skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Updating and extending the IRDF-2002 dosimetry library

Conference ·
OSTI ID:22086980
 [1]; ;  [2];  [3]
  1. International Atomic Energy Agency, NAPC-Nuclear Data Section, Vienna (Austria)
  2. Inst. of Physics and Power Engineering, Obninsk, Kaluga Region (Russian Federation)
  3. Jozef Stefan Inst., Ljubljana (Slovenia)

The International Reactor Dosimetry File (IRDF)-2002 released in 2004 by the IAEA (see http://www-nds.iaea.org/irdf2002/) contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions including: (1) high-fidelity evaluation work undertaken by one of the authors (KIZ); (2) evaluations from the US ENDF/B-VII.0 and candidate evaluations from the US ENDF/B-VII.1 libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; (3) European JEFF3.1 library; and (4) Japanese JENDL-4.0 library. Additional high-threshold reactions not included in IRDF-2002 (e.g., {sup 59C}o(n,3n) and {sup 209}Bi(n,3n)) have been also evaluated to characterize higher-energy neutron fields. Overall, 37 new evaluations of dosimetry reactions have been assessed and intercomparisons made with integral measurements in reference neutron fields to determine whether they should be adopted to update and improve IRDF-2002. Benchmark calculations performed for newly evaluated reactions using the ENDF/B-VII.0 {sup 235}U thermal fission and {sup 252}Cf spontaneous fission neutron spectra show that calculated integral cross sections exhibit improved agreement with evaluated experimental data when compared with the equivalent data from the IRDF-2002 library. Data inconsistencies or deficiencies of new evaluations have been identified for {sup 63}Cu(n,2n), {sup 60}Ni(n,p) {sup 60m+g}Co, {sup 55}Mn(n,{gamma}), and {sup 232}Th(n,f) reactions. Compared with IRDF-2002, the upper neutron energy boundary was formally increased from the actual maximum energy of typically 20 MeV up to 60 MeV by using the TENDL-2010 cross sections and covariance matrices. This extension would allow the updated IRDF library to be also used in fusion dosimetry applications. Uncertainties in the cross sections for all new evaluations are given in the form of relative covariance matrices. Newly evaluated excitation functions should be considered as suitable candidates in the preparation of an improved version of the IRDF that was planned to be released for testing in December 2011. (authors)

Research Organization:
American Society for Testing and Materials - ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 (United States); European Working Group on Reactor Dosimetry - EWGRD, SCK.CEN, Mol (Belgium)
OSTI ID:
22086980
Report Number(s):
INIS-US-13-ISRD-14-P1-14; TRN: US13V0023045427
Resource Relation:
Conference: ISRD-14: 14. International Symposium on Reactor Dosimetry, Bretton Woods, NH (United States), 22-27 May 2011; Other Information: Country of input: France; 39 refs.
Country of Publication:
United States
Language:
English