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1. HADRON STRUCTURE PHYSICS

A study of the properties of the decuplet of baryons shows great promise for illumi-
nating nonperturbative aspects of Quantum Chromodynamics. As one of the key areas
of physics that remains to be understood, nonperturbative properties of QCD may dic-
tate the binding of quarks and gluons into nucleons. Currently, perturbative calculations
work well as a model-independent means of determining quark-level interactions at high
energy (where as < 1). Yet, to relate these calculations to experimental measurements,
results are needed in terms of hadronic degrees of freedom. Progress on the lattice front
is forthcoming; what is needed at this point is a theory that can connect lattice results to
perturbative results to provide complete predictive power over the range of energy neces-
sary for reconciling and explaining the QCD symmetries and the resulting hadrons. Only
then can we say we have complete understanding of the nucleon.

It is an extremely relevant time for such a study because of the status of the Continuous
Electron Beam Accelerator Facility; there will soon be experimental data of such detail on
the decuplet of baryons that a discrimination amongst effective theories can be made. The
technique used here is that of the Heavy Baryon Chiral Perturabtion Theory (HBChPT)
[1]. Details are given in the reference, the important points being that this is a theory
which is a consequence of the symmetries of QCD and which encorporates a systematic
expansion in powers of small momenta or light quark mass over the chiral breaking scale
or baryon mass. The fundamental fields are the hadrons themselves, both the octet of
light mesons and the octet and decuplet of baryons, circumventing the usual difficulties
associated with the approximations that must be made to find hadronic matrix elements of
quark-level hamiltonians. Further, calculations done in this theory can be used to explore
how (or whether) the symmetries of QCD survive in the hadronic system. This is currently
of great interest, considering the somewhat inexplicable usefulness of an SU(6) spin-flavor
symmetry for phenomenological predictions [2].

1.1. Strong Decays of the Baryon Decuplet
(R. P. Springer [*])

As a first step towards implimenting the above discussion, we consider the loop cor-
rections associated with meson emission from baryons. The Lagrangian governing the
behavior of the octet baryons with the octet mesons is, to lowest order,

L’ﬁ ={TrB, (v-D)B, +2DTr B, S* {Ay, By} + 2F Tr B, St [A,, By). (1.1)
Here B, is the 3 x 3 matrix of octet baryons whose fields have been redefined to remove

explicit baryon masses; they have a definite velocity, v. The covarient chiral derivative,
D, =0, +[V,, ], isgiven in terms of

VH = _;_ (ED“{T + .ETD“f) ’
where
D, =8, +iA,[Q, ], | (1.2)
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contains the electromagnetic field, .4, and the SU(3) charge operator, Q. The octet of
boson fields, the 3 x 3 matrix M, is included through

§ = exp(iM/ fx), (1.3)

where f. is the mesonic decay constant. The decuplet of baryons, T, is included through
the terms in

[:to = _iT#(U D)Tou+ AmT# Tou+C (T#A#B” + B”A“T#)

v

+ 2HTHES, ATy . (1.4)
The fields are redefined as before, only now the appearance of Am, the mass splitting

between the decuplet and the octet resonances, is required. Both (1.1) and (1.4) are
defined in terms of a spin operator, S, ,, acting on the baryon fields, and the vector field,

A¥ = £ (eD#¢! ~ 'DME) (15)

| sH g 30+ - %t At

- AH—— P1t+ E*L E-ﬂ+

Fig.1: The decuplet-octet-meson coupling constant C as a function of the
decuplet-decuplet-meson coupling constant H for the decays A+t —
prt,2*t — ¥07+t o Art and E*t — - — 1. The width of each line
represents the 1o error arising from experimental determinations of the
baryon resonant width. There is no theoretical uncerainty included in
the curves. Note that the sign of a C is chosen for ease of comparison to
SU(6) predictions, but is in fact undetermined in HBChPT.

At this point, the strong interaction coupling constants are F' and D amongst the
octets, and the strong decay of the decuplet is characterized by C. Taken directly from
the Lagrangian, a tree level comparison to experimental decay rates can be made, and
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a value for C extracted. The tree-level calculation is necessarily SU(3) conserving, while
the experimental results obviously are not. Including the leading nonanalytic terms which
result from kaon loops will allow a more accurate extraction of C from experimental data.
The result is given in Fig 1. Note how C and H become nearly universal for the four decay
rates in the range 1.1 < |C| < 1.3 and —2.8 < H < —1.6. This range of H agrees well with
the constraint found in [3]. In particular, the results found here, along with those found
in [4] show that the SU(6) relationships,

F=§D C=-2D

H = —3D. (1.6)

are well satisfied in chiral perturbation theory; an interesting circumstance since the theory
is based on the SU(3) of QCD alone.

[*] M. Butler, M. Savage and R. Springer, Nucl. Phys. B (in press).

[1] E. Jenkins and A. Manohar, Proceedings of the Workshop on “Effective Field Theories
of the Standard Model”, ed. U. Meissner, World Scientific (1992).

[2] C. Carone and H. Georgi, Nucl. Phys. B375 (1992) 243.

[3] E. Jenkins and A. Manohar, Phys. Lett. 255B (1991) 558; Phys. Lett. 259B (1991)
353.

[4] E. Jenkins, Nucl. Phys. B368 (1992) 190; E. Jenkins, Nucl. Phys. B375 (1992) 561.

1.2. Radiative Decays of the Baryon Decuplet
(R. P. Springer [**])

The electromagnetic decays of the decuplet provide another area where the theory of
chiral lagrangians can be tested, and further insights into the properties of these resonances
can be obtained. In particular, the ratio of electric quadrupole to magnetic dipole transition
rates is still quite controversial. Unfortunately, it appears that all experimental extractions

Fig. 2: Graphs contributing to the radiative decay of decuplet baryons. The
heavy line represents a decuplet baryon, the solid line an octet baryon,
the dashed line an octet meson, and the wavy line a photon. We work
in e, - v = 0 gauge where there is no direct coupling of the photon to
either the octet or decuplet baryon.
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to date are model-dependent [5-8], which further complicates the issue. The one loop graphs
respousible for the decay rate in HBChPT are shown in Fig 2. Unlike the case for strong
decays, a counterterm exists for the radiative decays whose coefficient must be fixed by
one of the measured decuplet decay rates (the A particle is used for this). Our results
appear in Table 1. Note that the SU(3) forbidden decays, given in the last two rows, are
independent of the above mentioned counterterm and thus are a cleaner test of the effects
of kaon loops, and the nature of SU(3) violating loop corrections in HBChPT. Again, we
hope that CEBAF will measure these decay rates soon. In addition, some recent lattice
work [9] shows agreement with our results.

Table 1: Decuplet Branching Ratios (%)

Decay Mode Branching Ratio (%) Experimental Limit (%)

Tt o Tty 0.2—0.6 <5
0 50y 0.04 — 0.1 <5
0 Ay 0.8—-1.3 <5
=*0 _, =0~ 1.0 - 3.0 <4
T 5 Ty 0.004 — 0.006 <5
= By 0.01 — 0.03 <4

One way of investigating the internal structure of the decuplet hadrons is to study
the ratio of the electric quadrupole to magnetic dipole radiation, E2/M1, emitted by the
hadron. There is experimental information on this ratio from the decay A — N~, which
gives us an opportunity to make comparisons for at least this mode. As noted above, a
recurring theme in the study of the decuplet is how well HBChPT seems to reproduce
exactly those results that might be expected from an SU(6) spin-flavor symmetry. To
investigate this further, in an attempt to find the source of the appearance of this symmetry,
we study a process that is very much at odds with the simplest constituent quark model;
the E2/M1 ratio. Another reason this ratio is interesting for HBChPT is that the two
multipoles have such different sources within the theory. The M1 amplitude is mainly a
short-distance phenomenon, the main ingredients being the counterterm introduced above,
and the contribution of kaon loops. The E2 amplitude, in contrast, is very much a long
distance effect, with long-distance pion loops the dominant contribution. The later can be
calculated with some confidence in the chiral theory. Results for two of the processes are
given in Fig. 3. Note that there is an imaginary part to this ratio since the final state
interactions between octet baryon and pion with a decuplet baryon occur. The importance
of what we have done here lies in the inclusion of the long-distance, pionic effects, which
appear to have much significance in the ratio. Lattice calculations have been done to
find this ratio [9], yet have no imaginary part since the decuplet particles are taken to
be stable. The darker region on the plots shown indicates the prediction found when
the SU(6) relationships amongst the chiral langrangian coupling constants is imposed.
An experimental determination of the ratios will provide a strict test for this symmetry,
yielding a further understanding of the validity of this approach.

In an effort to understand pion photoproduction, where experimental tests are cur-
rently available, we look at the radiative decay of the delta which ends in a pair of leptons
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as the final state. The radiative decay discussed earlier probes the hadronic structure of the
decuplet of baryons, yet is restricted to the case where the emitted photon is on its mass
shell. With a leptonic final state, we have access to the off-shell behavior of the radiative
coupling and can look at the momentum transfer dependence of the E2/M1 ratios. The
result is given as a function of the invarient mass of the lepton pair, as shown in Fig. 4.
Experimental measurements of these decays are expected from CEBAF, and a comparison
with the results from HBChPT should be important in understanding the ground state
structure of the baryons.

0.1
*"" p— —
Im$ A—>» NY Imd ETT—» =Y
0;08 0.15
0.06
0.1
0.04
0.05
0.02
0 - : bt . ol——
0.02 0.04 0.06 0.08 1 0.05 0.1 0.15 2

| Re 60. Re 5 0

Fig. 3: The E2/M1 ratio (§ = 6goym1) for the SU(3) allowed radiative decay
A — N~ (left) and the SU(3) suppressed decay of the cascade (right).
The gray region corresponds to the 6000 points randomly chosen only
from the uncertainties in the couplings F, D, C, H, and the width for
A — N~. The dark line is the prediction of heavy baryon SU(6), chosen
from the uncertainty in D, and still including the uncertainty in the
A — N+ width. We have assumed the E2 counterterm to be small
compared to the contribution from pion loops. The dark point is the
prediction of heavy baryon SU(6) which is independent of the choice
for D, and independent of the A — N+ decay width. (The suppressed
decays do not receive a contribution from local counterterms.)

Finally, we are in a position to use the above results to make a comment on the contri-
bution of the delta pole graph to nucleon polarizability [10-12]. The electric susceptibility
seems to be dominated by the long-distance pion loops, while the magnetic susceptibility
seems to be dominated by the A pole. We find that gP°'® = (2 ~ 10) x 10™* fm?®, which
is consistent with experimental numbers.

[**] M. Butler, M. Savage, and R. Springer, preprint DUKE-TH-93-47, Phys. Lett. B (in
press).
[5] H. Tanabe and K. Ohta, Phys. Rev.. C31 (1985) 1876.
[6] R. M. Davidson, N. C. Mukhopadhyay and R. S. Wittman, Phys. Rev. D43 (1991)
71.
[7] R. L. Workman, R. A. Arndt and Z. li, Virginia Polytechnic Institute and State
University preprint.



[8] S. Nozawa, B. Blankleider and T. S. H. Lee, Nucl. Phys. A513 (1990) 459.
[9] D. Leinweber, T. Draper and R. M. Woloshyn, University of Maryland Preprint, U.MD
PP #93-085.
[10] M. N. Butler and M. J. Savage UCSD/PTH 92-306, QUSTH 92-04 (1992).
[11] W. Broniowski and T. D. Cohen, University of Maryland Preprint U. of MD PP 92-
193; T. D. Cohen and W. Broniowski, University of Maryland Preprint U.of MD PP
92-191.

[12] V. Bernard et al, Preprint BUTP-92/15, CRN 92-24 (1992).
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Fig. 4: Differential decay rates for the two processes A — Nete™ and A —

Nutp~.

1.3. Some Comments on Heavy Baryon Chiral Perturbation Theory
(R. P. Springer [¥**])

It seems relevent to discuss the accuracy to which results in HBChPT can be calcu-
lated. We have computed at the one-loop level to obtain the results discussed in sections 1.1
and 1.2 . The consequent neglect of terms higher order in inverse baryon masses, deriva-
tives, and quark masses gives rise to uncertainties of about 30%. The SU(3) forbidden
predictions tend to be more accurate, and are certainly a cleaner test for the importance
of kaon loops, but are of course harder to measure experimentally. Our efforts here have
been to probe hadronic structure by looking at various decay modes of the decuplet of
baryons. We have applied the systematic, consistent field theory that is HBChPT to cal-
culate model-independent results. We found that the strong decuplet decay rates select
coupling constants of 1.1 < |C| < 1.3 and —2.8 < H < —1.6. Many of the electromagnetic
decay rate predictions may be tested during the first CEBAF run. We found that the ratio
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of E2 to M1 radiation for A — N~ falls in the range 4% S |0g2 Ml S11%, which is larger
than the model-dependent estimates that have been made [13,14]. Finally, branching ratios
for the decays A — Nete™ and A — utu~ are predicted at 5x 1072 and 3x 107, respec-
tively. Even for a less liberal range of experimentally accessible invarient mass, CEBAF is
expected to collect important data on these modes.

We hope to understand the effect of QCD symmetries on mesons and baryons, and
thereby investigate the hadronic structure of the resonances we have studied. This probes
the important area of nonperturbative QCD which is likely to be crucial to our under-
standing of how quarks bind into hadrons. We are confident that experimental results will
be obtained soon that will test the chiral theory and determine the importance of meson
loops, the extent and relevance of the SU(3) symmetry breaking terms, and the limit of
applicability of the SU(6) spin-flavor symmetries.

[***] M. Butler, M. Savage, and R. Springer, preprint DUKE-TH-93-48.
[13] S. Capstick, Phys. Rev. D46 (1992) 1965; D46 (1992) 2864.
[14] S. Kumano, Phys. Lett. B214 (1988) 132.

1.4. Strange Hadronic Matter
(C. Greiner [*])

Perhaps the only unambiguous way to detect the transient existence of a temporarily
created quark gluon plasma might be the experimental observation of exotic remnants,
like the formation of strange quark matter (SQM) droplets [1]. First studies in the context
of the MIT-bag model predicted that sufficiently heavy strangelets might be absolutely
stable [2] or smaller ones at least metastable [1]. The reason for the possible stability of
SQM lies in introducing a third flavour degree of freedom, the strangeness, where the mass
of the strange quarks is considerably smaller than the Fermi energy of the quarks, thus
lowering the total mass per unit baryon number of the system. According to this picture,
SQM should appear as a nearly neutral and massive state because the number of strange
quarks is nearly equal to the number of massless up or down quarks and so the strange
quarks neutralizes that hypothetical form of nuclear matter.

Still, on the other side, strangeness remains also a largely unexplored (experimentally
as theoretically) degree of freedom in strongly interacting baryonic matter [3]. This lack
of investigation reflects the experimentally task in producing nuclei containing (weakly
decaying) strange baryons, which is conventionally limited by replacing one neutron (or at
maximum two) by a strange A-particle in scattering experiments with pions or kaons.

However central relativistic heavy ion collisions provide also a source for the forma-
tion of multi-hypernuclear objects, consisting of nucleons, A’s and ¥’s. By employing a
relativistic meson-baryon field theory (RMF'), which gives a rather excellent description of
normal nuclear and single A-hypernuclear properties [4], it was found that such configura-
tions may exist as small metastable objects [5]. From a more general point of view, based
on these theoretical observations one is now tempted to ask about their principle existence
also as much larger objects.

For the present exploratory investigation of large multi-strange hadronic matter
(SHM), two rather differnt realizations of the RMF approach have been considered, in
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order to illustrate the range of (new) phenomena which might be expected. In model 1,
an extension of the conventional scalar (o) and vector (w) RMF picture to the strange
sector [4,5], we additionally adjust the couplings to reproduce the trend of the observed
binding energies of single nucleon, A and ¥ states. However, this approach results in a
rather negligible weak hyperon-hyperon (YY) interaction. To achieve a stronger interac-
tion, as suggested by the few available AA data, we further extended the RMF concept by
including an additional scalar (o* = fo(975)) and vector (w* = ¢(1020)) meson field which
couple strongly to the hyperons.

In both models we find a broad class of stable objects composed of {n,p,A, =% ="}
baryons, with very high strangeness fraction f; = |S|/A (compare Fig. 1), and small net
charge per baryon Z/A ~ 0, even negative values. These objects are stable with respect
to strong decay, but can decay weakly. ¥’s are not predicted to be sufficiently bound so
as to suppress the XN — AN reaction. Interestingly, the Z’s are populated because the
corresponding reaction =N — AA is Pauli blocked for a core consisting already some A’s.
In fact, the opposite reaction then determines the possible filling of the single-particle
states.

3 O PG,
= A ™py
~ o g
< ® M

S o My
L * WH

Fig. 1: The binding energy Ep/A versus the strangeness fraction f, for several se-
quences of superstrange hypernuclei based on various nuclear cores as indi-
cated. The calculations for the upper three cores employed model 1, i.e. weak
Y'Y interaction, whereas the lower employed the model 2 with the stronger
YY interaction included. °M denotes pure hypernuclei solely made out of
strange baryons.

In model 1 we find binding energies as large as Eg/A =~ -13 MeV at a mini-
mum for the strangeness content f; = 0.6. Due to the stronger (and probably more
realistic) Y'Y interaction this minimum is shifted towards a higher strangeness
content fs = 1.1 in model 2, with an effective binding energy Fp/A =~ -21 MeV
exceeding the value of normal nuclear matter by a few MeV (compare Fig. 1).

For large baryon number A, the fission process will be removed, since the
ordinary Coulomb repulsion generated by the protons can be compensated by a
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comparable number of =’s. Thus SHM is also to be predicted to be metastable in
the bulk limit (A — 00).

This analogy to the situation of the hypothetical SQM goes even further if
one considers the baryon densities of these multihypernuclear objects, ranging
from 2 to 3 times that of normal nuclear density. This is exactly the same range
as observed in the SQM calculation {1,2]. So thinking of the properties like its
extension for a given baryon content, its strangeness content and its charge, the
SQM and the SHM objects are rather identical.

Heavy ion collisions may constitute the only way to produce metastable
strange matter. If a quark gluon plasma has formed, the proposed mechanism for
the distillation of SQM [1] might as well enhance the rate of produced SHM.

[*] J. Schaffner, C. B. Dover, A. Gal, C. Greiner and H. Stocker, Brookaven
preprint

[1] C. Greiner, P. Koch and H. Stocker, Phys. Rev. Lett. 58, 1825 (1987);
C. Greiner, D.H. Rischke, H. Stocker and P. Koch, Phys. Rev. D 38, 2797
(1988);
C. Greiner and H. Stocker, Phys. Rev. D 44, 3517 (1992).

[2] E. Witten, Phys. Rev. D30, 272 (1984);



2. RErATIVISTIC HEAVY ION COLLISIONS

2.1. Medium modifications of parton cross sections
(T. S. Bir6, B. Miiller, M. H. Thoma, X. N. Wang [¥])

The mechanisms that precede the formation of a thermalized, locally deconfined
plasma of quarks and gluons in relativistic nuclear collisions have recently attracted con-
siderable interest, because it was noticed that the preequilibrium phase may influence the
yield of certain quark-gluon plasma signals, such as lepton pairs and hadrons containing
heavy quarks. The space-time evolution of quark and gluon distributions has been investi-
gated in the framework of the parton cascade model [1]. This model is based on the concept
of the inside-outside cascade and evolves parton distributions by Monte-Carlo simulation
of a relativistic transport equation involving lowest-order perturbative QCD scattering and
parton fragmentation. Numerical studies [2,3] have shown that phase-space equilibration
of partons occurs over a period of 1-2 fm/c, and is initially dominated by gluon-induced
processes.

The complexity of these calculations makes it difficult to obtain a lucid understanding
of the dependence of the different time scales on various parameters and model assump-
tions. The motivation for our study was the desire to obtain a better physical under-
standing of the infrared cut-offs required in the parton cascade model. The two cut-off
parameters employed in ref. [1], the minimal transverse momentum transfer py in bi-
nary parton interactions and the infrared cutoff zn;, in parton fragmentation processes,
were determined by comparison with cross-sections and particle multiplicities measured
in nucleon-nucleon interactions at high energies. These values are assumed to reflect the
transition between the perturbative and nonperturbative regimes of QCD in the normal
vacuum. On the other hand, it is well known that color screening provides a natural
cut-off of long-range interactions in a deconfined QCD plasma [1], and no artificial cut-off
parameters are required to obtain finite perturbative cross sections in a dense medium.

A previous study [4] had shown that screening effects may be sufficiently strong im-
mediately after the primary parton collision events in nuclear collisions at RHIC energies
and beyond to provide the infrared cut-off required in the treatment of secondary parton
interactions. Improved understanding of the suppression of fragmentation processes in a
dense QCD plasma (Landau-Pomeranchuk effect) has also allowed to regard the infrared
cut-off zmin as a medium-dependent effect in relativistic nuclear collisions (see Section 2.3
of this Report). We have shown how these medium effects can be utilized to obtain a
parameter-free set of equations, based on perturbative QCD in a dense partonic medium,
that describes the evolution of quark and gluon distributions towards equilibrium. Arbi-
trary cut-off parameters enter only into the description of the primary semi-hard parton
scattering, where one must continue to rely on a comparison with nucleon scattering data.
After this short initial phase, however, the approach towards an equilibrated quark-gluon
plasma will be described without need for arbitrary parameters.

The kinematic separation of partons with different rapidity establishes conditions
required for the validity of continuum dynamics after a short time of the order of 0.3
fm/c, when the momentum space distribution of partons is roughly isotropic locally and
approximately exponential. Since we are primarily interested in the chemical equilibration

10



of the parton gas, we assume that the parton distributions can be approximated by thermal
phase space distributions with non-equilibrium fugacities A;. Since we are interested in
understanding the basic mechanisms underlying the formation of a chemically equilibrated
quark-gluon plasma, and the essential time-scales, we restrict our considerations to the
dominant reaction mechanisms for the equilibration of each parton flavour:

gg9 <« 999, 99 < qq.

The cross sections 03 = o(g9g9 — ggg) and o2 = 0(gg — ¢q) contain infrared singularities if
calculated in naive perturbation theory. These divergences are cured by the resummation
of subsets of diagrams (hard thermal loops), which take screening effects into account.
This method makes use of effective propagators and vertices, which show a complicated
momentum dependence. In order to calculate o5 and o3 we adopt a simplified version of
this idea by introducing momentum independent screening masses into the propagators,
whenever infrared divergences arise otherwise. In the case of the stopping power and the
viscosity this approximation provides quantitatively good results.
We write the triple differential radiative gluon-gluon cross section in the form

do?—3 ~C 202 Caos a2
dqudydsz_ 99 (qi + /‘20)2 T2 ki(kJ- - ql)Q s

where u is the Debye screening mass in the QCD plasma. k,; denotes the transverse mo-
mentum, y the longitudinal rapidity of the radiated gluon, and q. the momentum transfer
in the elastic collision. In the presence of a dense medium the emission of radiation is sup-
pressed, if the gluons scatter again before the emission is completed (Landau-Pomeranchuk
effect), leading to the condition

kiAg > 2coshy,

where A ; is the mean free path of a gluon. The contribution from soft radiation is strongly
suppressed by this effect. The integrated elastic gluon-gluon cross section in the medium

« N

o
7

22 _
c = 27Cgq

’

UM

yields a fugacity independent mean free path

A;l =0 "?ng = a10,T.

To obtain the gluon production rate R3 we integrate the differential cross section over
momentum transfer q, and the phase space of the radiated gluon. The collinear singularity
in the differential cross section must be handled appropriately, but we have found that the
results are not strongly dependent on the precise way of doing so. The chemical gluon
equilibration rate Rz = %ngag scales with the temperature linearly but is a complicated
function of the gluon fugacity. The solid line in the Figure shows the scaled rate R3/T
versus ), for a coupling constant a; = 0.3. The dotted line corresponds to the analytical
fit

R3 = 2.1a2T (2)g — /\3)1/2 n
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Fig. 1: Reduced gluon density equilibration rate R3/T as function of gluon fugacity.

The total cross section for the process gg — ¢q is dominated by the Compton diagrams
involving exchange of a virtual light quark in the ¢- or u- channel. For massless quarks the
differential cross section diverges as u,t — 0, hence the medium-induced effective quark
mass plays a crucial role. Since the divergence of the cross section is only logarithmic
in this case, we obtain a sufficiently good estimate by simply substituting the effective
thermal quark mass

1 4
as cutoff in the divergent integral over momentum transfer. Integrating over thermal gluon

distributions and inserting the average thermal collision energy 1872 in the logarithm, we
find

ma? 81 7\?
o2 % Nylog) ~ Ny a2 (m Irashg Z) '

For oy = 0.3 in the logarithm and neglecting A,, the light quark production rate becomes

2
7.
Ry = —1-02719 ~ 0.064N; o2),T ( In L .
2 Ag

[*] T.S. Biré, E. van Doorn, B. Miiller, M. H. Thoma, and X. N. Wang, preprint DUKE-
TH-93-46 (submitted to Phys. Rev. C).

[1] K. Geiger and B. Miiller, Nucl. Phys. B369, 600 (1992).

[2] K. Geiger, Phys. Rev. D46, 4965 and 4986 (1992).

3] E. Shuryak, Phys. Rev. Lett. 68, 3270 (1992).

[4] T. Bird, B. Miiller, and X. N. Wang, Phys. Lett.B283, 171 (1992).
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2.2. Parton Equilibration
(T. S. Biré, E. van Doorn, B. Miiller, M. H. Thoma, X. N. Wang [¥])

From numerical studies of parton cascades, as well as nd from more schematic con-
siderations, a picture involving three distinct stages of parton evolution has emerged:

(1) Gluons “thermalize” very rapidly, reaching approximately isotropic momentum
space distributions after a time of the order of 0.3 fm/c.

(2) Full equilibration of the gluon phase space density takes considerably longer.

(3) The evolution of quark distributions lags behind that of the gluons, because the
relevant QCD cross sections are suppressed by a factor 2-3.

The complexity of these calculations makes it difficult to obtain a lucid understanding
of the dependence of the different time scales on various parameters and model assump-
tions. In order to obtain this insight we reduced the parton cascade, using arguments of
boost invariance and rapid thermalization of partons, to a set of rate equations describing
the temporal evolution of the densities of gluons and quarks. The rates for the parto-
chemical reactions gg < ggg, gg < ¢q were calculated in thermal perturbation theory,
taking into account medium corrections such as color screening and radiation suppression
(see Section 2.1. of this Report).

Restricting to these reactions and assuming that elastic parton scattering is suffi-
ciently rapid to maintain local thermal equilibrium, the evolution of the parton densities
is governed by the master equations:

Ou(ngut) = ng(Ra—3 — R3—2) — (ngRg—q — ngRq—g)
Ou(nqu) = Ou(ngu¥) = ngRgq — ngRq—g,

where Ry_ 3 and R3_.» denote the rates for the process gg — ggg and its reverse, and Ry_.4

and Ry, those for the process gg — ¢g and its reverse, respectively. The temperature
evolves according to the hydrodynamic equation

Ou(eut) + P o ut = 0,

where viscosity effects have been neglected. In order to obtain simple solutions we will
assume that the expansion of the parton fireball is purely longitudinal, yielding Bjorken’s
scaling solution of the hydrodynamic equation. This assumption is expected to be very
well satisfied during the early expansion phase of the fireball, especially at proper time
T € R4, where R4 is the transverse radius of the fireball. We express the densities in
terms of temperature and fugacities according to the perturbative expressions

16 3 9 3.
Ng = /\g’EEC(B)T ) Ng = /\qﬁC(S)NfT )
where Ny denotes the number of active flavors, and the energy density
e =3P = [8n%/15), + Tn’N;/40(Aq + Ag)] T*.

We have solved the rate equations and the energy conservation equation simultane-
ously by numerical integration using a fourth order Runge-Kutta method. The initial
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conditions for these rate equations are the number density no = n(tjg,) and the transverse
energy density er = ep(tjgo) of gluonic partons were determined from a simulation of per-
turbative QCD cross sections for the primary partons contained in the colliding nuclei in
the HIJING code. We obtain ng = 2.4 fm~3 and ¢y = 3.5 GeV/fm® at RHIC energy, and
no = 23 fm~3 and ¢ = 52 GeV/fm® at LHC energy. Quarks contribute a smaller amount
to the initial parton energy density, because the quark-producing cross sections are smaller
in perturbative QCD than those for gluon production. The total quark contribution to
the energy density we estimate as 30 percent, yielding total initial energy densities of 5
GeV/fm3 at RHIC and 70 GeV/fm3 at LHC.

The evolution of temperature and the fugacities are shown in Figure 1. We find that
the parton gas cools considerably faster than predicted by Bjorken’s scaling solution (737 =
const.), because the production of additional partons aproaching the chemical equilibrium
state consumes an appreciable amount of energy. The accelerated cooling on the other
hand impedes the chemical equilibration process, which is more apparent at RHIC (Fig.
la) than at LHC energies (Fig. 1b).
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Fig. 1: Gluon and quark density equilibration at (a) RHIC and (b) LHC energies
for Au+Au collisions.

In order to see where the perturbative description of the parton plasma is applicable
we investigate the time evolution of the total energy density. The solid lines in Fig. 2
correspond to the initial conditions mentioned above, whereas dashed line corresponds to
a more optimistic estimate of the initial gluon production at RHIC (A, =~ 0.18). One
realizes that the perturbative parton plasma has a lifetime of 1 — 2 fm/c at RHIC, while
at LHC the plasma may exist in a deconfined phase as long as 5—6 fm/c. A higher initial
value of A, can result from rescattering of gluons during the “free-streaming” period after
the end of initial semihard scattering. Microscopic parton cascade simulations indicate a
rapid increase of gluon density during this pre-thermal phase.

From our investigation emerges the following scenario of a nuclear collision at collider
energies: Within 0.2 — 0.3 fm/c a dense parton gas is produced at central rapidities,
which can be described as a locally thermalized, but not chemically equilibrated quark-
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gluon pasma. In the fragmentation region, where the parton gas created by minijets is
not sufficiently dense to screen color fields, strings and color ropes are formed [1], which
decay by non-perturbative QCD processes on a time scale of about 1 fm/c. These strings
extend between the wounded nuclei and the surface of the parton plasma, penetrating up
to a screening length determined by the actual Debye mass. The main difference to the
conventional Bjorken scenario [2] is the far shorter formation time in the central rapidity
region, corresponding to a much higher initial temperature.
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Fig. 2: Evolution of the energy density of the parton plasma in Au+Au collisions.

Our results support the picture that the highly excited parton plasma created in ul-
trarelativistic nuclear collisions is initially mainly a gluon plasma. This has important im-
plications for several experimental signals associated with quark-gluon plasma formation:
Rapid gluon thermalization at a high initial temperature leads to a substantial thermal
contribution to the total yield of charmed quarks. The lack of chemical equilibration in
the quark and gluon densities, on the other hand, causes a severe depletion of the number
of emitted lepton-pairs compared with the naive thermal estimate. However, the shift to-
wards higher invariant masses of the steeply falling lepton-pair spectrum due to the larger
initial temperature in the plasma can conceivably offset this suppression.

[*] T.S. Biré, E. van Doorn, B. Miiller, M. H. Thoma, and X. N. Wang, preprint DUKE-
TH-93-46 (submitted to Phys. Rev. C).

[1] T. Bir6, H. B. Nielsen, and J. Knoll, Nucl. Phys. B245, 449 (1984);
K. J. Eskola and M. Gyulassy, preprint LBL-33150.

[2] J. D. Bjorken, Phys. Rev. D27, 140 (1983).
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2.3. Multiple Collisions and Induced Gluon Bremsstrahlung in QCD
(M. Gyulassy, X.-N Wang)

Radiative energy loss of an ultra-relativistic particle passing through dense matter is
of interest not only because of its many practicle applications, but also because it illustrates
a novel type of destructive interference phenomena related to the finite formation time,

(k) ~ h/AE(k) ~ 2w/k% ~ 2/w8?, (1)

of quanta with large four momentum, k* = (w, k., k. ), at small angles, 8 = k) /w. In effect,
7(k), is the minimal time needed in the laboratory to resolve the transverse wavepacket of
the quanta with, Az, ~ h/ky, from the wavepacket of its high energy (Ey > w) parent.
Destructive interference between radiation amplitudes associated with multiple collisions
can be expected when the mean free ) is short compared to the formation time. When
7(k) > A, the emitted quanta cannot resolve different elastic scattering centers and the
assumption of independent contributions from each seperate scattering in the medium
breaks down. This effect, first studied in QED and then in other field theories, is often
referred to as the Landau-Pomeronchuck-Migdal (LPM) effect.

We try to study the same effect in QCD within multiple scattering formalism. We
found that the gluon spectrum induced from m number of scatterings can be written in
the form,

o = o mp @)
where,
d®n, aCa q
= (P Ertay) ¥

is the radiation distribution from a single isolated collision, and the color formation factor
Cm(k) is defined by

m i—1
1 .
— g L et(zi=z;)/7(k) .
Cm(k) = CrCad E—l C’,,+2RejEICUe o Fi(k) 1, (4)

in terms of color coefficients,
C‘ij = T'r(am e [C, ai} cee@1ay e [aj,C] .. 'am), (5)

and current correlation functions

with 7; given by
ki | aqu-ky )

(k) =29\ 5 + ————— 7
(k) g(ki lari — ko |? "
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In Eq. 4,5, a; are the color matrices of SU(N) in d dimension representation. C and
C4 are defined as aa = Cy14 and [a,bla = —%Ab.

In the soft radiation limit, we can calculate the color formation factor and thus obtain
the radiative energy loss as

dE /dz ~ LaCop® log(s/44?), (8)

where p ~ gT and s ~ 6EyT for a parton propagating through a QGP at temperature T'.
Thus unlike in a single scattering, where the radiation intensity is proportional to C4 via
Eq.(3), the extra induced radiation per mean free path is proportional to the Cy of the
radiating parton. This means that gluons radiate C4/CFr = 9/4 more gluons than quarks
for SU(3).

2.4. Branching Processes and the Multiple Production
(S. G. Matinyan [*])

The evident violation of KNO scaling at the energy of the CERN pp collider attract
much attention to the Negative Binomial Distribution (NBD) which describes fairly well the
overall features of the multiplicity distributions in different processes, in different rapidity
ranges and over a wide energy interval.

We have used the general theory of the branching process for establishing the relation

a = 3.06 £ 0.06; b = 6.95 % 0.08

gives the possibility to describe the overall data on the multiplicity distribution in pp-
collisions for energies ur to 900 GeV and to make several predictions for higher energies.

These predictions are i) the restoration of KNO-like scaling in the multi TeV region,
ii) asymptotically constant values for Qg-moments (Cy = (n9)/(n)?) depending on g, iii)
the validity of Wroblewski’s rule for high energies, iv) the asymptotic value of a peak for
the KNO distribution

v(2) =Pn(z)  (z2=mn/(n)).

This general approach is free from controversies of NBD associated with the extrapolation
of the parameter &k to unity. The model is compared with other models using the detailed
branching processes of quarks and gluons.

[*] S. G. Matinyan and E. B. Prokhorenko, preprint DUKE-TH-93-51.
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3. FINITE-TEMPERATURE QCD

3.1. Magnetic Screening in Thermal Yang-Mills Theories
(T.S. Bir6, B. Miiller [*])

The screening of static magnetic gauge fields in Yang-Mills theories at high temper-
ature has long proved to be intractable by analytic techniques. There exist well known
arguments that the inverse screening length s must be of order g7, and this has been
partially supported by numerical calculations in the framework of lattice gauge theory [1]
which have yielded the result pp; = (0.27 £ 0.03)g2T for SU(2). The recently developed
resummation techniques for the finite-temperature gauge theories cure many infrared di-
vergences arising in the perturbative expansion, but not those associated with long-range
static magnetic gauge fields. Although the Schwinger-Dyson equation that determines ppy
has been identified [2], its solution remains unknown.

We propose a new approach to the calculation of 15, which is not based on a pertur-
bative expansion in the gauge coupling constant g. Our starting point is the observation
that the combination ¢g2T defines an inverse length without any factor involving powers of
Planck’s constant /. One may therefore speculate that ups can be calculated from classi-
cal Yang-Mills statistical mechanics, with quantum effects providing corrections of higher
order in g.

In order to obtain the magnetic screening length one usually investigates the linear
response of the medium to an infinitesimal external magnetic field. The magnetic field,
which couples to the monopole charge, is curl-free and can be expressed by a scalar mag-
netic potential, B = —9;¢%. The application of such an external magnetic field modifies
the monopole charge density in the plasma, so the partition function becomes

Z(9) = Tr e=P1H=4"2"),

where Q¢ is the magnetic charge operator and the trace “Tr” runs over all possible states
of the Yang-Mills field. Let us denote a given color charge state by |g,g3), where g, the
eigenvalue of the Casimir operator, is a multiplet index. A magnetic monopole state
corresponds to the eigenvalue ¢ = 1. Taking into account the bosonic nature of excitations
of the Yang-Mills field, the magnetic monopole partition function in the dilute gas limit
becomes in the case of SU(2):

z=TI11 i e~(Bw=a:0)

w g3 n=0

where g3 runs over the possibilities —1, 0 and +1, and w denotes the energy eigenvalues of
the Hamiltonian. From this partition function we obtain the magnetic color charge density,
which in the weak external field limit (© <« 1) becomes:

«_ 1 0 N a
P —IBV%IHZ—-VQQTZMd).
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Since the magnetic monopole charge density is the source of the divergence of the magnetic
field, we arrive at an equation describing the linear polarizability of a magnetic monopole
gas, which yields the effective magnetic screening mass

1
_ NZM 2 2
o = () o1

In order to calculate the nontrivial factor we need to obtain the partition function Zy,.
Although simple scaling arguments show that there may be a characteristic monopole size
Ry contributing dominantly to the partition sum Zp ~ [ d5 exp(—Ro/R), no classical
monopole solution exists, which would offer a stable stationary point of the path integral
defining the partition function. The lack of a basis for a semiclassical analysis of the sta-
tistical mechanics of monopole solutions in non-abelian gauge theories apparently vitiates
an analytical approach. We have found a simple, yet elegant way how to circumvent the
stability problem.

SU(2) gauge field configurations which carry one unit of magnetic charge must asymp-
totically look like a2 monopole (j = 0) mode of the operator J=8+I+1I, where S and
I denote the generators of spin and color spin in the adjoint representation and L is the
generator of orbital angular momentum for the gauge field. Since the gauge field belongs
to the representation S = I = 1, there are three different possibilities to construct a j =0
mode; namely |L,T) = |1,1), |0,0), and |2,2) combinations, where the grand-spin quan-
tum number T is obtained from the eigenvalue of the Casimir operator T2 = T(T+ 1) with
T = § + I. The Wu-Yang monopole, known to be unstable, belongs to the j = 0 mode of
type |L,T) = |1,1).

The most general ansatz for the monopole vector potential has the form

A= ) Pl 4@ = % (P (ue*® — ) + P (ue™*® + i) + Pow),
a=1,0

where u(r) (r) and w(r) are real functions of the radial variable only and we use the
projectors P, 1(6ia — ning L i€iajn;), P = nin, with the unit radial vector n; = /.
The magnetlc monopole charge seen from outside a sphere of radius r can be obtained
from the magnetic analogue of Gauss’ law

1 3 2
=_ 1D4a = Ngll — (
y /d 70;Biq fn ne(1 —u®(r)).

This result shows that a monopole field configuration requires asymptotically u — O as
r — o0, irrespective to the fields w(r) and ¢(r). Introducing the scaled parameter 3 = ng,
we find for the energy of this static configuration in the high-T" limit:

2 _ 2)2
op= ["ar (%) o (0 2u) 4 L0

=S , 2
=[3E[u]+B/o dr u* (3—?4—%)
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where one observes that only the field u(r) is really a dynamical degree of freedom while
w(r) is non-dynamical and ¢(r) is a cyclic variable. Closer inspection shows that the
latter two really correspond to residual gauge degrees of freedom, and after some algebra
the partition function reduces to a functional integral over u(r) of the form:

Zas = / Du e PEM Z,,[u)Zeea ) ] /251,
3>0

where the prime indicates that the zero-modes have been separated from the field modes
with non-vanishing angular momentum j. We neglect these higher modes in the following.

Unfortunately, E[u] does not have a stable saddle point ug(r). This lack of a basis for
the semiclassical expansion, however, it does not preclude the calculation of the partition
function for gauge field configurations u with monopole symmetry. It only implies that
the evaluation of the functional integral cannot be restricted to integration over Gaussian
fluctuations around a classical solution ug(r). Our new method for evaluating this func-
tional integral, where u(r) satisfies the boundary conditions u(oc) = 0, u(0) = 1, involves
adding a stabilizing term to the expression for E{u],

) w 2 . 2)\2 o0
Elu] + A>D[u] = / dr [(%—T-) + (—l—é;%-l—] + %)\2/0 dr (1 - (1-u?)?).

0

This introduces a length scale that favors monopole configurations of a particular core size.
We then integrate over the dummy scale in such a way that the partition function remains
unchanged:

Zyp = / dX 28 / Du D[u)e AEM+ DD 7 7
0

The functional integral over u can now be approximated by a Gaussian integration around
the lowest energy stationary solution ug(r) of the exponent. Since there is no other scale
involved besides the dummy parameter A, the solution is solely a function of the dimen-
sionless variable z = Ar, which satisfies the equation

d2u0 1
— +up(1-ud) (= -1) =0.
dz? of o) (:r2 )

The function uo(r), obtained by numerical integration, is displayed in the Figure, together
with the monopole charge contained inside the radius 7. The ground state energy scales
as Aa, whereas D[u] scales as b/A. We find a = 1.469, b = 0.695.

The zero-mode factors are found to be:

3

3
2 2
Ty = (§a> MV, Z = <§-a) A~% 8n2

their product scales like A3. The integral over A can now be carried out, and we finally
obtain the monopole density in the classical limit as

1 12b

- - — =47 (a2T)3
pM - VZM 153/27”1(9 T) *
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Fig.: The classical magnetic monopole soliton ug(r) which minimizes the energy
functional E[u] + A2D[u] is shown as solid line. The resulting monopole
charge contained inside a sphere of radius r is represented by the dashed
line.

We finally evaluate the scaled determinantal contribution due to the spherical fluc-
tuations around the soliton-monopole solution ug(r). It turns out that this determinant
has a value very close to unity. Altogether we find the following result for the magnetic
screening mass in SU(2):

uy = 0.255 (9°T),

which is amazingly close to the value obtained in lattice simulations. Of course, the
.ontributions due to higher multipole modes, which were neglected, may change this result
quantitatively. However, the fact that the determinantal factor for radial fluctuations is
very close to unity gives hope that the influence of those higher modes will be small.

[*] T. S. Biré and B. Miiller, preprint DUKE-TH-92-42, Nucl. Phys. A (in press).
[1] A. Billoire, G. Lazarides, and Q. Shafi, Phys. Lett. 103B, 450 (1981);

T. A. DeGrand and D. Toussaint, Phys. Rev. D25, 526 (1982).
[2] O. K. Kalashnikov, Phys. Lett. B279, 367 (1992).

3.2. Magnetic Field Correlation on the Lattice
(C. Gong, B. Miiller)

In the finite temperature gauge field theory, one of the outstanding problems is the
infrared divergence due to the lack of a screening on the magnetic part of the interaction.
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It is argued that the magnetic screening mass m,, shall be of the order of ¢2T [1] but it is
still not clear how it comes about in the formalism of the finite temperature perturbative
calculations. On the other hand, lattice calculations have been carried out and the above
speculation of g2 is confirmed [2], but the uncertainty is large. So further study is necessary.
We want to address this problem in the classical dynamical context. The motivation is
that if m,, is of the order of gT, then it shall appear as a classical quantity, just as the
damping rate we have studied previously (see section 4.2.).

The most direct method to study the screening of the magnetic interaction is to study
the spatial correlation function of magnetic fields, C(r) = (B(r)B(0)). The complexity
in the non-abelian theory is that the field variables are gauge covariant, but not gauge
invariant. To have a gauge invariant correlator, we need to insert connections. On the
lattice, a connected correlator is just a closed spatial Wilson loop W (r) depicted in Fig.1.

Fig. 1: A spatial Wilson loop corresponding to the magnetic field correlation.

At the two ends of the loop are two plaquettes, which correspond to B(z) and B(0). The
two plaquettes are connected by a neck. In the limit of small B(r), this Wilson loop related
to the previous correlator as W(r) ~ 2 — E,,, —1/2C(r), where E,, is the average magnetic
energy per plaquette. If we observe the exponential decay of C(r) with distance r, then
we can identify the decay rate as the magnetic screening mass.

We have numerically studied C(r) at different energies for SU(2) and also studied U(1)
for comparison. In all cases, C(r) decays rapidly and there is almost no correlation at all
among the neighbouring plaquettes. This has to do with the fact that the correlation
we define is the dipole-dipole correlation which decays as r=* even if without magnetic
screening. So it seems difficult to extract magnetic srceening from the study of magnetic
field correlation.

[1] A. D. Linde, Phys. Lett. 96 B, 289 (1980); D. J. Gross, R. D. Pisarski, and L. G.
Yaffe, Rev. Mod. Phys. 53, 43 (1981).

[2] A. Billoire, G. Lazarides, and Q. Shafi, Phys. Lett. 103B, 450 (1981): T. A. DeGrand
and D. Toussaint, Phys. Rev. D25, 526 (1982).

3.3. The \¢* Theory on a Four-dimensional Torus
(C. Villarreal [*])

An ideal system for studying the response of the vacuum to interactions, thermal
excitations, and boundary conditions is the A¢* theory constrained to a torus in (3+1)-
dimensional space-time:

L =(8,0%) (8*0) + m2 ¢* ¢ — M¢*¢)?,
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where m3 = —m? is a negative squared?mass. In particular, we are interested the possibility

of developing self-sustained equilibrium configurations by a proper balance of the Casimir
forces and the self-interaction. In order to study the energy density as function of the
geometry, the torus has different spatial extension in every direction.

Following the usual discussion of symmetry breaking, the field is explicitly separated
into a (real) classical vacuum expectation value v plus quantum excitations: ¢ = v + x,
where X = x1 + ix2 , has vanishing vacuum and thermal expectation values. At the
minimum of the classical potential given by v3 = m2/2) , the mean field masses show the
values m?2 =m2/2)X and my =0 ,ie., x2 is a Goldstone boson.

The constraint imposed by the toroidal geometry is implemented by requiring the fields
to satisfy periodic boundary conditions in the spatial directions. the behavior of the system
both at zero and finite temperature may be investigated by means of a standard method
employed in finite-temperature field theories, i.e., to perform an analytical continuation
into imaginary time. Thus, we consider quantum fields defined over the 4-torus with spatial
periods a, b, ¢ , and time period i3 . The thermal free energy density Fg = —(T/V)InZp
is T

Fo=% Y. {ln[l—exp(~fui(kn))] +In[1 = exp(~Fuz(ka))]}

n1,n2,n3

The finite-temperature contributions

Fo‘:

-mi i Ka(miy/n%a? + n3b? + nic?)

42 n?a? + n2b? + n3c?
ni,n2,n3

m3 Z* Ka(may/n%a? + nb? + nic?)

42 n2a? + n2b? + nic? '

ni,n2,n3

can be evaluated by a straightforward numerical calculation. This expression coincides

with previous results for the total Casimir energy density [1]. On the other hand, the

terms associated to the zero-point field must be renormalized in order to get a finite result
[2]. The renormalized effective potential is

A 5A
— 2 2 / 4
UR———mo(l—.é_ﬁ>v +)\(1—16W2>v
4 2 4 2
mi my ms ms
1 1 :
* amz " <2mg> T eame <2m§>
The self-interaction of the scalar field is taken into account in perturbation theory, where

the propagators satisfy the torus boundary conditions. The final expression for finite
two-loop contributions to the free energy is

3T
Fioop = VA [(A? + A% 4 (A + A2

2
+ (A3 + A7) (A + AQ)].
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The total free energy density is F' = Fy + F3 + FLoop + Ur.

A variational calculation of the free energy density has been performed in the param-
eter space of the system, determined by the set {a, b, c, A\, mp}. It is convenient to express
every quantity in units of mg. Therefore we have defined adimensional variables d; = a;mg
(a; is any spatial length), M; = M;/mo, T = T/mg, and 9 = v/mg . In order to simplify
matters we considered that @ = b , and defined the ratio R = a/c. When one spatial
dimension is strongly compactified, R 3> 1, and the quantization volume is constrained to
a thin wall in space. For R < 1, the quantization volume becomes a string configuration.
The free energy surface in a unit volume for a given value of A shows a saddle behavior,
with the parameters corresponding to the cubical configuration defining the “top” of the
saddle. The string and the wall configurations lower the free energy density, and desta-
bilize the system. This occurs whenever the coupling constant is smaller than a certain
Ac.. However, as A reaches the critical value A, = 0.4 , the free energy surface suffers an
abrupt modification, and the string configuration becomes stable.

A transverse section of the free energy surface at the critical point reveals that the
minimum of the free energy density for the cube is only slightly shifted with respect to
the mean field value ¢ = 1.12. In fact, the isotropic mean field result is recovered as soon
as d; = 5 in every spatial direction. On the other hand, when the system is described by
the string configuration the minimum of the effective potential is located at o, = 5.65. At
this point R. = .002 and, taking into account that the volume is fixed, a. = b, = 0.125 .
Apparently, no reasonable value of A can render a stable wall configuration.

*] C. Villarreal. preprint DUKE-TH-92-45.

[1] J. Ambjorn and S. Wolfram, Ann. Phys. 147, 1 (1983).

[2] J. I. Kapusta, Finite-Temperature Field Theory (Cambridge University Press, Cam-
bridge, 1988).
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4. REAL TIME LATTICE GAUGE THEORY

4.1 Lyapunov Exponent of SU(3) Gauge Theory
(C. Gong [*])

In this investigation we use a classical lattice gauge method [1] to study chaoticity in
SU(3) lattice gauge theory. This is related to the entropy production and thermalization
process in a highly excited gluon system, which is relevant in the study of the early universe
and of relativistic heavy ion collisons, where the phase transition of nuclear matter to
quark-gluon plasma is expected to occur. The proposed signatures of this transition depend
critically on the time scale of the pre-equilibrium thermalization process. Studies show
that the time scale of this process is short and the gluon sector thermalizes much faster
compared to the quark sector(7y = 37,). This later fact makes it plausible to consider the
thermalization of the gluon sub-system separately. But up to now, this process is still not
completely understood because a fully non-perturbative quantum mechnical calculation
is beyond our ability. On the other hand, our method not only leads to an exact and
non-perturbative solution to this problem (in the classical limit), but also helps to explain
the reason of a fast thermalization process in the classical language. That is the chaotic
nature of the non-abelian gauge theory. We hope that our results will be helpful to a full
quantum treatment in the future.

In D(t)
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Fig. 1: Divergence of two classical trajectories in two different measures D(t). The
solid line corresponds to a definition of distance that is the summation of
absolute value of local magnetic energy difference, the dotted line corresponds
to that of electric energy. The latter is slightly vertically shifted.

Our study is based on the lattice Hamiltonian [2] for SU(3) gauge fields from which
we can derive the classical equations of motion for the color electric and magnetic field
components defined on the links of a three dimensional lattice. With these equations we
can trace out the real time evolution of a given initial field configuration.
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Initially we put all color electric field components to be zero to avoid the presence of
local static color charges on the lattice. Then we use a heat bath algorithm [3] to thermalize
the magnetic sub-system to temperature Tp. Tp is the only parameter to control the total
energy on the lattice. A second configuration is chosen in the close neighborhood of the
first one (Initial distance D(0) is small). Distance D between two configurations is defined
as the sum of absolute value of local difference in magnetic energy.

We numerically integrate the equations of motion for both initial configurations and
measure the time behavior of their distance D(t). The distance diverges exponentially for
the two initially close confiigurations. In Fig.1, the evolution of In(D(t)) is shown. We see
after several initial oscillations, D(t) increases exponentially with ¢t and then saturates at
large t due to compact nature of SU(3) group. We notice in the exponential increasing
region the fluctuation is small for large Tp. This suggests the divergent property is very
similar in the entire phase space except for some regions of small measure. We identify
the slope of In(D(t)) in the linear region as the largest Lyapunov exponent h.

We shall note here that the divergent behavior is an intrinsic property and it shall
not depend on a particular definition of distance we choose for it. This is verified when we
choose a slightly different definition and observe the same behavior.

We have also tried to study the wave-length dependence of the trajectory divergence.
In this respect the lattice seems to be too small for a conclusive analysis.

After several runs with different initial Ty’s, we find a linear relation between h and
E shown in fig.2. Here E is the averaged energy on each plaquette. Using the scaling
property of the Hamiltonian we get ha = -l-lﬁnga. We see the points fit nicely on the
straight line which goes through the origin. In the classical limit, k is independent on a
because g does not run with a in this limit. The fluctuations are small because of the
large number of degrees of freedom involved. To a good approximation, E is related to the
temperature as F = 1—3QT. So finaly we get h = 0.54¢°T.

We know that the sum of all positive Lyapunov exponents describes the entropy growth
rate, which is roughly the inverse of the time scale that the system approaches thermal
equilibrium. So the largest Lyapunov exponent leads to an estimate of the thermalization
time 7, = h~!. As an example to show the time scale, at T = 400 MeV, 75 is roughly 0.24
fm/c. So here we really see that the gluon system thermalizes very fast.

We observe that the numerical value of h and the damping rate nof a gluon at rest
is astonishingly close. In the next section we will give some reason for this coinsidence.
Though we have not fully understood it, we have proved the necessary base of their relation,
i.e. the later is essentially a classical quantity.

To conclude, we have shown numerically that the classical SU(3) gauge fields are
chaotic. This provides an explanation for why the gluon system thermalizes rapidly.

[*] C. Gong, Phys. Lett. B298, 257 (1993).

[1] B. Miiller and A. Trayanov, Phys. Rev. Lett. 68, 3387 (1992).
[2] J. Kogut and L. Susskind, Phys. Rev. D11,395 (1975).

[3] E. Pietarinen, Nucl. Phys. B190, 349 (1981).
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Fig. 2: Maximal Lyapunov exponent in SU(3) as a function of energy.

4.2. Classical Nature of Gluon Damping Rate
(C. Gong)

We found in both SU(2) and SU(3) the seemingly numerical accident that the value
of the maximal Lyapunov exponent h is remarkably similar to twice the damping rate of a
rest gluon [1], in a thermal gluon system. This is a quite surprising result because these two
quantities Appear in totally different contexts and are calculated with different methods.
In the one hand, the damping rate is the imaginary part of the self energy of a quasi-
particle in a thermal gluon system and is calculated by a sophisticated effective quantum
field theory. While the Lyapunov exponent here is a classical dynamical quantity describing
the divergent property of two classical trajectories. But though we can not establish a direct
relation between these two quantities in the moment, we think this similarity does not arise
without any reason. First these two quantities, though very different from their contexts,
both describe how fast a non-equilibrated gluon system approaches thermal equilibrium.
The relevance of h is clear from the classical dynamical point of view, where A is directly
related to the entropy growth rate. The connection of y(w) appears clearly (2]

1

flw.t)=—m—7

+ c(w)e™ 27, (1)
where f is time dependent distribution function, the first term on the Lh.s is the equi-
librated distribution. We see v appears in the decaying term. Second, we have proved
that the gluon damping rate is basically a quantity of semi-classical origin. Since y(w)
is a smooth function, it is sufficient to prove the statement for a gluon at rest for which
case explicit quantum field calculation is given in Ref. [1]. So in the following, we will
concentrate only on the rest gluon.
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The proof basically goes as follows. The damping rate can be obtained as the difference
between decaying rate and the production rate, each of which can be calculated by tree level
Feyman diagrams suppose we use the effective propagators and vertices [1,2]. Furthermore,
the later quatities are calculated by tree diagrams using bare propagators and vertices [2].
These diagrams are different from that in the vacuum only by the distribution function
factors assigned for each external line. We know a tree level diagram in a massless theory
is of classical origin [3]. This leads to the conclusion that the damping rate is semi-classical
quantities and the only quantum correction is from the thermal distribution function. If
we want to use the classical phase space distribution n = % in the calculation, we must
use a cutoff (lattice size a) in order to avoid divergence. Then all the effective quatities
may depend on a. Now to see how a comes into a quantity, we shall express this quantity
in terms of classical variables: g2 = dwa,/h, T and a. Here g. is so defined that & does
not appear explicitly in classical Yang-Mills equations. For example, the plasma frequency
will be w, = gc.y/T/a, which diverges when a goes to zero. Though w, can be calculated
semi-classically, it is not well defined at strict classical limit. On the other hand v(0) ~ ¢g2T
is independent on this cutoff a in the leading order. This proves that to the leading order
v(0) is a purely classical quantity.

We conclude that the damping rate of a long wave-length mode in the gauge system
is purely classical.

[1] E. Braaten and R. D. Pisarski, Phys. Rev. D42, 2156 (1990).
[2] H. A. Weldon, Phys. Rev. D28, 2007 (1982).
[3] C. Itzykson and J. Zuber, Quantum Field Theory (McGraw-Hill, New-York, 1980).

4.3. Lyapunov Spectra in Gauge Theory by Rescaling Method
(C. Gong and B. Miiller)

Though the previous method is easy to use to obtain the largest Laypunov exponent
of a given theory, there are two drawbacks. First the value thus obtained has a large
error bar because the exponential divergence of trajectories has fluctuations, which results
in an uncertainty in the determination of the exponential rate. The second drawback
of the method is that only the largest Lyapunov exponent can be obtained, but not the
whole Lyapunov spectra. Here we introduce a new method which can determine Lyapunov
exponents more precisely and whcih in principle can be used to obtain the whole Lyapunov
spectra.

This method is widely used in studying chaotic dynamical systems of few dimensions
(1], which we call rescaling method here. Suppose we want to calculate the largest two
Lyapunov exponents of the system. We can randomly choose three initial points, to which
we refer as 2(0), z1(0), 22(0) for convienince, in the phase space, with the condition that
they are close to each other according to some appropriate distance measure. If the system
is chaotic, or if the initial points are chosen inside the chaotic part of the phase space, the
distances between the three trajectories z;(t) evolved from the three initial points will
diverge exponentially. Let us denote the distance between trjectory z;(t),7 = 1,2 and 2o(t)
as d; and the distance between 2; and 29 as d3. Since the available phase space volume
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is limited by energy, d; will saturate after relatively short period. To avoid saturation,
the following rescaling method is used. A fixed reference distance dy is given. The whole
procedure consists two steps. In the first step, trajectories z;(t) evolve according to the
equations of motion for a period of time £y. Then in the second step we rescale the distances
dy, and d as follows. We have point zp(t) fixed, while distance d; is scaled back to dp by
bringing z; to zo(t) along the direction d;(t). The scaled factor is denoted s%¥, where k
refers to the kth rescaling. For z9(t), we first orthogonalize d» against d; then scale the
orthogonalized dy, to the refernce value do. The scale factor is denoted s5. This procedure
is to be iterated N times until the Lyapunov exponent,

k
A= lim 1—11%5— (2)
k=1 0
converges. Here \; is the largest Lyapunov expoenent and A, is the second largest one. In
principle this method can be used to obtain the whole Lyapunov spectra accurately. The
time needed to obtain the larest Lyapunov exponent depends on how fast the exponents
converge with increasing N.

In the first glance, the applicability of this method to lattice gauge system is doultful.
The reason is that while the meaning of rescaling and orthogonalization is quite obvious
in a Euclidean phase space, it is not less clear in the case of a lattice gauge system,
where the phase space is curved as well as constrainted by Gauss’ Law. The problem of a
curved space is relatively simple. One possible way is to transform link variable U; back to
vactor potential A, so we can work in the phase space formed by electric fields and vector
potentials, for which the geometry is simply Euclidean. In the case of SU(2), we have
yet another simpler method. Each SU(2) group element is represented by a normalized
quaternion. When performing orthogonaling and rescaling, We can simply treat all the 4
components of the quaternion as independent cartesian coordinates, because locally the
metric of the curved space is Euclidean. Now we come to Gauss' Law. Actually it does
not pose strong constraint on our method. The reason is as follows. When we rescale
the variables, we indeed violate the Gauss’ law. But if the distance d is small, then the
violation of Gauss’ law is of the second order of d. So if we limit ourselves to a small d, then
the violation of Gauss’s Law in each step is negeligible. Also we observe that the evolution
of the system respect Gauss’ Law, so the violation does not increase in time. The next
rescaling decreases this violation by a scale factor, so the violation does not accumulate.

We have used this method to study SU(2) system and measured the largest two
Lyapunov exponents. We indeed see that the Gauss’ Law violation is only of the order
of 107%. The result for Lyapunov exponent of a typical run is shown in Fig.1. The
corresponding energy is g2Ea = 4.06. The solid line corresponds to the largest exponent
and the dotted is the second largest one. They converge at t =~ 100. Note the time scale
of saturation in the case without rescaing is about 30 at the same energy. Ao = 0.667 is
very close to our previous result 4.06/6 = 0.677, where we do not use the rescaling. We
also observe \; is almost identical to Ag.
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Fig. 1: The first two Lyapunov exponents of a SU(2) lattice gauge fields. The solid line
is for the larest Lyapunov exponent and the dotted line is for the second largest
one.

The future work is to extend the calculation to cover all the positive Lyapunov expo-
pents in order to fully understand the dynamics of the system.

[1] see for example, G. Benettin, C. Froeschle, and J. P. Scheidecker, Phys. Rev. A19,
2454 (1979).

4.4. Chaoticity in Massless Higgs Fields and Massive Gauge Fields
(C. Gong, S. G. Matinyan and A. Trayanov)

We have applied the above method to other two systems, i.e., the massless Higgs fields
and the massive gauge fields, to study some related problem.

One question concerning the chaoticity of non-abelian gauge fields is that whether the
chaoticity is just a consequence of non-linearity, or it is related to the particular type of
non-abelian gauge interaction. In this respect, we want to study the classical ¢ theory
on the lattice. The lattice formulism of a interacting Higgs and gauge system is seen in
Ref.1. We here study a spe-ial case, i.e. the massless limit of a doublet Higgs field, which
has 4 real field components. In the massless limit, just like in the case of a gauge theory,
the corresponding classical lattice theory is scale invariant, in the sense that the coupling
g% (usually it is written as A) and lattice spacing a can be scaled out entirly and the
system does not have any parameter except the total energy. Using the same method as
for the gauge system, we measured Lyapunov exponents of the massless Higgs fields on
the lattice. In Fig.1 we show the A\a/g?Ea ~ g?Ea relation. First we observe that the
Layapunov exponents in Higgs fields is much smaller to that in gauge fields with the same
energy. Second, we find at small g?Fa, the ratio Aa/g?Ea tends to zero, which suggests a
vanishing Lyapunov exponent in the continuum limit when a — 0. This result is consistent
to our understanding of the relation between the maximal Layapunov exponent and the
damping rate of the long wave length modes. The thermal perturbative calculation shows,
unlike in the case of non-abelian gauge fields, the daiiping rate of the long wavelength mode
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in the Higgs field vanishes at the order of g2. This study shows that not all non-linearity
leads to chaos.
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Fig. 1: Lyapunov exponents of a massless Higgs theory.

We have also studied the massive SU(2) gauge fields. This is the first step toward
the understanding of chaoticity in electro-weak interaction, where the gauge symmetry is
spontaneously broken by a Higgs field. We want to study how a mass term affects the
chaoticity, which will also give some hint on how the interaction between Higgs field and
the gluon field affects the chaoticity of the later. In Fig.2, we show the largest Lyapunov
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Fig. 2: Lyapunov exponents of massive gauge theories. The solid are for m = 0,
the hollow are for m = 0.2 and the cross are for m = 4.

exponents at different energies for theories with different mass. The same scaled
variables are used, but here the mass parameter m cannot be scaled out. m is
related to the mass M of the gauge fields in the continuum theory as M = {‘;m.
For comparison, the data for the massless theory are shown as solid sqaures,
which are fit by a straight line with a coefficient of 1/6. The hollow ones are for
m = 0.2 and the cross ones are for m = 4. They more or less lie on a straight line.
We observe the effect of a mass term is to reduce the chaoticity of the system,
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or in another words, the mass has a stabilizing effect. This effect is consistent to
our intuition from studies on the coupled harminic oscillator, where the strength
of chaoticity depends on the relative strength of the non-linearity and the mass

[1].

[1] S. G. Matinyan, G. K. Savvidy and N. G. Ter-Arutyunyan-Savvidy, Sov.
Phys. JETP 53, 421 (1981); JETP Lett. 34, 590 (1981).

4.5. Gaussian Wavepacket and Quantum Corrections in SU(2)
(C. Gong, B. Miiller, T. Bir¢)

After studying the classical limit of the gauge system, it is natural to ask
how relevant this kind of investigation is. Or in another word, we want to have
some understanding on the quantum corrections to our classical results. As our
first attack on this problem, we apply a variational method to Gaussian wave
packets. This method is widely used in investigating both static and initial value
problems in various fields, where the ordinary perturbative method is not ap-
plicable [1,2,3]. Here we are interested in solving initial value problems. The
basic idea is to parametrize a wave packet, usually a Gaussian one, by a small
number of parameters. Then the time dependent variational principle is used to
derive a set of evolution equations for these parameters, which have a symplectic
structure like Hamiltonian equations. If the parameters are chosen in such a way
that some of them resemble the variables in the corresponding classical system,
then the coupling between the semi-classical time evolution of these parameters
and that of all others can be interpreted as quantum corrections to the classical
evolution.

We have chosen the following Gaussian ansatz,

_ L by -1y _ 1 -1
o[l = I;Iqﬁl(Uz) = l:[ \/—N—IeXp ( 2tr(UzUl0 ) htr(EmUlUlO )) .

The U)o and E)q are parameters of the wavefunction, which correspond to classical
link variables and left electric fields, respectively. The U;’s and Ujp’s are group
elements of SU(2), where as the Ejq are elements of the su(2) algebra. The
complex parameter b = v + tw controls the width, or more explicitely, \/v is the
inverse of the width. N, is a normalization constant. Wavefunctions with different
parameters are not orthogonal to each other. They form a set of overcomplete
basis states of the Hilbert space for each link.

The wavefunction we chose is separable in link variables. In the strong cou-
pling and zero temperature limit, the ground state wave function is an expansion
of plaquette variables trU, [4]. It is separable for different plaquettes, but this
choices is not very practical in our context. First we want the trial function to
have the feature that the averages can be performed in closed analytical expres-
sions. A plaquette separable wavefunction is more difficult in this aspect than
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a link separable one. The second reason is that we are mainly interested in the
high temperature limit where the system can be treated classically. In this limit
the former is not a priori better justified than the latter. Moreover, since in
the classical limit we deal with link variables rather than plaquette variables, a
link separable wavefunction allows to make a more direct connection to classical
dynamics.

The quantum variations of electric fields and vector potentials are obtained.
.From the requirement that the quantum variations shall be smaller than the clas-
sical distances for a classical discription to make sense, we obtain the conditions:
(1) & <« 1,and (2) A< 1.

The effective Hamiltonian is obtained as the expectation value of the Hamil-
tonian operator under the Gaussian ansatz,

Hy=H.+ Hy+ H,, = (H)

B B R e

where f; is a function of v; which cotains corrections due to finite width and goes
to 1 in the limit of vanishing width. This semi-classical Hamiltonian consists of
three parts. First we have the modified electric energy (H.) and magnetic energy
(H,), which result in the coupling between the U;, E; and the width parameters v;
and w;, and thus modify the classical evolution of U; and E;. These modifications
contain both genuine quantum effects and lattice artifacts, which are difficult to
separate. Besides the modified classical electric and magnetic energy there is a
zero point energy (Hp) which is a consequence of the uncertainty relation. It
increases linearly with v

The semi-classical equations of motion are obtained from the following vari-

ational method, \
t

§ | (®|(ihd, — H)|®) = 0.
tl

In the limit of small k these semi-classical equations assume the correct classical
form. The differences will result in quantum corrections. We note here the
Gauss’s Law is conserved averagely by evolution in this formalism.

With the above semi-classical equations of motion we can follow a trajectory
in the space of gauge fields for every given initial condition. To make the results
comparable to those of our calculations for the classical gauge theory, we specify
the initial gauge configuration in the same way as in ref.[1]. We initially choose
all electric field variables to be zero to satisfy Gauss’s law. The magnetic sector
is initialized by chosing the link variables U; = cos(p/2) — in - 7sin(p/2) limits
the range of the parameter p to (0,276). In addtion here we specify A and the
width parameter. Initially we choose identically on each link v = 20 and w = 0.
The results are given in Table 1.

To present the result we need to specify our controllable parameters. One
of these is A = 4ma,, which is a manifestation of quantum effects. Another
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should be chosen to give a measure of the excitation energy of the system. A
direct comparison between classical and quantal systems with the same energy
is unphysical because of the appearance of a zero-point energy in the latter. A
convenient comparable parameter is the physical into a phase space prefactor
and an exponential exp(—FE/T). Dividing out the phase space factor we can
simply identify the temperature as the rate of exponential slope of the energy
distribution. But here this method cannot be used directly because the lattice
gauge system is a constrained and strongly coupled system. This problem will
be discussed in detail elsewhere. Here we make the observation that the relative
difference between the electric part of the semi-classical Hamiltonian and that
of the classical one is 1/(2v) which is very small in the limit of large v. As a
consequence, the value of ((H.)), the average electric energy per link, at a certain
temperature T of the classical system and that of the semi-classical system in the
limit of large v will be similar. Neglecting the small difference, we can use it as a
measure of the excitation level of the system, and define parameter T, = ((H.))
as the ”electric temperature” of the gauge field.

First the behavior of average v and w with tim is studied. Both of them
reach stable values after some osscilation. The stable value of average w is zero.
The average v has a simple form 7/h. We have also studied the chaoticity using
these equations and compared to that in the classical limit. In Fig.1, we show the
divergence of trajectories with time. The solid line is with quantum correction
and the dotted one corresponds to the classical limit with same temperature. We
see the distance in the quantum case rises more rapidly. This is observed for all
initial conditions we have studied.

OIIIIIIIIIITII]lIIII

= -

A N

5 .

T=0.9 1

— ..:.l.‘ i1 1 l | I | l | T T l 1.1 1 L:
105 10 20 30 40

t

Fig. 1: The solid line shows the divergence of the centroids for the two
neighbouring Gaussian field configurations for T, = 0.9 and
h = 0.3. The corresponding divergence for the two classical
field configurations with the same T, is shown by the dotted
line.

We conclude that the quantum corrections enhance the chaoticity in the
non-abelian gauge system.
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Table 1

h T A 0A ((v}) E
0.1 0.76 0.255 0.01 70 2.13
0.3 0.64 0.24 0.12 23 2.48
0.3 0.73 0.3 0.22 22 2.92
0.3 0.85 0.34 0.2 21 3.31
0.3 0.85 0.36 0.27 21 3.25
0.3 0.85 0.34 0.2 22 3.25
0.3 0.9 0.41 0.37 20 3.74
0.7 0.5 0.19 0.16 9 3.24
0.7 0.8 0.41 0.54 74 4.40

M. Saraceno, P.Kramer, and F. Fernandez, Nucl. Phys. A405 88 (1983).
H. Feldmeier, Nucl. Phys. A515, 147 (1990).

C. Coriand, R. Parwani and H. Yamagishi, Nucl. Phys. A522 (1991) 591.
S. A. Chin, O. S. Van Roosmalen, E. A. Umland and S. E. Koonin, Phys.
Rev. D31, 3201 (1985).

[1]
[2]
[3]
[4]

4.6. Thermalization in SU(2) Gauge Theory
(A. Trayanov)

Studies of the thermalization properties of quark gluon plasma add an im-
portant contribution to the global understanding of the processes that occur in
heavy ion collision experiments. Recently it has been demonstrated that the non-
abelian gauge fields exhibit semi-classical chaotic dynamics. The chaoticity of the
gauge fields means that the classical Yang-Mills system is ergodic. The time evo-
lution of such system creates a microcanonical ensemble of a given energy. The
gauge fields thermalize themselves due to the non-linear self-interaction which is
a result of the non-abelian nature of the gauge group. The universal exponential
divergence of neighboring gauge field implies that the entropy of an ensemble
of gauge fields grows linearly with time until the available microcanonical phase
space is filled and the system is equilibrated. To estimate the time needed for
thermalization we substitute an approximate relation between the average energy
E per plaquette and temperature in the expression for the rate of entropy growth
as function of the total enery

E=~2T [SU(2)], E=3¥T [SU@3).
Then the characteristic entropy growth rate is given by

_, . J0344¢*T [SU(2)]
[=hr {0.54 T [SU(3)] ’
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Apart from a factor two, these values are remarkably close to those obtained for
the thermal gluon damping rate by Braaten and Pisarski.

The thermalization of a real physical system occurs via energy exchange by
absorption and emission of field quanta. To simulate this process on a computer,
one needs to couple the lattice gauge system to an external thermal bath which
will allow for energy exchange. Several schemes are possible and the basic idea
is to use a Monte Carlo technique, which will accept or reject a set of new gener-
ated link variables and their time derivatives according to a thermal distribution.
For an SU(2) gauge system the most efficient way is the so-called thermal bath
algorithm developed by Creutz, which significantly reduces the rejection rate in
the Monte Carlo process. However, a straightforward application of this method
has the disadvantage that it violates Gauss’ law. Generating either a new link
variable or its time derivative changes the electrical field associated with that
particular link. In order to satisfy the Gauss law one has to adjust the U’s or U’s
on all the other links. This would require solving of 9L% coupled equations for
SU(2), which, of course, is not practical. The only case when the thermal bath

method would have a practical significance is the case when there is no electric
field.

Fortunately we can make use of the ergodicity of our system. Therefore
we can locally thermalize, let us say, the magnetic field, and employ the time
evolution to distribute the excess or deficiency of energy between all degrees
of freedom. After relatively short period of time the initially given energy is
distributed between the electric and magnetic energies.

Several questions need to be answered: how do we know in practice that
the system has reached a thermal equilibrium; and if it has, what is the actual
temperature and how to measure it. To answer those questions we studied the
details of the thermalization process i pure gauge system by both Monte Carlo
heat bath method and time-evolution induced thermalization.

First we start with a system with no electric field. Since the Gauss’ law is
always satisfied for such a system the original Creutz’s heat bath method can be
used. After performing several thousand Monte Carlo heat bath thermalization
steps per plaquette we plot the distrubution of the magnetic energy for different
bath termperatures (Figure 1). In the case of SU(2) gauge group the group
measure can be accounted for analytically and the plot can be linearized in semi-
logarithmic coordinates. As the figure shows the distribution is linear for all
temperatures. The plot deviates from linearity only at high energies due to small
number and poor statistics of these rarely populated configurations. The straight
line is clear indication that all degrees of freedom are equally populated, i.e., the
gauge system is in thermal equilibrium. However, each of the straight lines has
a slope which differs from the value 1/7T which is expected from the Boltzmann
distribution. The reason for such a behavior is that the number of effective degrees
of freedom changes with the system temperature.
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Fig. 1: Distribution of the magnetic energy

On Figure 2 we plot the slopes of the distributions from Figure 1 as a function
of the bath temperature. We can use the data from the plot as a ”thermometer”,
i.e. if we want to measure the temperature of the gauge fields, we need to plot the
distribution of the magnetic gauge energy, and the from its slope, using Figure
2 find the corresponding temperature. At high temperatures (T' >> 2) the tem-
perature from the Boltzmann distribution coincides with the bath temperature
while at low temperatures some degrees of freedom are ”frozen” and their number
tends to 1/3 at very low temperatures.

Finally we apply the outlined method to verify that the dynamical evolution
leads to thermal equlibrium and find the the temperature in the system. In
the classical description of the gauge system the electric field is equvallent to
momentum in a mechanical system and therefore a simple degrees-of-freedom
counting argument would predict that the average electric energy would be equal
to T (for SU(2)). As expected, a short time evolution (¢ ~ 1) was enough to
redistribute the total energy among all degrees of freedom. Our findings also
confirmed the expected values for the electric energy.

[1] A. Trayanov and B. Miiller, in Computational Quantum Physics, edited by
A.S. Umar et al. (AIP, New York, 1992), p.552
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[2] M. Creutz, Quarks, gluons and lattices, Chap. 13 (Cambridge University
Press, Cambridge 1983).

(3] B. Miiller and A. Trayanov, Phys. Rev. Lett. 68, 3387, (1992)

[4] E. Braaten and R. D. Pisarski, Phys. Rev. D42, 2156 (1990).
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Fig. 2: Slopes of the distributions from Figure 1 as function of temperature

4.7. Real-Time Evolution in the Non-Linear Sigma Model
(A. Trayanov)

The properties of several models from the statistical physics have been de-
bated for a long time in the literature, especially some of the aspects relevant to
the theory of phase transitions. Recently there has been an renewed interest in the
so-called non-linear sigma model with emphasis of its applications to pion physics
and the physics of heavy ion collisions. In this model the pion field is represented
by a four component vector field, U = (o, 7), which, in analogy with physics of
the ferromagnets, can be called a generalized 4-dimensional "spin”. In the lattice
formulation the fields are defined at each lattice point and the Hamiltonian has
the following form

1 -
H= ’égUf Ug + V(U) + Vexs
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Here V(U) is the potential of pion interaction. Our main interest will focus on the
case of 4-dimensional ”spins” on a 3-dimensional lattice, where the spin variables
represent the Higgs field. In the continuum limit the low energy interactions of
the pions are expressed as

V(U) = M(VU)? + AU* + high order terms

The external field V.., represents the pion mass term, and it has the form
1 +
Vezt = ‘2‘trh.U

We will limit the discussion to the "linear sigma model”, i.e., neglecting all
the terms but the first one in the above equation. In this case the U-variables
have unit length, i.e. (Ug)? = 1. The lattice Hamiltonian becomes

1 ‘rarra a 1 +
H= 5;% Ug +M§trU€ Ug; + —ize:uh.ve

where summation over j spans the nearest neighbors of the site £. The static
version of this model (Ug = 0) is known in the statistical and condensed matter
physics as Heisenberg model. The 4 dimensional spins on a 3 dimensional space
lattice have a first order phase transition transition at temperature 7, ~ 1.43M.

Our main interest in this work is the dynamics of the pion field. To study
the problem we first have derived the equations of motion from the Hamiltonion
(eq.3) in the semi-classical approximation.

ngb ngb
o ra 1 1 . . a 1 a
UE = E Dg+j - 5(31‘ ( E Ug+j)Ué+ + -2-tl‘UgUe+ UZ - h(UZ - ‘itI‘U;.)Ue
J J

The next step is to numerically integrate the equations of motion. We have
developed a computer code to perform the Hamiltonian evolution. The numeri-
cal integration is based on the fourth-order-accurate Runge-Kutta method. For
purposes of more efficient use of the memory and the CPU, the pion fields are
represented as quaternions.

Figure 1 shows the dynamics of the o-components of the pion field. The field
oscillates with a specific frequency and tends to orient in such a way that t would
minimize the contribution of the mass term.
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Fig. 1: Dynamics of the o-component of the pion field
(1] J. Ambjorn, T. Askgaard, H. Porter and M. E. Shapochnikov,

B353, 346, (1992)
[2] K. Rajagopal and F. Wilczek, preprint PUPT 1389 (1993)
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5. STUDIES IN QUANTUM FIELD THEORY

5.1. Irreversibility in Quantum Theory
(J. Rau)

Experiments in high energy physics, such as collisions of elementary particles or heavy
ions, confront us with a startling paradox: While the initial state of the system (before the
collision) is almost pure, particles emerging from the reaction can very well be described by
a thermal distribution. This thermalization is accompanied by a large apparent increase in
entropy, indicating that the process must be highly irreversible; yet at the same time the
entire reaction is governed by the laws of quantum mechanics which are invariant under
time reversal. (Violations of microscopic time reversal symmetry due to weak interaction
are not considered here.) This is just a special case of the so-called irreversibility para-
doz that has plagued physicists since the early days of thermodynamics [1]. Indeed. if
the statistical operator evolves according to the Liouville-v. Neumann equation then the
v. Neumann entropy of a state p, defined as

Sy.x. = —ktr(plnp)

remains constant. Clearly, the v. Neumann entropy cannot be the appropriate quantity for
the description of irreversibility; it differs from the ‘relevant’ entropy whose increase one
observes. The v. Neumann entropy and the relevant entropy refer to two different levels
of description, called microscopic and mesoscopic, respectively. The transition from the
microscopic to a mesoscopic level of description amounts to a coarse graining. Inevitably,
information about certain degrees of freedom gets thereby lost.

In the mesoscopic description, one retains information only about some selected ob-
servables which are deemed relevant. For the set of ‘relevant observables’ there are. in
principle, many possible choices, each choice corresponding to a different level of descrip-
tion and consequently to a different relevant entropy. It would be obvious to consider
those observables relevant which are actually being measured in the experiment. More im-
portant, however, and independent of the particular experimental set-up, is the so-called
‘Markovian’ level of description which is comprised of all slowly varying observables. Typ-
ically, this Markovian level is an extension of any experimental level, because observables
often have to be slow in order to be measurable in practice. The Markovian leve] is well
defined only if the system exhibits a clear separation of time scales.

Each level of description gives rise to a statistical prediction problem: given the present
expectation values of the relevant observables, and possibly their past history, can one
predict their future values? On the microscopic level, this prediction problem can be
solved—at least formally—by unitary evolution. On mesoscopic levels, however, predic-
tions generally depend in a complicated manner on both the present values and the past
history of the relevant observables. How far back into the past one has to reach in order to
make a prediction is determined by the memory time. Only if this memory time is small
compared to the typical time scale on which the relevant observables evolve, can memory
effects be neglected and predictions for the relevant observables be based solely on their
present values. This approximation is the Markovian limit; which, in general, is justified
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only on the Markovian level of description. Clearly, a prediction cannot possibly contain
more information than the data on which it is based. Thus in the Markovian limit, future
expectation values of the relevant observables cannot carry more information than their
present values (based on which they could be predicted). Applied iteratively, this means
that the amount of information carried by the relevant observables can never increase; or,
that the corresponding relevant entropy can never decrease—which is the H-theorem. It
is important to note that the H-theorem, i.e., the increase of the relevant entropy, is a
consequence of the Markovian limit and as such only applies to the Markovian level of
description [3].

While the constancy of the v. Neumann entropy shows that the full (microscopic)
description keeps its information content, the growth of the relevant (Markovian) entropy
indicates that the amount of information carried by the slowly varying observables steadily
decreases. In the course of time, information about the system is being transferred from
slow to fast degrees of freedom. This flow of information is perceived as irreversible. But
the information is not lost. It only becomes inaccessible to a certain level of description.

Understanding the thermalization properties of a physical system is thus entirely a
matter of finding the Markovian level of description, and hence of identifying time scales.

Any study of irreversible phenomena must proceed by:

identifying all time scales,
finding the Markovian level of description, and
finding all conservation laws and thus all constants of the motion.

This knowledge can be used to obtain:

the rate of increase of the relevant (Markovian) entropy, and
the equilibration time (provided the thermalization is complete).

The time scales, and hence the thermalization properties, of a system generally depend on:

features of the dynamics (i.e., the form of the interaction Lagrangian),
coupling constants, and
macroscopic parameters (e.g., density, pressure, etc.).

(1] Balian, R., From Microphysics to Macrophysics, Vols. LII. Berlin, Heidelberg, New
York: Springer 1991,1992

[2] Jaynes, E.T., Am. J. Phys. 33, 391 (1965)

[3] Fick, E., Sauermann, G., The Quantum Statistics of Dynamic Processes, Berlin, Hei-
delberg: Springer 1990

5.2. Entropy Production in Vacuum Decay
(J. Rau)

The decay of a single resonance |i) weakly coupled to a continuum of states {|w)} is
a prime example for an irreversible quantum process. Despite its simplicity, it exhibits all
the essential features of a non-equilibrium process. The Hamiltonian is of the form

H=HO9 +qv |
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the perturbation having non-vanishing matrix elements
Viw = (ilV|w) = (w[V1]§)*

For simplicity, all other matrix elements of V' are taken to be zero. One wishes to describe
the time evolution of the occupation probability

p(t) = [l

given that the system is initially in the resonance state.
Employing the so-called projection method pioneered by Nakajima, Zwanzig and oth-
ers [1,2], one obtains an integro-differential equation for the occupation probability:

B(t) = —a? /0  drp(t — )V (7))

with 5 d
(Vi) = —zRe [ 2 Viol? expli(w - wi)r]
h 27
In general, the resonance couples to an entire ‘band’ of continuum states. This band has
some width A, called the coupling width. For the sake of simplicity, let us parametrize the

coupling as a Gaussian distribution

normalized such that tr(V?) = 1/2/7v?. Then the frequency integration may be per-
formed, yielding another Gaussian distribution for 7 with width A~

'U2 27.2
@V (i) = 2y L ewp [ -2

Evidently, A™! = Tnem: the memory time is given by the inverse coupling width.
Provided the memory time is very small, one can (i) take the Markovian limit, p(t —
7) — p(t), and (ii) do the quasistationary approximation, (¢ — to) — oo. Performing the
T-integration in [2] then yields
2,2
) a‘v
0=~ (325 ) o)

R2A

the usual exponential decay law. The coefficient T := a?v?/h*A is called the decay width;
it determines the timescale I'"! = 7,¢ on which the expectation value p(t) evolves. Clearly,
the Markovian limit is justified only if T7! > A~

This simple example teaches some important lessons:
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1. The memory time Tmem is related to the coupling width: Tmem = A~!. Hence the
memory time is determined by the form of the interaction only; it does not depend
on its strength.

2. The relaxation time 7.} on the other hand does depend on the strength of the inter-
action; it is of order O(a~?) in the coupling constant.

3. Therefore the Markovian limit becomes exact as & — 0 (while keeping A, v and hence
a?7, fixed—the so-called Van Hove limit [3]).

[1) Nakajima, S., Prog. Theor. Phys. 20, 948 (1958); Zwanzig, R., J. Chem. Phys. 33,
1338 (1960).

[2] Fick, E., Sauermann, G., The Quantum Statistics of Dynamic Processes, Berlin, Hei-
delberg: Springer 1990.

[3] Van Hove, L., Physica 21, 517 (1955); 23, 441 (1957); Kubo, R., Toda, M., Hashitsume,
N., Statistical Physics I1, Berlin, Heidelberg: Springer 1985

5.3. Is Particle Creation Irreversible?
(J. Rau)

In the presence of a strong electric field the vacuum becomes unstable; it decays by
emitting charged particle-antiparticle pairs, such as electrons and positrons. For the case
of spin-1/2 fermions, the number of produced pairs per unit time and unit volume is given
by Schwinger’s famous formula

(@E)? & 1 nrm?
YT s Z;{EGXP © 4E (1)
n=1

[1,2]. Here m denotes the fermion mass, ¢ its electric charge, and E the magnitude of the
external electric field, which is assumed to be time-independent and homogeneous. In a
similar manner pair creation occurs in the presence of other fields, such as gauge fields
(e.g., chromoelectric fields) or gravitational fields.

This particle creation is perceived as irreversible, despite the fact that the underlying
laws of quantum mechanics are invariant under time reversal. In general, such apparent
irreversibility is a consequence of a strong separation of time scales and an effective, i.e.,
coarse-grained description of only the slow degrees of freedom. To understand the apparent
irreversibility of particle creation, therefore, it is of great importance to investigate the
various time scales exhibited in this physical process.

Mathematically, pair creation is described by a time-dependent Bogoliubov transfor-

mation
UE () a'(Fm)\ _ aﬁ(—T)Bﬁ(—T)) ( at(p - qET,m)) )
b("‘ﬁ; —m) _B;‘ (—T)a;;(—r) b(__ﬁ+ QET, —m) ‘
mixing positive energy (particle) with negative energy (antiparticle) states. Using the
projection method, this time-dependent Bogoliubov transformation can be incorporated
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into a kinetic description of an e*te~-mixture in the presence of a strong external field,
leading to an additional source term in the quantum Boltzmann equation:

(g ) = 4Re [ drs(0)8;. 5, (0) 03 (=7 SEFl(E 7 3)
with .
SFIt, 1) :=1—-in_(F—qEr,t—7) = iny(-F+ gEr,t — 1) (4)

being reminiscent of a Pauli blocking factor. This expression is valid in the so-called weak
field approximation (hgE <« m?). Exploiting the dynamical SU(2) symmetry inherent in
the pair creation process [3].

The amplitudes B and « are determined as

BO=F pia 9
and
az(=7) = ap(=7)ladiab
= exp [—z/ dr' w(p— qET') -—m,;(—r)] : (6)

Here + is the so-called geometric (or Berry’s) phase [4].
From the above sorce term c..c can extract both the memory time

€1
mem — To 7
Toem = & @

and the time scale Tproq on which the relevant observables, i.e., the occupation numbers,
evolve. One finds
Tmem [ m?2 }

(8)

The particle creation process thus becomes Markovian (Tmem/Tprod < 1) in the weak field
limit, i.e., when AgE <« m?. The Markovian property, in turn, implies an H-theorem and
hence is responsible for the perceived irreversibility of particle creation.

[1] J. Schwinger, Phys. Rev. 82, 664 (1951).

[2] W. Greiner, B. Miiller, J. Rafelski, Quantum Electrodynamics of Strong Fields, Berlin,
Heidelberg: Springer 1985.

[3] A. M. Perelomov, Phys. Lett. 39A, 353 (1972);
Theor. Math. Phys. 19, 368 (1974).

[4] M. V. Berry, Proc. Roy. Soc. A392, 45 (1984).
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5.4. Vacuum Polarization and Electric Charge of the Positron
(B. Miiller, M.H. Thoma [*])

Hughes and Deutch [1] recently discussed the possibility that the charges of positrons
and antiprotons may not be exactly opposite to those of electrons and protons. Whereas
the equality in magnitude of the charges of electrons and protons is known to the extreme
accuracy [2,3] |Qe + Q| < 10~2'e , the equality in magnitude of the charges of electrons
and positrons is much more difficult to study directly. After reviewing the available bndy
of evidence, Hughes and Deutch conclude that the present limit on the net neutrality of
an electron-positron pair is |Q. + Qz| < 4 x 10~ 8¢ .

There exist far more stringent bounds on this quantity from indirect sources. Our
argument is based on the fact that the vacuum polarization in heavy atoms contains an
equal number of electrons and positrons and hence would contribute to the overall charge
of an atom, if the charges of electrons and positrons do not balance each other precisely.
This reasoning is closely related to the observation first made by Morrison [4] and Schiff
(5], that the equality of the gravitational masses of electrons and positrons is probed to
about 1 percent accuracy by the fact that the contribution of vacuum polarization to the
mass of an atom does not lead to a violation of the equivalence principle. This argument
is much more powerful in the case of the electric charge. In fact, our bound would be
even more precise, would it not be for the necessity of charge renormalization. Since the
amount of charge contained in the lowest order (in Za, where Z is the nuclear charge)
vacuum polarization is directly proportional to the source charge of the Coulomb field,
the net vacuum polarization charge to this order can be absorbed in the renormalized
charge of the source, rendering it effectively unobservable. This reasoning does not apply
to higher orders in Za of the atomic vacuum polarization, which do not contribute to
charge renormalization.

If the charges of electrons and positrons are not opposite and equal, the first nonva-
nishing contribution to the overall charge of an atom by the vacuum polarization would
come in order (Za)?. According to Furry’s theorem, this order normally vanishes identi-
cally due to the invariance of quantum electrodynamics (QED) against charge conjugation
(C-invariance). However, if Q. and Q¢ do not balance each other, this would iraply a viola-
tion of C-invariance and hence invalidate Furry’s theorem. For our purposes it is sufficient
to consider an effective theory that is consistent at the one-loop level. This is provided by
the Lagrangian

L= ’l;.:'(i"}’ua# - m)'d) + [Qed‘e')’uwe + Qé'djé")'uwé + Q(&e')‘ﬂd’é + 1/357“¢‘e)]Ay,

where 10./; = P1+v denotes the Dirac field projected on positive and negative energies,
respectively, Q. and Qs are the charges of electron and positron, and Q denotes the cou-
pling constant associated with pair creation. In addition to C-invariance, the effective
Lagrangian breaks gauge and PCT invariance. The violation of PCT invariance is rec-
onciled with the Pauli-Liders theorem by noting that the projection operators P. are
nonlocal at the scale of the electron Compton wavelength.
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Fig. 1: Feynman diagrams contributing to second-order (in Za) vacuum polar-
ization correction to the forward Coulomb scattering cross section on an
atomic nucleus. Diagram (a) is proportional to the positron charge Q:
and (b) to the electron charge Q..

We consider the limit of forward Coulomb scattering of a nonrelativistic charged par-
ticle on the atom, described by the two Feynman diagrams shown in Figure 1. We find

that the effect on the scattering amplitude corresponds to the presence of an additional
charge

~ d*q F(§*)? [ d°p EpBpq—EZ+75-q
AZe = (Qe + Q= ZeQZ/ = / :
( )Q( ) (27!')3 q4 (27r)3 EpEp—q(EP + E;‘p—q)2

surrounding the nucleus. Here F(q?) is the nuclear elastic form factor and E,_, =

V(P — @) +m?2. Since we are not interested in extreme precision, we simply cut off the
g-integration at the inverse nuclear radius R and evaluate the integrals to leading order in
the cut-off. The result is:

27202 1
AZe =~ (Qe + Qé)—B—WT [ln(’-’;‘é) + C] ,

where the constant ¢ depends on the details of the nucleon form factor and can be neglected
here. For a heavy atom, such as lead (Z = 82, R = 7 fm), we find AZe = £(Q. + Qz).
With the limit on the apparent residual charge of the atom per proton, AZ/Z, we obtain
the bound |Q. + Qs| < 10~'8¢ . Because the net vacuum polarization charge is quadratic
in the nuclear charge Z, it is impossible to simultaneously adjust the electron-positron and
electron-proton charge differences such that all atoms are neutral.

Since the momentum integrations involve only momenta up to R™!, and the structure
of QED has been tested to very high precision over that range, we believe that our result is
essentially model-independent. Because our effective Lagrangian breaks PCT-invariance,
our new bound can also be taken as a new test of PCT symmetry, which is better by a
factor 4 than the limit derived from the neutral kaon system, but tests a different mode of
PCT symmetry breaking.

[*] B. Miiller and M. H. Thoma, Phys. Rev. Lett. 69, 3432 (1992).
[1] R. J. Hughes and B. I. Deutch, Phys. Rev. Lett. 69, 578 (1992).
[2] H. F. Dylla and J. G. King, Phys. Rev. A7, 1224 (1973).
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(4] P. Morrison, Am. J. Phys. 26, 358 (1958).
[5] L. I Schiff, Proc. Nat. Acad. Sci. USA 45, 69 (1959).

48



APPENDICES

IA.

IB.

IC.

Published Articles:

. Deterministic Chaos in Non-Abelian Lattice Gauge Theory, B. Miiller, A. Trayanov,

Phys. Rev. Lett. 68, 3387-3390 (1992).

Resolving Minijets in Minimum-Biased Events of Hadronic Interactions, X. N. Wang,
Phys. Rev. D46, R1900 (1992).

Multiparticle Production in Lepton-Nucleus Collisions and Relativistic String Models,
D. J. Dean, M. Gyulassy, B. Miiller, E. A. Remler, M. R. Strayer, A. S. Umar, J. S.
Wu, Phys. Rev. C46, 2066-2076 (1992).

Collective Excitations of the QED Vacuum? Phys. Rev. A47, 854-867 (1993).

Vacuum Polarization and the Electric Charge of the Positron, B. Miiller and M. H.
Thoma, Phys. Rev. Lett. 69, 3432-3434 (1992).

Lyapunov Exponent for Classical SU(3) Gauge Theory, C. Gong, Phys. Lett. B298,
257-262 (1993).

Strong and Electromagnetic Decays of the Baryon Decuplet, M. Butler, M. Savage,
and R. Springer, To appear in Nucl. Phys. B.

E2/M1 Mixing Ratio of A — N+ and Hyperon Resonance Radiative Decay, M. Butler,
M. Savage, R. Springer, to appear in Phys. Lett. B.

. Magnetic Screening in Thermal Gauge theories, T. Biré, B. Miiller, To appear in Nucl.

Phys. A.

Other Publications:

. QCD Vacuum Structure, edited by H. M. Fried and B. Miiller, World Scientific

(Singapore 1993).

Submitted Articles:

. The A®* Theory on the Torus, C. Villarreal, Submitted to Phys. Rev. A.

Parton Equilibration in Relativistic Heavy-Ion Collisions, T. S. Biré, E. van Doorn,
B. Miiller, M. H. Thoma, X. N. Wang, Submitted to Phys. Rev. C.

49



ID.

1.

. Probing Hadronic Structure with the Decay A — N{¢+¢~, M. Butler, M. Savage, R.

Springer, preprint DUKE-TH-93-48.

Real-Time Dynamics of Yang-Mills Theories on a Lattice, T. S. Biré, C. Gong, B.
Miiller, and A. Trayanov, Int. J. Mod. Phys. C (in preparation).

Conference Reports:

. Chaotic Dynamics in Non-Abelian Lattice Gauge Theory, C. Gong, B. Miiller, A.

Trayanov, Third Drexel Symposium on Quantum Nonintegrability, Philadelphia, May
1992.

Self-consistent Approximations for Field Theories at Finite Temperature,
M. H. Thoma, Workshop on Finite Temperature Field Theory, Winnipeg, July 1992.

. Physics of the Quark-Gluon Plasma, B. Miiller, NATO-ASI on Particle Production in

Highly Excited Matter, Il Ciocco, Italy, July 1992.

Jets and High Energy Heavy Ion Collisions, X. N. Wang, NATO Advanced Study
Institute on Particle Production in Highly Excited Matter, Il Ciocco, Italy, July 1992.

. Simulations of Ultrarelativistic Heavy Ion Collisions, X. N. Wang, International Con-

ference on High Energy Physics, Dallas, August 1992.

On the Metric Structure of Space-Time, J. Rau, Proceedings Salamanca Conference,
Salamanca, Spain, June-July 1992.

ITIA. Invited Talks:

B. Miiller: “Classical Dynamics in Nonabelian Lattice Gauge Theory” (Third Drexel
Symposium on Quantum Nonintegrability, Philadelphia, May 1992).

M. Thoma: “Stopping Power and Viscosity of the Quark-Gluon Plasma” (Phenomena
at High Temperature and Density-Thermal Field Approach, Bielefeld, Germany, May
1992).

B. Miiller (Organizer): “QCD Vacuum Structure and Its Applications” (Workshop,
American University of Paris, June 1992).

. J. Rau: “On the Origin of the Metric Structure of Space-Time” (XIX International

Colloquium on Group Theoretical Methods in Physics, Salamanca, Spain, July 1992).

B. Miiller: “Physics of the Quark-Gluon Plasma” (NATO Advanced Study Institute
on Particle Production in Highly Excited Matter, Il Ciocco, Italy, July 1992).

. X. N. Wang: “Jets and High Energy Heavy Ion Collisions” (NATO Advanced Study

Institute on Particle Production in Highly Excited Matter, Il Ciocco, Italy, July 1992).

M. Thoma: “Hartree Approximation for QCD at Finite Temperature” (Perturbative
Methods in Hot Gauge Theories, Winnipeg, Canada, July 1992).

50



8. X. N. Wang: “Simulations of Ultrarelativistic Heavy Ion Collisions” (XXVI Interna-
tional Conference on High Energy Physics, Dallas, TX, August 1992).

9. B. Miiller: “Exciting Physics with STAR” (STAR Collaboration Meeting, Brookhaven,
September 1992).

10. A. Trayanov: “Computational Aspects of Real-Time Evolution in Lattice Gauge The-
ory” (Fifty-Ninth Meeting of the SESAPS, Oak Ridge, November 1992).

11. R. Springer: “B Physics at the SSC” (SSC Symposium, Madison, WI, March 1993).

IIB. Contributed Talks and Seminars:
M. Thoma: “Stopping Power and Viscosity of the Quark-Gluon Plasma” (University
Munich, May 15, 1992).

M. Thoma: “Small Violations of the Pauli Exclusion Principle” (Technical University,
Munich, June 4, 1992).

J. Rau: “On the Origin of the Metric Structure of Space-Time” (University of Debre-
cen, Hungary, June 5, 1992).

X. N. Wang: “Pre-equilibrium Scattering in Heavy Ion Collision” (A Workshop:
QCD—20 Years Later, Aachen, June 9-13, 1992).

J. Rau: “Nonequilibrium Stat. Quantum Field theory” (Central Research Institute
for Physics, Budapest, Hungary, June 11, 1992).

J. Rau: “On the Origin of the Metric Structure of Space-Time” (NATO Advanced
Study Institute on Recent Problems in Mathematical Physics, Salamanca, Spain, June
25, 1992).

X. N. Wang: “Hard processes in Heavy Ion Collisions” (CERN, June 25, 1992).

X. N. Wang: “High pr Probes in Heavy Ion Collisions” (Institute for Nuclear Physics,
Frankfurt, July 2, 1992).

X. N. Wang: “Quark Gluon Plasma or Mini-jets?” (University of Regensburg, July
7, 1992).

B. Miiller: “Chaos in Nonabelian Lattice Gauge Theory” (University of Minnesota,
Minneapolis, September 25, 1992).

M. Thoma: “Finite Temperature Field Theory and Applications to the Quark-Gluon
Plasma” (University Giessen, 3 lectures).

R. Springer: “Nuclear Parity Violation and Strangeness in the Nucleon” (North Car-
olina State University, October 1992).

B. Miiller: “Relativistic Nucler Collisions and Quark-Gluon Plasma” (N.C. State Uni-
versity, Colloquium, Raleigh, November 9, 1992).

51



R. Springer: “Heavy Baryon Chiral Perturbatiion Theory and Decays of the Baryon
Decuplet” (Colloquium, University North Carolina, November 1992).

M. Thoma: “Thermalization of the Quark-Gluon Plasma in Ultrarelativistic Heavy
Ion Collisions™ (University Ciessen, December 17, 1992).

J. Rau: “The Entropy Problem in Quantum Field Theory” (University of Heidelberg,
Germany, December 21, 1992).

M. Thoma: “Damping Rates and Equilibration of the Quark-Gluon Plasma” (Gross
Properties of Nuclei and Nuclear Interactions XXI, Hirschegg/Austria, January 20,
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tory” (McGill University, Montreal, Canada, February 11, 1993).

R. Springer: “Weak and Strong Decays of the Decuplet of Baryons” (Massachusetts
Institute of Technology. February 1992).

B. Miiller: “Vacuum Polarization and Electric Charge of the Positron” (INT, Seattle,
March 8. 1993)

B. Miiller: “Chaos in Nonabelian Lattice Gauge Theory” (Brown University, March
15, 1993).

B. Miiller: “Relativistic Heavy Ion Collisions: Probing the Early Universe in the
Laboratory” (Brown University, March 15, 1993).

B. Miiller: “The Creation of the Quark-Gluon Plasma” (LNS Colloquium, MIT, Cam-
bridge. March 16, 1993).

B. Miiller: “Formation of the Quark-Gluon Plasma” (Cyclotron Colloquium, MSU-
NSCL, March 17, 1993).
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II1. Triangle Nuclear Theory Colloquium Series
9/8/92 Vitaly Efimov (University of Washington)
Threshold three-Body Effects: Physics and Applications

9/15/92 Manoj Banerjee (University of Maryland)
A Quark Model of the Nucleun

9/22/92 Mark Wise (California Institute of Technology)
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New Symmetries of the Strong Interaction

10/6/92 Carl Dover (Brookhaven National Laboratory & Yale University)
Strange Quarks and Nuclei

10/20/92  Anatoly Radyushkin (Old Dominion University)
QCD Sum Rules and Heavy Quarks

10/27/92  Martin Savage (University of California, San Diego)
Theoretical Aspects of Nuclear Parity Violation

11/3/92 Dan Riska (University of Helsinki)
Hyperon Physics

11/5/92 Dirk Walecka (College of William and Mary)
Overview of the CEBAF Scientific Program

11/10/92  Gerald Miller (University of Washington)
Color Transparency and Nuclear Phenomena

11/17/92  A. Baha Balantekin (University of Wisconsin-Madison)
Theoretical Status of the Solar Neutrino Problem

12/4/92 Nikola Cindro (Rudjer Boskovic Institute)
Measuring the Very Large and the Very Small Determination
of the Reaction Zone in Nuclei by Astrophysical Methods

12/8/92 Fritz Coester (Argonne National Laboratory)
Light-Front Dynamics of Nucleons and Quarks

1/12/93 Jorge Piekarewicz (SCRI, Florida State University)
Parity Violation in Electron Scattering

1/19/93 Carlo Carraro (Harvard University)
Final State Interactions in Quasielastic Scattering

1/26/93 Alexander Bochkarev (University of Pittsburgh)
Diffusion Rate in Field Theory at High Temperature

2/2/93 Jonathan Engel (Bartol Research Institute)
Double Beta Decay and Nuclear Theory

2/16/93 Tamas Biré (Universitat Giessen, Germany)
Transport Theories of Heavy-Ion Reactions

2/23/93 Steven Pollack (NIKHEF, Amsterdam)
Effects of Particle and Nuclear Physics in Atomic Parity Violation

3/2/93 Scott Chapman (University of California, Berkeley)
An Introduction to Nonabelian Monopoles

3/9/93 Adam Szczepaniak (North Carolina State University)
Effective Degrees of Freedom in Hadonic Structure
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3/16/93
3/23/93
3/30/93
4/6/93

4/15/93
4/20/93

4/22/93

Eric Swanson (Massachusetts Institute of Technology)
Hadronic Interactions from the Constituent Quark Model

Ming Chu (California Institute of Technology)
Quark Correlation Functions in Lattice QCD

David Richards (University of Edinburgh, (UKQCD)
Recent Lattice Results on the Spectrum and Heavy Quark Physics

Colin Morningstar (SLAC)
Nonrelativistic Lattice - QCD

Pankaj Jain (University of Kansas)
@QQ Bound States in the Bethe-Salpeter Formalism

Stefan Schramm (Indiana University)
Hadrons and the QCD Vacuum in a Phenomenological Model

Avaroth Harindranath (Ohio State University)
Light-front Approach to the Relativistic Bound State Problem

IV. Theory Seminars at Duke 1992/93

5/7/92

6/18,/92

6/19/92
6/24/92
6/23/92
8/12/92
9/9/92

9/11/92
9/16/92

9/23/92

Gerhard Soff (GSI Darmstadt, Germany)
New Particle Production by Heavy Ions Supercollider Energies

Eric van Doorn (Duke University)
Coalescence Model and Formation of Meson-Meson Atoms
in Relativistic Heavy-ion Collisions

Carsten Greiner (University of Erlangen)
Memory Effects in Relativistic Transport Theory

Markus Thoma (TU Miinchen and Duke University)
Self-consistent Approximations for Field Theories at Finite Temperature

David Neu (University of California, Berkeley)
The Coulomb Singularity Revisited

Markus Thoma (TU Miinchen and Duke University)
Finite Temperature Field Theory (5 lectures)

Markus Thoma (Duke, TU Miinchen, Giessen)
Violations of the Pauli Principle?

Tamas Biré (Universitat Giessen)
Nuclear and Quark Transport Models

Manoj Banerjee (University of Maryland)
Role of Instantons in a Chiral Confining Model

Mark Wise (California Institute of Technology)
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9/30/92
10/7/92
10/7/92
10/12/92
10/14/92
10/21/92
10/28/92

11/4/92

11/11/92
11/25/92
11/30/92

12/2/92

12/15/92
12/16/92
2/3/93
2/8/93

2/17/93

Chiral Perturbation Theory

Tamés Biré (Universitaet Giessen/Duke)
Magnetic Monopoles in Hot QCD

Joshua Socolar (Duke University)
The Mysteries of Self-organized Criticality

Carl B. Dover (Brookhaven National Laboratory)
Antimatter Interacting with Matter

Malcolm Butler (Queens University of Canada)
The Electromagnetic Polarizabilities of the Nucleon

Martin Savage (University of California, San Diego)
A QCD Calculation of the Binding of Quarkonium in Nuclear Matter

Anatoly Radyushkin (C.E.B.A.F.)
Hadronic Form Factors

Robert Brown (Duke University)
Long Range Order in Two Dimensions?

Robert Brown and J. Socolar (Duke University)
Order in 2nd lattices and O(3) Continuous Hamiltonians
—The Mermin-Wagner Theorem

Charles Evans (Univerity of North Carolina)
Critical Phenomena in Black Hole Formation

Henry Greenside (Duke University)
Models for space-Time Chaos

Berndt Miiller (Duke University)
Disoriented Chiral Condensates

Jianping Lu (University of North Carolina)
The Structural and Electronic Properties of Fullerenes
and Fullerides—the Effect of Orientational Dis/order

Paul Coddington (Syracuse Univerity)
Parallel Computing Lattice Gauge and Spin Models

E. David Davies (University of Stellenbosch & TUNL)
Chaos and Time Reversal

Wei Lin (University of Washington, Seattle)
Singularity Structure of Hadronic Form Factors

Carsten Greiner (Duke University)
Strange Quark Matter in Relativistic Heavy Ion Collisions

Henry Greenside (Duke University)
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2/24/93
3/1/93
3/1/93

3/3/93

3/5/93

3/8/93
3/22/93

3/24/93

3/26/93

4/7/93

Anderson vs. Weinberg or Is Simplicity Beautiful?

Dimitri Kalafatis (IPN Orsay)
Nonlinear Realizations of Chiral Symmetry and Topological
Soliton Stability

James D. Bjorken (Stanford Linear Accelerator Center)
A Full-Acceptance Detector for the SSC

Anand Subbaraman (Syracuse University)
Chiral Interactions of Heavy Mesons

Berndt Miiller (Duke University)
Vacuum Polarization and the Positron’s Charge

Michael Prisant (Department of Chemistry, Duke University)
Applications of Ray Casting on a Massively Parallel Computer
to Protein Structure

Derek Leinweber (University of Maryland)
What does Lattice QCD Teach us about the Electromagnetic
Structure of Baryons

Jochen Rau (Duke University)
Remarks on Entropy, Irreversibility, and the Quantum Boltzmann Equation

Sergei Matinian (Duke University and Yerevan)
Branching Processes and Multiple Production

Horst Meyer (Duke University)
Equilibration Studies Near the Liquid-Vapor Critical Point:
Relevance to the N.A.S.A. Low Gravity Program

Sen-Ben Liao (Massachusetts Institute of Technology)
Blocking Transformations in Field Theory

Adam Szczepaniak (North Carolina State University)
Effective Degrees of Freedom in Mesonic Structures
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