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SUMMARY

This report presentsthe first comprehensiveHanfordSite-widepotentiometric

map for the upper-basaltconfinedaquifersystem (i.e.,the upper Saddle

MountainsBasalt). In constructingthe potentiometricmap, over forty on-site

and off-sitemonitoringwells and boreholeswere used. The potentiometricmap
. developedfor the upper-basaltconfined aquiferis consistentwith the areal

head patternindicatedfor the Mabton interbed,which is a deeper and more

areallyextensiveconfinedaquiferunderlyingthe HanfordSite (Spane 1987;

DOE 1988)

Salientfeatures for the upper-basaltconfinedaquifersystem potentiometric
map include:

• a prominent,broad rechargemound extendingnortheastward
from the Yakima Ridge- 200 West Area

• a small rechargemound immediatelyeast of the 200 East
Area, in the vicinityof B Pond

• a hydrogeologicbarrier (i.e.,ground-waterflow impediment)
at the mouth of Cold Creek Valley

• the presenceof a low hydraulichead (potentialdischarge)
region in the UmtanumRidge- Gable Mountain structuralarea

• a high hydraulichead region to the north and east of the
ColumbiaRiver, associatedwith rechargeattributedto
agriculturalactivitiesin these areas.

The temporal behaviorof hydraulicheads within the upper-basaltconfined

aquiferon the Hanford Site also exhibitedtwo distincttrend patterns. For
monitoringwells locatedalong the easternHanfordSite boundary,an increase

in hydraulichead was observedover the two-yearperiod (March 1991- March

1993). The head increaseranged between0.4 and 0.6 m, consistentwith the

. steady,long-termincreasereportedbyDOE (1982 and 1988) for underlying

SaddleMountainsand Wanapum Basalt confinedaquifers,and is attributedto

irrigationactivitieswithin the area east of the ColumbiaRiver. The fact
" that hydraulichead values continueto increasein this region indicatesthat

equilibriumconditionshave not been re-establishedfor the level of recharge

from irrigationoccurringin this area.
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For monitoringwells not locatedalong the easternHanfordSite boundary

(i.e., in the vicinityof the ColumbiaRiver),a decrease in hydraulichead

was observedover the same two-yearmonitoringperiod. The head decrease
ranged between0.1 and 0.3 m, with the greatestdeclinesoccurringin the

vicinityof the 200 Areas. The declininghead patternswere, in most cases,

extremelylinear in appearancewith no recognizablenatural seasonal

componentsevident. The declinein hydraulichead is similarto the pattern
reportedfor the overlyingunconfinedaquifer,which is attributedto the

continuingdecline in wastewaterdischargesto the unconfinedaquifer in the

200 Areas (Newcomer1990; Dreselet al. 1993).
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]. 0 ,,INTRODUCTION

As part of the Ground-WaterSurveillanceProject,HanfordSite Flow System

CharacterizationTask, PacificNorthwestLaboratory(PNL) examinesthe

potentialfor off-sitemigrationof contaminationwithin the upper-basalt

confined aquifersystem for U.S. Departmentof Energy (DOE). As part of this
. activity,hydraulichead measurementsare monitoredwithin selectedwells

completedin the upper-basaltconfinedaquifersystem. The routine

measurementof hydraulicheads providesareal and temporal informationthat

" can be utilizedin the developmentof a potentiometricmap for inferring
lateralground-waterflow patternsand for assessingthe flow dynamicsof the

monitoredsystem.

This reportpresents the first comprehensiveHanfordSite-widepotentiometric

map for the upper-basaltconfined aquifersystem (i.e.,hydrogeologicunits

within the upper Saddle MountainsBasalt). In constructingthe potentiometric

map, over forty on-siteand off-sitemonitoringwells and boreholeswere used.

Tables are providedthat presentpertinentwell completionand water-level
measurementinformation. The potentiometricmap developedfor the upper-

basalt confined aquiferis consistentwith the areal head patternindicated

for the Mabton interbed,which is a deeper and more areallyextensiveconfined

aquiferunderlyingthe HanfordSite (Spane1987; DOE 1988). A similar

hydraulichead patternfor RattlesnakeRidge interbedwas also developedby

Jackson (1992)for the HanfordSite, using a more limiteddata set.
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2.0 HYDROGEOLOGI(_DESCRIPTION

The upper-basaltconfined aquifersystem referscollectivelyto pervious

basalt interflowcontactsand intercalatedsedimentaryinterbedsthat occur

within the upper SaddleMountainsBasalt Formation. Confinementto this

aquifersystem is providedby silt and clay units within the overlying

suprabasaltsediments(i.e.,RingoldFormation)and dense, low-permeability

interiorsectionsof the basalt flows (e.g.,ElephantMountain). Information

presentedpreviouslyby Gephartet al. (1979)and DOE (1982 and 1988)

" indicatesthat confinedaquiferswithin the Saddle MountainsBasalt commonly
display a high degree of similaritywith respectto hydrochemistryand

hydraulicproperties,with no obvioushydrostratigraphicdivisionspresent.

For the purposeof limitingthe scope of this investigation,the lower

boundary of the upper-basaltconfinedaquifer systemis arbitrarilyplaced
immediatelybelow the first laterallyextensivehydrogeologicunit, which for

the Hanford Site is the RattlesnakeRidge interbed(see Figure 2.1).

It should be noted that previouslythis aquifersystem has been referredto as

the upper-confinedaquifer. However, in limitedareas of the HanfordSite,

units of the Lower Ringold Formation(whichstratigraphicallyoverliesthe

Saddle MountainsBasalt)can also be locallyconfined. Where this hydrologic

conditionoccurs,the Lower Ringoldunits have been grouped by some

investigatorswith the underlyingSaddle MountainsBasalt as part of the

upper-confinedaquifersystem. This report pertainssolely to pervious
hydrogeologicunits within the upper SaddleMountainsBasaltwhich, for the

purposeof avoidingconfusion,are referredto collectivelyas the upper-
basalt confined aquifersystem.

Within Pasco Basin, the RattlesnakeRidge interbedis the thickest and most

widespreadsedimentaryunit that occurs intercalatedwithin the upper Saddle
MountainsBasalt. Stratigraphicallythe interbedis assignedto the

EllensburgFormationand occurs at the boundarycontactbetweenthe Elephant
Mountain and Pomona basalt flows (Figure2.1). The interbedvaries in

thicknessfrom 0 to 33 m. Figure 2.2 is an isopachmap that displaysthe
thicknessdistributionfor the interbedwithin Pasco Basin. As indicated,the

interbed is absentprimarilyin the area to the west of the HanfordSite andw

within the HanfordSite in the vicinityof the Gable Mountain- Gable Butte

structuralarea. As will be discussed,thisabsence in the area immediately

north of the 200 East Area is of particularhydrogeologicimportance.
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Reidel and Fecht (1981) reportthat areallythe RattlesnakeRidge interbedcan
be divided into three distinctfaciesbased on lithologyand texture:

• First Faciesoccurs primarilyin the Cold Creek synclinearea
and consistsof three units: (I) a lower clay or tuffaceous
sandstone;(2) a middle,micaceous-arkosicand/or tuffaceous
sandstone;and (3) an upper,tuffaceoussiltstoneor
tuffaceoussandstone•

• Second Facies occurs in areaswhere the unit is relatively
thin, and consistsof a single,tuffaceoussandstoneto
siltstoneunit.

• Third Facies is limitedto the northwestsectionof Pasco
Basin, similarin lithologyand textureto first facies,but
contains a conglomeratewith plutonicand metamorphicclasts
near its base.

Permeablesandstoneunits within the interbedare importanthydrogeologically
in the lateraltransmissionof ground water• Becauseof its areal extent,

hydraulicproperties,and thickness,the RattlesnakeRidge interbedrepresent_

the most importanthydrogeologicunitwithin the upper-basaltconfinedaquifer

system for the potentialoffsitemigrationof contamination•

Other locally importanthydrogeologicunits within the upper-basaltconfined
aquifer system includethe overlyingLevey interbed,which occurs along the

southern boundaryof the HanfordSite, and a perviousinterflowcontact

between two ElephantMountainbasalt flows (i.e.,the ElephantMountain and
Ward Gap flows),which occurs in the easternhalf of the HanfordSite.

Although not as areallyextensiveas the underlyingRattlesnakeRidge

interbed,where these units occur, their hydraulicpropertycharacteristics

warrant their inclusionin the upper-basaltconfinedaquifersystem. Wells

and boreholescompletedin the overlyingLevey interbedor ElephantMountain
basalt were also includedin the preparationof the potentiometricmap for the

upper-basaltconfinedaquifersystem.
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3.0 POTENTIOMETRICMAP DEVELOPMI_NT

The followingis a brief discussionof the definition,derivation,

limitations,and uses of potentiometricmaps. Except where noted, the text

material is taken largelyfrom Spane (1987).

For Darcianground-waterflow conditions(i.e.,for low fluid velocities),

hydraulichead can be defined as the energy per unit weight for a fluid of

uniformdensity. In a two-dimensionalground-waterflow system,such as an
" aquifer confinedbetweenadjacentlow-permeabilityunits, point measurements

of hydraulichead can be used to constructa potentiometricmap that

representsthe areal distributionof hydraulicpotentialwithin the aquifer.

Potentiometricmaps can be used to infer directionsof ground-watermovement,

with flow occurringnormal to contoursof equal potentialin systemswith
isotropichydraulicconductivity.

Hydraulichead values are commonlydeterminedfrom field water-level

measurementstaken within wells that penetrateor isolatean individual

aquiferor aquifersystem. Hydraulichead measurementsare normallyexpressed

as an elevationabove a prescribeddatum, which for most hydrological

investigationsis mean sea level. The "observed"hydraulichead, Ho, can be
expressedas:

Ho = E - hw (I)

where Ho = observedhydraulichead under existingfield
conditions[L]

E = elevationof datum from which field measurement
is made [L]

. hw -- depth from datum to the fluid-columnsurfacewithin
the monitoringwell [L].

I

In formationshaving isotropichydraulicproperties,observedhydraulicheads

can be used to developpotentiometricmaps and infer lateralground-waterflow

directions. In situationswhere fluid-columndensitiesvary significantly

within the study area, observedhydraulicheads must be correctedto a

3.1
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referencedensity fluid prior to use in potentiometricmaps. The reference

densityfluid normally used in hydrologicinvestigationsis water at standard

temperatureand pressureconditions,with a densityequal to 1.00 g/cm3

(actually0.999014 g/cm3;Spane and Mercer 1985). The observedhydraulichead
value correctedto this referencedensityfluid is referredto as a fresh-

water head (Lusczynski1961; De Wiest 1969).

The fresh-waterhead (Hfw)can be expressedin a modificationof the basic
equation for observed hydraulichead, Equation(I):

w

Hfw : [(Pf" Pa)/Pfwg] " zi (2)

and Ho - [(Pf - Pa)/Po g] " zt (3)

where Pf = [(Pog)hfc]" zi (4)

and Pf = formationpressureat measuring,point i within the
aquifer/wellfluid column [F/L_]

Pa = atmosphericpressureat the well fluid-columnsurface
[F/L2]

Pfw = density of fresh-waterat standardtemperatureand
pressureconditions(0.999014g/cm3 [M/L3]

Po = averagedensityof well fluid column above measuring
point i [M/L°]

g = accelerationdue to gravity (9.80665m/s2) [L/T2]

hfc = height of well fluid column above measuringpoint
i [L]

zi - elevationat measuringpoint i [L].
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Contouringareal fresh-waterheads producesa reliefmap of the potentiometric
surfacewithin a hydrogeologicunit, from which lateral energygradientsand

areas of high and low potentialcan be delineated(Toth 1978). Analysis of a
fresh-waterpotentiometricsurfaceprovidesqualitativeinformationconcerning

the lateraldirectionand rate of ground-waterflow. As noted by Toth (1978),

the quantitativeinterpretationof a potentiometricsurface(e.g., for ground-

water flow velocitycalculations)for a laterallycontinuousunit is strictly
valid only if the distributionof permeabilityis known,no verticalpotential

gradientsexist, and the formationfluid densityremainsconstantor varies

only as a functionof pressure.

Rarely are these conditionsmet in hydrologicstudies. This is because

verticalpotentialgradients (and,therefore,verticalleakagethrough
adjoiningconfiningzones)nearly alwaysexist and variationsin fluid density

also occur. The cited limitingconditions,however,do not preclude the

qualitativeuse of potentiometricmaps. In most cases, potentiometricsurface

informationcan be used for inferringlateralground-waterflowpatterns even

in deep geologicbasins that possessareallyvaryingformationfluid densities
(Hitchon1969).

The potentiometricmap and inferredground-waterflow relationshipsfor the

upper-basaltconfinedaquifercontainedin this report are considered

preliminary. This is due to the fact that the potentiometricmap and inferred

ground-waterflow directionsare based solelyon observedhydraulichead data.

As indicatedin Equations(I) through(4), conversionof observedhydraulic

head measurementsto equivalentfresh-waterhead values requiresthat the

averagefluid-columndensity at each measurementsite be known.

Spane and Mercer (1985)presenta computerprogram,HEADCO,that can be used
to calculatefresh-waterhead values from field measurements. Figure3.1 is a

schematicof the field-measurementconversionprocess. As indicated,
calculationof the fresh-waterhead at individualmeasurementlocations

requiresthat the averagefluid-columndensitybe known. Spane and Mercer

(1985)indicatethat, under HanfordSite conditions,the followingfactors

exert the most significanteffect on fluid-columndensity (in decreasingorder

of importance): fluid-columntemperature,hydrostaticpressure,and fluid

salinity. Using HEADCO for calculatingfresh-waterheads, therefore,requires
p

that the fluid-columntemperatureprofile (or fluid temperatureversus depth
relationship)and averagefluid-columnsalinityare known at each site. This

informationis currentlyunavailablefor all upper-basaltaquifermeasurement
sites.
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In addition,the effectsof externalstresses(e.g., barometricpressure,
river-stagefluctuations)should be known and removedfrom the field

measurements. The removalof externalstressesrequiresthe systematic

correlationof baselinehead monitoringmeasurementswith observedexternal

stress fluctuations. Once the relationshipbetweenthe externalstress and
well hydraulichead measurementsis established,the rise or declineof the
external stress from a standardexternal-stressreferencevalue can be

effectivelyremovedfrom the hydraulichead measurement. For example,for the
removalof barometricpressur_variationsfrom hydraulichead measurementsat

the HanfordSite, Spane (1987)used the long-termatmosphericpressurevalue

(98.916kPa) recordedat the HanfordMeteorologicalStation as the reference

value. Only a few of the upper-basalt,confinedaquiferhead measurement

sites have long-termmonitoringdata of sufficientdetail to determine
externalstress relationships. Those with establishedbarometriceffect

relationshipsare indicatedin AppendixA. An exampleof the effective

removal of externalstresses (i.e.,barometricand ColumbiaRiver stage

fluctuations)from HanfordSite head measurementsis presentedin Spane

(1993).

Becausetemperature/depthprofiles,fluid-columnsalinity,and external-stress

effect relationshipswere not known for all the head measurementsites, these
effectswere not accountedfor in developingthe preliminarypotentiometric

map, which is based on observedhead measurements. It should be noted,
however,that effectsassociatedwith fluid-columndensitydifferencesand

external stressesare expectedto be minor. Therefore,because of the small

correctionsinvolved(i.e.,comparedwith lateralgradientmagnitudes),areal

observed and fresh-waterhead data should indicatea similarpattern of

inferredground-waterflow within the upper.-basaltconfinedaquifer system. A

similarconclusionwas reportedin Spane (1987)in constructinga fresh-water
potentiometricmap for the Mabton interbed,which marks the lower

stratigraphicboundaryof the SaddleMountainsBasalt (see Figure2.1).

3.1 DATA AVAII.ABILITY

In developingthe potentiometricmap for the upper-basaltconfinedaquifer

system, five measurementsourcesof monitoringwell and borehole hydraulic
head informationwere utilized. The sourcesincluded:

• on-sitemonitoringwells completedprimarilywithin the
RattlesnakeRidge interbed

3.5
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• on-sitemonitoringwells completedwithin other hydrogeologic
units of the upper SaddleMountainsBasalt (e.g.,Elephant
Mountain interflowcontact,Levey interbed)overlyingthe
RattlesnakeRidge interbed

• on-siteboreholescompletedin the top of the upper Saddle
MountainsBasalt

• inactiveon-sitemonitoringwells formerlycompletedwithin
hydrogeologicunits of the upper Saddle MountainsBasalt

• off-siteprivate/domesticwells completedwithin the upper
Saddle MountainsBasalt

Pertinentinformationconcerningwell completions,principalhydrogeologic

units monitored,and hydraulichead measurementsfor well/boreholesites used

in developmentof the potentiometricmap are provided in tileappropriate
appendices.

3.2 INTERPRETATION

Plate I (in pocket, inside back cover) is the preliminarypotentiometricmap
and inferredground-waterflow pattern,based on observedhead values measured

for the upper-basalt,confined aquifersystem. The potentiometricmap shown

in Plate I was developedprimarilyfrom measurementsobtainedduring March
1993, This time period was selectedto minimize the effectsof offsite

irrigationactivitiesand seasonalriver-stagefluctuationsof the Columbia

River. Data obtainedfrom activemonitoringsites completedwithin the

RattlesnakeRidge interbedor upper SaddleMountainsBasaltwere used directly

in the constructionof the potentiometricmap. In areas where these data
sourceswere not available,hydraulichead measurementsobtained from inactive

measurementsites (i.e.,measurementsobtained for an earlier time period)or
for active wells completedin the top of the upper Saddle MountainsBasalt

were utilized;however,with less reliance.

The inferredlateralflow patternshown in Plate I is believedto be

representativeof steady-state,ground-waterflow conditionswithin the upper-

basalt,confined aquifersystem,and is nearly identicalwith patterns
delineatedpreviouslyin Spane (1987)and DOE (1988)for the Mabton interbed,

which marks the lower stratigraphicboundaryof the Saddle MountainsBasalt

(see Figure 2.1). Salientfeaturesshown in Plate I for the upper-basalt

confined aquifersystem includethe following:
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• a prominent, broad recharge moundextending northeastward
from the Rattlesnake Hills- 200 West Area

• a small recharge moundImmediately east of the 200 East Area,
in the vicinity of B Pond

• a hydrogeologic barrier (i.e., ground-water flow impediment)
at the mouth of Cold Creek Valley, across which hydraulic
heads decrease approximately 80 m within the lower Saddle
Mountains and upper WanapumBasalt formations

• the presence of a low hydraulic head potential discharge
region in the UmtanumRidge- Gable Mountain structural area

• a high hydraulic head region to the north and east of the
ColumbiaRiver, associatedwith rechargeattributedto
agriculturalactivitiesin these areas.

Similarconclusionsare reportedby Jackson(1992)and Dresel et al. (1993)

for the RattlesnakeRidge interbed,using a more limiteddata set.

The broad rechargemound extendingfrom the RattlesnakeHills- 200 West Area

is believed attributableto a combinationof I) naturalrechargethat occurs

within the Dry Creek drainageof the RattlesnakeHills and 2) localized
artificialrechargeto the overlyingunconfinedaquifer (and eventuallythe

upper-basaltaquifer)from past wastewaterdisposalto U Pond in the 200 West

Area. The potentialfor possiblehydrogeologiccommunicationbetweenthe

unconfinedaquiferand hydrogeologicunits of the underlyingupper-basalt

aquifer in this area was noted previouslyin Spane et al. (1980). The lateral

ground-waterflow patternwithin the upper-basaltconfinedaquiferis strongly

influencedby the presenceof the ground-watermound, and causes ground water

to flow radiallyaway from this feature(primarilyto the north and east) in
the western sectionof the HanfordSite.

Examinationof Plate ] also indicatesthe presenceof a small rechargemound
immediatelyeast of the 200 East Area, near B Pond. The rechargemound is

associatedwith local artificialrechargeto the unconfinedaquiferand

- underlyingupper-basaltaquifer systemfrom wastewaterdisposalactivitiesat

the B pond complex. The potentialfor possiblehydrogeologiccommunication

between the unconfinedaquiferand the underlyingupper-basaltaquiferin this

area was noted previouslyin Gephartet al. (Ig7g)and Grahamet al. (1984).

The lateralground-waterflow patternwithin the upper-basaltconfined aquifer

is locallydistortedby the presenceof this ground-watermound, and causes
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ground water to flow radiallyaway from this feature (primarilyto the

northwestand east) in this central regionof the HanfordSite.

The presenceof a hydrologicbarrier (Cold Creek flow impediment)in the upper

Cold Creek synclinewas first postulatedby Newcomb (1969),based on the

significantlateraldecrease in hydraulichead that occurred for irrigation
wells completedin the upper WanapumBasalt. The nature and geometryof the

hydrogeologicfeatureare not completelyunderstood. However, availablewell

data suggestthat the Cold Creek flow impedimentinterruptsthe lateral

hydraulichead gradientwithin the SaddleMountains,Wanapum, and Grande Ronde

Basalts, and extendsnorth- south from the UmtanumRidge - Gable Mountain

structureto Yakima Ridge (Spane1987; DOE IgB8). Identifiedhydrogeologic

units of the upper-basaltconfinedaquifersystem (e.g.,RattlesnakeRidge
interbed,ElephantMountainbasalt interflowcontact)are not presentto the

west of this feature. The potentiometricpatternshown suggeststhat the

feature (possiblya fault) acts as an impermeablebarrierwith no major

ground-watertransferenceoccurring(eitherlaterallyor vertically).

The presence of a low hydraulichead (potentialdischarge)region in the

UmtanumRidge - Gable Mountain structuralarea is attributedto the postulated
hydraulicintercommunicationthat occurs betweenoverlyingand underlying
aquifersystems. Increasedhydraulicintercommunicationis attributedto the

absenceof upper-basalthydrogeologicunits, structuraldeformation,and the

presenceof erosionalpaleostreamchannels in this region (Gephartet al.

1979; Spane 1982; Graham et al. 1984; DOE IgB8). Early et al. (1988)also

report that hydrochemicaldata and temporalhydrologicresponse information

supportthe contentionof significanthydraulicintercommunicationand

downwardground-watermovement,from the unconfinedand upper-basaltconfined

aquifersto underlyingconfined aquifersof the lower Saddle Mountainsand

Wanapum Basaltswithin this region.

The high hydraulichead region to the north and east of the ColumbiaRiver is

associatedwith rechargeattributedto agriculturalactivitiesin these areas.

The effectsof rechargefrom irrigationand canal leakage (conveyanceloss)

east of the Columbia River have caused a significantincreasein head and

hydraulicgradientsin this area. The potentiometricmap pattern suggests

that ground-waterin the region northeastof Gable Mountainflows southwest

and dischargesprimarilyto underlyingconfinedaquifer systemsin the Umtanum

Ridge- Gable Mountainstructuralarea. The ColumbiaRiver, therefore,does

not representa dominant line-sinkdischargearea for the upper-basalt

confined aquiferalong this reach of the river. As will be discussed in
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Section4.0, the temporalhydraulichead patternfor upper-basaltmonitoring
wells located immediatelywest of the ColumbiaRiver exhibitsa trend of

increasinghydraulichead, indicatingthat equilibriumconditionshave not
been reestablishedfor the level of rechargethat is occurringto the east of

the ColumbiaRiver. The trend of increasinghydraulichead has also been

observedon the HanfordSite for deeper confinedaquifersystemswithin the

lower Saddle Mountainsand WanapumBasalts (e.g.,Swansonand LeventhalIgB4;

• DOE IgBB).
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4.0 FLOWSYSTEMDYNAMICS

In thissection,the temporalfluctuationof hydraulicheadswithinthe upper-
basaltconfinedaquifersystemis examinedto provideassociationswith
naturalandman-relatedstressesto the system.As discussedin DOE (IgBB),
the temporalresponsesexhibitedby HanfordSiteconfined-aquifermonitoring
wellsare functionsof:

• proximityto sourcesof rechargeanddischarge

• magnitudeand timedistributionof rechargeanddischarge

• presenceof interveninggeologicstructures

• possibleriverandgeologicoutcroprelationships.

To provideinformationconcerningr_centtemporalhydraulicheadtrends,
twenty-sixon-sitemonitoringwellscompletedin the upper-basaltaquiferwere
measuredquarter-annuallybetweenMarch1991andMarch1993. Figure4.1 shows
the locationsof the monitoringwell sites. Forcomparison,linear-regression
analysiswas appliedto the headmeasurementvaluesobtainedat each

monitoringwell site. Table4.1 summarizesthe resultsof the regression
analysis.The followingtemporalpatternswithinthe upper-basaltaquifer
systemwereexhibited:

AreaNearEasternHanfordSiteBoundary:a trendof increasinghead
and significantriver-stagefluctuationeffects

GeneralHanfordSiteArea: a trendof decreasinghead andno significant
naturalseasonaleffects.

. Formonitoringwellslocatedalongthe easternHanfordSiteboundary,an
increasein hydraulicheadwas observedoverthe two-yearperiod. The head
increaserangedbetween0.2 and0.4 m/yr,consistentwith the steady,long-
term increasereportedby DOE (1982and IgBB)forunderlyingSaddleMountains
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FIGURE4.1. Locationsof MonitoringWellsUsedfor EvaluatingFlowDynamic

Characteristicsof the Upper-BasaltConfinedAquifer
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Results of Linear-Regression Analysts for Determination
of Hydraulic HeadTrendswithin the Upper-Basalt Aquifer
at Selected Hanford Site Monitoring Wells.

Coefficient of Ltnear
Determination Standard Error Trend

Well (r z) of Estimate (m/vr) Comments .......
199-B3-2P 0.2844 0,69517 -0.601 influenced by river

199-H4-02 0.7382 0,13313 +0.369 influenced by river

699-13-01C 0.3683 1.66167 -1.941 influenced by water-
supply pumping

699-20-E5Q 0.7825 0.02465 -0.065
699-22-70 0.7835 0.07195 -0.184
699-22-70Q 0.7830 0.05985 -0.147
699-24-01P 0.7457 0.10144 +0.240
699-29-70AP 0.7850 0.06293 -0.165
699-32-22B 0.9390 0.04955 +0.396 influenced by well

construction
699-42-E9B 0.1270 0.47136 -0.281 Influenced by well

construction
699-42-40C 0.8668 0.06791 -0.240
699-42-42A 0.7846 0,06580 -0.174
699-43-91AP 0.9124 0.05543 -0.228
699-47-50 0.8946 0,04648 -0.187
699-47-80AP 0.9341 0,03544 -0.182
699-49-32B 0.7175 0.05487 -0.122
699-49-55B 0.847] 0.06298 -0.204
699-49-57B 0.9588 0.03305 -0.245
699-50-45 0.9594 0,02317 -0.155
699-50-48B 0.9533 0.02849 -0.177
699-51-46 0.9651 0.02232 -0.161

• 699-52-46A 0.9670 0.01853 -0.138
699-52-48 0.9785 0.01875 -0.174
699-53-50 0.9497 0.02996 -0,179
699-54-57 0.9395 0.04066 -0.220
699-56-53 0.9330 0.04701 -0.241
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andWanapumBasalt confined aquifers. The head increase noted for deeper
confined aquifers Is attributed to large-scale Irrigation activities within
the area east of the ColumbtaRiver. The fact that hydraulic head values
continue to increase in this region indicates that equilibrium conditions have
not been reestablished for the level of recharge occurring to the east of the
ColumbtaRiver.

Figure 4.2 showsthe increasing head pattern exhibited for Well 199-H4-2 and
699-24-1P. The head patterns showndo not exhibit obviousColumbia river-
stage fluctuation effects, as might be expected. Thts is attributed to the
infrequent, discrete nature of the hydraulic headmeasurements. Figure 4.3
illustrates the close correlation betweenhydraulic headmeasurementsat well
199-H4-2 and the ColumbiaRiver stage fluctuations, as recorded over a four-
day period with frequent measurements. As indtcatea, a close association
betweenriver-stage fluctuation andhydraulic head response is exhibited.

Trend analysts results ltsted in Table 4.1 for all monitoring wells not
located along the eastern Hanford Site boundary (i.e., in the vicinity of the
ColumbtaRiver) recorded a decrease in hydraulic head over the two-year
monitoring period. The head decrease ranged between0.1 and 0.3 m/yr, with
the greatest decltnes occurring in the vicinity of the 200 Areas. The
declining head patterns were, in most cases, extremely linear tn appearance
with no recognizable natural seasonal components. The decltne tn hydraulic
head is stmtlar to the pattern reported for _he overlying unconfined aqutfer,
attributed to the continuing decline in wastewater discharges to the
unconfined aquifer tn the 200 Areas (Newcomer1990; Dresel et al. 1993).
Figure 4.4 showsthe declining head pattern evident for Well 699-29-70APand
699-50-48B located in proximity to the 200 West and 200 East Areas,
respectively.
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