figure 1). SitePlanner™
provides real-time data fusion, management, and visualization. In this role, SitePlanner™
offers an immediate, qualitative image of where contamination might be expected and how
it is spatially related to other site features such as the water table and geological strata.
PLUME quantitatively fuses "hard" (i.e., sample results) and "soft" (e.g., historical
information, past experience, and nonintrusive survey results) information regarding
contamination extent, estimates the extent of contamination and the uncertainty associated
with those estimates, measures the expected impact derived from obtaining additional
samples, and finds the best new sampling locations. In this role, PLUME provides
quantitative support for adaptive sampling programs.

This approach was demonstrated as part of the Mixed Waste Landfill Integrated
Demonstration (MWLID) at an unlined chromic acid pit (UCAP) in Sandia National
Laboratories’ chemical waste landfill. The MWLID is sponsored by the U.S. Department of
Energy’s Office of Technology and Development, which is part of the Office of Environmental
Restoration and Waste Management. The particular contamination event addressed was a
chromic acid plume that had developed beneath the UCAP. In addition to past
characterization efforts at the site by Sandia National Laboratories’ environmental
restoration program, a significant amount of data was collected as part of the MWLID. A
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FIGURE 1 Framework for Adaptive Sampling Program
Support



retrospective study was performed that looked at the cost savings that might have been
realized if an adaptive sampling program approach had been used at the UCAP site from the
start of the characterization process.




2 QUALITATIVE SUPPORT FOR ADAPTIVE SAMPLING PRCGRAMS

Environmental restoration decision making is based on conceptual models of
hazardous waste sites. Conceptual models are built from qualitative insight derived from site
data and quantitative numerical analysis of that data. While quantitative analytical
modeling is important to the development of good site conceptual models, the best decisions
are those arising first of all from an intimate qualitative understanding of the site. Attaining
an intimate understanding of a site is complicated by the nature of hazardous waste site
data. These data are complex: they come from a variety of sources; their spatial and
temporal components are very important; they address a diverse set of site parameters and
processes; their sheer volume can be overwhelming; and they are often incomplete, at times
inaccurate, and sometimes completely wrong. Adaptive sampling programs add to the
difficulty by demanding real-time data assimilation and synthesis.

The most efficient way for decision makers to understand their data, and ultimately
their site, is through visual displays. Past approaches to data integration, management, and
visualization have revolved around data archiving systems for data management and
standard geographic information systems (GISs) for displaying data with spatial attributes.
While data archiving systems and standard GIS applications have an important role to play
in site restoration activities, they have fundamental limitations in the context of adaptive
sampling programs. Traditional data archiving systems are typically built around relational
database packages. These systems are meant to preserve information and guarantee its
quality, security, and integrity. Before data are entered into such systems, they must satisfy
lengthy quality assurance and quality control procedures. Once entered, access is controlled.
Environmental data archiving systems seldom provide users anything more than tabular
aggregates of data for analysis.

Standard GIS applications enhance data archiving systems by allowing the display
of spatially oriented data in maps. However, these applications also have inherent
limitations in the context of adaptive sampling programs. Raster-based GIS systems are
ideal for data that are rich in location but sparse in data available at each location (i.e.,
satellite imagery). Site characterization data are typically sparse in "ocation but rich in
information at each location. For example, a particular site may have a handful of soil
boreholes, but the information available at each borehole may include stratigraphic data,
down-hole sensor results, and laboratory results for soil samples. Site characterization data
are also typically three-dimensional in spatial location. Traditional GIS systems treat data
as two-dimensional layers, thus making it hard to visualize three-dimensional subsurface
structures such as contaminant plumes and stratigraphic features. Because of the type of
data generated by adaptive sampling programs, specialized graphics are required that include
bore logs, fence diagrams, and profile views, in addition to the plan views created by standard
GIS systems. Finally, most GIS systems are designed primarily for data display and not data
management. Consequently, most GIS systems have very limited inherent data management
facilities.



Adaptive sampling programs demand data integration, management, and
visualization that is "dynamic," "graphically based," and "interactive." A "dynamic" data
integration, management, and visualization system is one whose graphics are dynamically
linked to the underlying data. As new data are included or old data changed, the graphics
displaying those pieces of data are automatically updated. This capability is important for
adaptive sampling programs in which data are continually being generated and images of the
site must immediately reflect all available data.

"Graphically based" means that all data can be displayed and manipulated in some
visually meaningful way. This includes both individual pieces of data, such as samples or
soil cores, and also graphics that integrate information from several sources. These
integrated graphics might take the form of plan views of the site, profile views showing
subsurface characteristics, bore logs, fence diagrams, time views, or whatever is pertinent to
the characterization. Such graphics are valuable because they can show the spatial and
temporal relationships between different objects. An example is the spatial relationship
between the location of contaminated samples and the water table, specific stratigraphic
features, or potential risk receptors such as a municipal well field.

Finally, "interactive" means that the decision maker has easy access to data
contained in displays, and that the processes required for incorpcrating new data and
generating new displays are quickly learned and simple to execute. Implied in the use of the
term interactive is a menu-, mouse-, and icon-driven system based on a standard graphical
user interface (GUI) that is easy to learn and easy to use. The paradigm of centralized
computing facilities does not fit into an adaptive sampling program. Technical staff directing
an adaptive sampling program will likely have considerable expertise as geologists,
hydrologists, or geochemists but will probably have limited computer knowledge. They are,
however, the ones that need access to data and graphics.

As part of the MWLID, a review was conducted of commercial and public-domain
software packages available at the time of this report. The results of this review are
presented in Table 1. Table 1 is not comprehensive, but it does span the range of capabilities
presently available. Software packages fall generally into two categories: those based on
personal computer (PC) technology and those developed around workstation technologies.
PC-based software packages tend to be cheaper and more limited in their graphical
capabilities. Workstation-based technologies tend to be significantly more expensive but have
significantly greater data visualization capabilities. It is important to note that both software
and hardware capabilities are rapidly evolving. Several of the packages listed in Table 1
were unavailable at the start of the MWLID, while others have undergone remarkable
improvements in the last 12 months.

The categories used to rate packages were ease of use, database capabilities, data
visualization, and modeling capabilities. The issues addressed under ease of use included
whether a package is mouse/menu or command driven, uses accepted GUI standards, has
completely internal capabilities or requires other packages, uses generic or specialized




TABLE 1 Comparison of Available Environmental Data Integration, Management, and Visualization Software
Pertinent to Adaptive Sampling Program Support

Rating®
Hardware  Software
Ease Database Data Modeling Costs® Costs®
Vendor Name of Use  Capabilities®  Visualization  Capabilities ($10%) ($10% Platform?
Commercial
Golden Surfer/Grapher G N P N 2 <1 PC
Rockware Logger G N P N 2 <1 PC
Geo Tech SPASE G N P N 2 2 PC
Mtech Quicklog/soil/fence G N P N 2 3 PC
GTGS GTGS G N P N 2 2 PC
GCAg Int G N P N 2 2 PC
GeoSoft MPS G N E P 2 5 PC
GIS Sol. GIS/Key G G G N 3 15 PC
ConSolve Site Planner E E/E E G 7 10 WS/PC
ESRI ArcInfo P P/G P G 7 9 WS/PC
Intergraph ERMA P N/E E P 24 20 WS
Lynx GMSG P N E P 10 25 WS
DG Earth Vision G N E P 10 40 WS
Public Domain
U.S. Environmental GRITS E G P P 2 NA® PC
Protection Agency
Lockheed? NA E E G N 2 NA PC
Sandia National EDSS G N/E P E 7 NA WS
Laboratories’

8 E = excellent, G = good, P = poor, and N = nonexistent.

b Some packages provide links to external database packages for data management. If this is the case, an evaluation of the external link is
provided along with the internal capabilities assessment.

¢ Costs are based on Government Services Administration pricing, if available.
PC = personal computer and WS = workstation.
¢ NA = not applicable.

f These are still under development. Assessments were made on the basis of information provided by the developer.



hardware, and finally whether it communicates easily with other software packages. The
issues addressed under database capabilities include whether a package has internal, fully
functional, extensible database capabilities or has to rely on other database programs for
these capabilities. In the latter instance, the issue is how easily the package is connected to
databases and how seamless the connection appears to the user. The issues addressed under
data visualization include whether a complete suite of specialized graphics required by site
characterization/restoration programs are provided, whether graphics are dynamically
connected to underlying data, and whether graphics can be generated quickly. The final
modeling category recognizes that environmental restoration decision making will need to be
supported by quantitative analysis. The issue is whether the software packages include
significant analytical capabilities themselves or provide direct links that allow analytical
capabilities to be easily attached.

Software and hardware costs are issues specific to adaptive sampling program
support and more generally in the realm of environmental decision making. The costs and
complexity of traditional data archiving systems and GIS have placed these systems in the
realm of centralized computing. Analysis and decision making for environmental restoration
is a decentralized process. The best decision-making support occurs on the decision maker’s
desktop or out in the field trailer (as in the case of adaptive sampling programs). This means
that software must not only be usable by the average technical person but also financially
accessible. While most PC packages are attractive from a cost perspective, they fall short in
capabilities. Workstation technologies have traditionally excelled in capabilities but have
been far too expensive to place on decision makers’ desktops.

For the purposes of the MWLID, SitePlanner™ was selected for demonstration. At
the start of the MWLID in 1991, SitePlanner™ was still in the development stage but from
a capabilities and cost standpoint it showed the most promise for adaptive sampling program
support. SitePlanner™ is an object-oriented database specifically designed for site
characterization work. It was developed by ConSolve, Inc. Object-oriented data management
systems organize information by object rather than by table. Object classes are defined in
an object dictionary, and as new data are included, new instances of a particular object class
are created. Examples of object classes for adaptive sampling programs are soil boreholes
and soil samples. The power of object-oriented databases lies in the ability of new objects to
inherit the attributes associated with their class definition. One example of this inheritance
is the set of data fields that needs to be filled for a particular object class as new instances
of that class are created. Another example of inheritance is the display capabilities
associated with an object class. For example, a soil borehole might possess the ability to
participate in the creation of a bore log, but a lagoon would not. Or, a series of water
samples taken from the same well over a period of time might be displayed in a "time view,"
but a set of soil boreholes could not.

Because SitePlanner™ is first of all a database, many of the standard database
functions are inherently present, including the ability to do complicated queries and to have
immediate access to site data. Objects are visually displayed in the various graphics as icons.
These icons can be selected individually or as aggregates, and their data can be displayed.




Because the data dictionary is extensible, the types of objects and their data fields can be
defined to meet the needs of the site undergoing characterization or restoration.
SitePlanner™ provides a variety of graphics, including plan views, profile views, fence
diagrams, bore logs, and contaminant surfaces. All of these are dynamically linked to the
underlying database and can be created quickly. The user interface for SitePlanner™ is
based on the Sun OpenWindows GUI and is consistent with all other OpenWindows software
available for Sun workstations. The base hardware configuration for SitePlanner™ is a Sun
IPX or LX desktop workstation, or a PC 486 with SCO™ Unix.



3 QUANTITATIVE SUPPORT FOR ADAPTIVE SAMPLING PROGRAMS

Contaminated areas generally possess two key characteristics. First, they include
spatial processes that are dominated statistically by spatial autocorrelation. This simply
means that the results from one sampling location will be similar to results from a
neighboring sampled point but may differ completely from a third sample taken farther away.
Second, typically substantial soft information exists regarding probable contamination extent,
even if few hard sample data are initially available. This information might come from past
experience with similar sites, from historical records documenting release size, from
nonintrusive geophysical surveys, or from preliminary transport modeling results.

Quantitative support for adaptive sampling programs should provide estimates of
contaminant extent, measures of the uncertainty associated with those estimates, indications
of how much additional information might be gained from further sampling, and direction as
to where additional samples should be placed so as to maximize the value of the information
they produce. To do this, quantitative sampling strategy support must accommodate spatial
autocorrelation present in sampling results and somehow quantitatively merge existing soft
information with hard sample data as it is produced by an adaptive sampling program.
Bayesian analysis provides a natural framework for quantitatively fusing hard and soft data,
while spatial statistical analysis can help with incorporating spatial autocorrelation.

Bayesian analysis is rooted in Bayes Theorem:
PX\|Y)=PX) - PY|X (1)

Equation 1 says that the probability of encountering state X given a set of Y values
is proportional to the product of the probability of state X and the probability of encountering
the set of Y values given state X. The function P(X) is called the prior probability density
function (pdf) for X, and P(X|Y) is called the posterior pdf. In the context of sampling to
delineate contamination, P(X) is associated with the probability of contamination extent
before samples are taken, and P(X |Y) is its probability given the results of sampling. A prior
pdf such as P(X) could be constructed out of either hard or soft information. Bayes Theorem
provides the mechanism for quantitatively updating P(X) with new sampling information.

To apply a Bayesian approach to delineating contamination events, one must
interpolate from points where sampling data exist to areas where samples have not been
collected. Spatial autocorrelation provides the rationale for interpolation; spatial statistical
techniques provide the mechanism. Kriging is an interpolation procedure based on spatial
statistical analysis. Kriging provides the "best" linear interpolated value at an unsampled
point given a set of sampled points, where best is defined as the unbiased estimate with the
least expected estimation error. If one is delineating contamination events, indicator kriging
is appropriate. Indicator kriging considers just the presence or absence of contamination
above a prespecified threshold. Indicator kriging has several advantages over ordinary
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kriging in the context of contaminant delineation:! it can work with indicator data generated
by field screening technologies; the variograms it uses tend to be more robust; and its
interpolated values are also immune to outlying data points.

The first step in applying a Bayesian approach is to define a grid of decision points
over a region of interest. As a sampling program develops, one will want to assign a
probability of contamination to each point and ultimately decide if the point is contaminated.
One can initially define at each point a Beta distribution for the probability of contamination.
In the context of Bernoulli trials, Beta distributions are conjugate priors, which means that
as new samples are collected and the Beta distributions at each decision point are updated,
the results are posterior pdfs that are also Beta distributions with changed parameters. If
a decision point is sampled, the probability of contamination at that point will be either zero
or one depending on the results of the sampling. If a decision point is not sampled but new
samples were taken close by, indicator kriging is used to apply the results of those samples
to the particular decision point under consideration to obtain an updated value of its
probability of contamination. The details of this updating process can be found in Johnson.?

The probabilities of contamination at each decision point can be used to classify
whether the point should be considered contaminated, clean, or state uncertain. For example,
every decision point whose probability of contamination is greater than 0.8 might be
considered contaminated, with probability of contamination less than 0.2 as clean, and with
probability of contamination hetween those two values as uncertain. A natural choice for
measuring the impact of additional sampling points with this classification system would be
to calculate the expected effect a new sampling point would have on the total number of
decision points classified as state uncertain — the more decision points expected to be pushed
from state uncertain to the clean or contaminated categories, the greater the expected impact.
One could then look for the sampling location or set of locations that maximize this impact
and direct an adaptive sampling program on the basis of the search results. Figure 2 shows
the logical flow of this process.

Defensible stopping criteria are lacking at this point — criteria that would allow the
manager of an adaptive sampling program to decide when enough information had been
gathered. Sampling program stopping criteria are the natural product of a rational decision-
making process. The decision-making framework used here is based on U.S. Environmental
Protection Agency (EPA) Data Quality Objectives (DQOs).>* The DQO process consists of
basically four steps. First, DQOs define the problem or issue to be addressed by a sampling
program. Second, DQOs establish a decision that will be made on the basis of data collected
by the sampling program. Third, DQOs determine the level of uncertainty that is allowable
when making this decision. Finally, DQOs develop quantitative links between the
information generated by the sampling program and the uncertainty associated with the
decision to be made. An adaptive sampling program stopping criterion then follows naturally:
when the uncertainty associated with decision making is within acceptable bounds, stop
sampling.
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FIGURE 2 Decision Process for Adaptive
Sampling Program Support

DQOs measure uncertainty in terms of the probabilities of making a Type I or
Type II error. In terms of classical statistical hypothesis testing, a Type I error occurs when
one rejects a hypothesis when in fact it is true. Conversely, a Type II error occurs when one
accepts a hypothesis that is in fact false. The probability of making either type of error is
reduced by collecting more information, although the nature of the information collected may
change depending on which error is of greater concern.

The following two examples illustrate how DQOs work. The party responsible for
a contaminated site believes that it poses no significant human health risk. The decision that
must be made is whether or not the site poses a human health risk. If it does not, then the
responsible party can propose no further action. The regulatory agency believes that the
available site data are insufficient to support a no-further-action decision; that is, there is too
great a chance that the site poses a risk, given what is currently known. In a sampling
program, the responsible party wants to make sure that enough information is collected to
ensure that the chances of the site being classified as a health risk are unlikely (Type I
error). Likewise, the regulatory agency wants to ensure that enough information is collected
that the chances of falsely classifying the site as posing no risk are minimal (Type II error).
Since the responsible party will be paying for the site characterization, it wants to collect as
little data as possible while still satisfying itself and the regulatory agency. Negotiations
between the responsible party and the regulator determine the level of uncertainty that is
mutually acceptable. The quantitative links between sampling data (which assist in
determining extent and level of contamination) and decision-making uncertainty are a
combination of geostatistics and risk assessment methodologies. Sampling stops when the
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site can be classified as either requiring no further action or as posing a significant health
risk, on the basis of the preagreed-upon level of certainty.

As a second example, suppose that a site has contaminated soils with enough
evidence presently available to clearly indicate that the site is a human health risk. The
preferred remedial action is excavation and bioremediation. The decision that needs to be
made for treatable volumes of soil (i.e., dump truck capacity) is whether they contain
contamination above a prespecified threshold. The responsible party and the regulator
negotiate to determine mutually acceptable levels of uncertainty associated with classifying
a large amount of soil as either clean or contaminated. The quantitative links between
sampling data and decision making are based on geostatistics. Sampling in each treatable
volume proceeds until that volume can be classified as either contaminated or clean.

While the decisions to be made from data generated by a site characterization vary,
they always hinge at least in part on the estimated extent of contamination present and the
uncertainty associated with that estimate. The combined Bayesian/geostatistical approach
developed for the MWLID supplies the probability of contamination being present at any
point in space and so provides natural support for stopping criteria based on DQO analysis.
This combined Bayesian/geostatistical approach to quantitative adaptive sampling strategy
support is embodied in PLUME, which is a software package developed at Argonne National
Laboratory with funding from the MWLID. PLUME merges soft and hard information
regarding contamination location, estimates the extent of contamination, measures the
uncertainty associated with those estimates, measures the expected reduction in uncertainty
to be gained from additional sampling, and indicates where new samples should be taken to
maximize the information gained from them. PLUME was designed to complement
capabilities of SitePlanner™. PLUME uses SitePlanner™ for data management and
visualization.
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4 CASE STUDY

SitePlanner™ and PLUME were applied in a retrospective study to the delineation
of a chromic acid plume underneath a UCAP within the chemical waste landfill at Sandia
National Laboratories, Albuquerque, New Mexico, as part of the MWLID. Figure 3 shows
the relative location of the UCAP within the chemical waste landfill. Figure 4 shows a plan
view of the immediate vicinity of the UCAP and a profile view of an east-west transect of the
pit based on information collected from seven soil boreholes completed in 1987. The shaded
area in the profile view shows the approximate extent, based on sampling results from the
1987 boreholes, of chromium contamination in this east-west transect. When work associated
with the MWLID was started in 1992, no information was available on the north-south extent
of contamination or its current depth of penetration.

Establishing stopping criteria for adaptive sampling programs requires a decision-
making framework similar to the DQO process described in Section 3. A number of drilling
programs have taken place at the UCAP, beginning in 1981 and ending in 1992. Each of
these programs had a variety of purposes, although all shared the ultimate goal of site
characterization. To keep the retrospective comparison of what was done to what might have
been done as true and simple as possible, the overarching purpose of these characterization
programs will be defined as determining the volume of soil contaminated by chromium.
Because no stopping criteria were established for the actual drilling programs, the
retrospective study will simply compare the uncertainty associated with contaminated volume
characterization based on data actually taken to the uncertainty that would have resulted
from an adaptive sampling program.

The first step in applying PLUME to the UCAP was to garner all historical data
available for the UCAP and integrate them using SitePlanner™. The object dictionary used
by SitePlanner™ was modified to handle the soil boreholes, monitoring wells, landfills,
directionally drilled boreholes, and soil samples expected to be included. A SitePlanner™
virtual site was then constructed from base maps for the chemical waste landfill extracted
from ArcInfo™ coverages, monitoring well information (construction data, stratigraphic data,
depth to water table measurements, etc.), and existing soil borehole and sample information.
Once the base virtual site was created, SitePlanner™ was ready to accept additional data as
new boreholes were sunk and additional samples collected and analyzed by the MWLID.

SitePlanner™ played three key roles: database, data visualization, and reality check
for and link to PLUME. Figure 5 shows SitePlanner™ functioning in the first role. In
Figure 5, soil borehole UCAP-3 has been selected and its data displayed. From the scrolling
list of objects attached to this borehole, soil sample 10073 has been selected and its data
retrieved, including both locational information and chemical results. Figure 6 is an example
of data visualization. In Figure 6, a bore log, profile view, and fence diagram provide
subsurface pictures of stratigraphic structure and contamination location. In every view,
objects are represented by icons that are immediately available for selection and data display.
For example, in the bore log, profile view, and fence diagram, the icons running the length
of the boreholes indicate the locations of soil sample objects.
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The initial goal of the MWLID sampling program was to determine the best new
vertical borehole locations for delineating the extent of the chromium contamination and to
position sampling points along those boreholes, given the data that already existed for the
UCAP. These data consisted primarily of information from three sampling programs
conducted in the 1980s, a single borehole completed within the pit in 1981, four boreholes
completed on a limited east-west transect in 1983, and seven boreholes completed on a more
ambitious transect in 1987. To facilitate the analysis, a three-dimensional grid of decision
points was superimposed over the region of interest — 16 points along the east-west axis,
16 points along the north-south axis, and 15 along the vertical axis, for a total of
3,840 decision points, with 2.1 m (8 ft) separating each point. The extent of this grid was
based on the belief that it completely encompassed any potential contamination originating
from the UCAP. On the basis of the location of the pit and results from the 1981 and 1983
boreholes, an initial prior pdf was assigned to each decision point that reflected the expected
probability of finding contamination at that decision point. These initial prior pdfs were then

FIGURE 5 Site Planner™ as Database

updated with the 1987 sampling data.
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The updating process requires an indicator variogram. A variogram is a function
that captures the nature of the spatial autocorrelation present in a system. In general,
variograms require the definition of a functional form, the range of the spatial
autocorrelation, and the variance. In the case of the updating process used by PLUME, the
variance of the system is not important. A variogram analysis conducted with 1987 sampling
data suggested that a spherical function with a range approximately equal to 18 m (60 ft)
was appropriate for the UCAP. A variogram’s range need not be identical in all directions.
Variograms can have their own particular spatial orientation. For example, a contamination
event might show much stronger autocorrelation in its horizontal distribution as compared
to its vertical distribution. A case like this would give rise to anisotropic variograms. The
variogram analysis conducted on the 1987 data showed no signs of anisotropy.

Two sampling programs were conducted as part of the MWLID in the summer of
1992. First, two boreholes associated with the Thermally Enhanced Vapor Extraction System
(TEVES) north of the unlined chromic acid pit (TEVES-1 and TEVES-2) were completed.
Second, three additional boreholes were installed along the western boundary of the pit
(UCAP-1, UCAP-2, and UCAP-3). After each sampling program, an impact surface was
created with PLUME to determine the areas where maximum impact on contaminant
delineation could be expected if additional boreholes were installed. The impact at specific
locations was measured as the expected number of decision points currently classified as state
uncertain that would be reclassified as either clean or contaminated given a new vertical soil
borehole at that location. In Figure 7, impact is gray-scale coded and ranges from white
(minimum impact) to black (maximum impact). On the basis of 1987 data alone, the regions
with the greatest potential for new borehole locations lie north and south of the pit. With
the completion of the first two TEVES borehnles, the value of additional boreholes north of
the pit is insignificant compared to the value of additional boreholes south of the pit. After
the final three UCAP boreholes were drilled, it was determined that should any additional
sampling be conducted, the most valuable area is southeast of the pit.

After each sampling program, PLUME used the additional sampling data to
reclassify each decision point as either clean (less than 0.2 chance of contamination),
contaminated (greater than 0.8 chance of contamination), or state uncertain (probability of
contamination between 0.2 and 0.8). The choice of 0.8 as a probability threshold was
arbitrary for the purposes of the retrospective study. In an actual site characterization, this
value would be negotiated with the regulatory agency. Figure 8 graphically shows how
allocation of decision points to these categories changed as each sampling program was
completed. The 0.5 line indicates the percent of decision points that would have been
categorized as contaminatzd if a decision point had probability of contamination greater than
0.5. This is equivalent to forcing a clean/contaminated decision at each decision point,
regardless of the probability of erroneous classification. Finally, Figure 9 shows how the
horizontal extent of contamination looks at a depth of approximately 6 m (20 ft) after each
sampling program. The shading in Figure 9 ranges from white (zero probability of
contamination) to black (probability of contamination equal to one).
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FIGURE 6 Site Planner™ as Data Visualizer

The 1987, TEVES and UCAP sampling programs consisted of 12 boreholes and
197 samples. An obvious retrospective question is, if the original program had been designed
to limit the number of sampling programs, boreholes, and sampling points by using the
proposed methodology, how well could one have done? By using the same initial prior pdfs
for each decision point, a set of five boreholes was located and samples placed along their
vertical length so that the maximum impact on the percent of decision points categorized as
state uncertain was obtained. Figure 10 shows the locations of these 5 boreholes relative to
the 12 boreholes that were actually drilled. On the basis of the initial prior pdfs for the set
of decision points, approximately 68% of the decision points would have been classified as
state uncertain. Upon completion of the three sampling programs actually conducted, this

value was reduced to 32%.
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In contrast, by using PLUME to strategically place the five boreholes, resulting in
a total of 35 samples, the number of decision points classified as uncertain could be dropped
to 14%. In addition to having a substantially greater impact than the actual sampling
programs, this would have represented a 66% savings in sampling program mobilization
costs, a 58% savings in borehole costs, and an 82% savings in sample analysis costs
(assuming the analyses were done in a laboratory by techniques comparable to those used
during the actual sampling programs). If field screening techniques had been used on the
majority of samples, with only a few sent to the laboratory for confirmatory analysis, the
savings in sample analysis costs would have been even greater. Finally, in terms of time
taken to characterize the site, the characterization process would have been completed in one
drilling program rather than three.
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5 APPROACH LIMITATIONS
¥

The approach described in this report does have limitations. SitePlanner™ cannot
work with raster images of sites such as those that might be generated by aerial photographs
or satellite images. SitePlanner™ is capable of efficiently handling sites with objects that
number in the thousands. For sites with larger data sets, there is a significant deterioration
in software performance. This limitation means that SitePlanner™ cannot effectively handle
continuous or near-continuous data, such as those that might be generated by a nonintrusive
geophysical survey or a down-hole sensor. This also places a limit on the size of the grid that
SitePlanner™ can effectively work with when supporting PLUME. At the UCAP, initial
attempts with a fine, four-foot spacing between decision points resulted in a grid with
approximately 30,000 nodes. This proved too great a number for SitePlanner™, and the grid
was consequently changed to an eight-foot spacing between nodes, reducing the total number
of grid nodes to 4,000. The various subsurface views of SitePlanner™ were designed for
vertical boreholes. Consequently, some manipulation of the data dictionary was required to
accommodate the slant and direction of the boreholes drilled by the MWLID. Finally, the
stratigraphic interpolation performed by SitePlanner™ when displaying profile views and
fence diagrams does not always provide plausible displays of stratigraphic structure. While
more sophisticated and interactive stratigraphic modeling can be done using SitePlanner™,
it is not amenable to rapid site visualization. As part of the MWLID, SitePlanner™
limitations were discussed with ConSolve, Inc., the vendor. A second release of
SitePlanner™, currently under development, will address these limitations.

PLUME has its own limits of applicability. PLUME is based partially on
geostatistical analysis. PLUME assumes a stationary covariance structure over the region
of analysis. PLUME also assumes that the covariance structure is known and can be
modeled. When hard data already exist for a site, such as at the UCAP, a preliminary
variogram analysis can be performed that identifies the most likely variogram functional
form and its range. These can be modified as more data are collected. A logical extension
of PLUME'’s Bayesian perspective would treat the underlying variogram and its parameters
in a Bayesian sense, subject to automatic updating as new data become available. Currently,
PLUME lacks this capability. When little hard data are initially present, PLUME’s analysis
is driven by the user’s interpretation of the soft information available. Two analysts with
differing interpretations of initial soft information can use PLUME with the same data set
and draw very different conclusions. As more hard data become available, this differing
interpretation becomes less of an issue because the hard data eventually dominate the soft
information in the analysis. In any case, this points to the need for negotiation and
consensus between environmental restoration staff, responsible parties, and regulators both
in DQO formulation and in the initial analysis of soft information available for a site. The
methodology employed by PLUME is numerically intensive. Depending on the size of the
decision point grid, the range of the variogram in use, and the amount of hard information
available, PLUME can take significant amounts of computer time to arrive at solutions.
From an adaptive sampling program perspective, analysis results must be available in near
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real time if they are to have a bearing on the course of the sampling program. Finally,
PLUME provides estimates of contaminant extent but not of contaminant level.
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6 CONCLUSIONS

Adaptive sampling programs have the potential for significant cost and time savings
during a site characterization process. However, adaptive sampling strategy support is
required. Adaptive sampling strategy support guarantees that technical staff conducting an
adaptive sampling program attain a complete understanding of their site as quickly as
possible, that they have their data readily available as they are being generated, that they
place their new sampling locations as best as possible, and that they stop when enough
samples have been collected for their characterization purposes. SitePlanner™, an object-
oriented database designed for site characterization work fulfills the role of integrating,
managing, and displaying site characterization data. Smart sampling strategy methodologies
(e.g., PLUME) that combine Bayesian analysis with spatial statistics provide quantitative
support for estimating contaminant extent, measuring the benefits to be expected from
additional sampling, and identifying where those samples should be placed.

This approach was applied in a retrospective analysis at the UCAP, part of the
chemical waste landfill belonging to Sandia National Laboratories. The analysis suggests
significant cost and time savings could have been realized if this approach had been adopted
from the outset.
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