Pseudopotential theory of Auger processes in CdSe quantum dots
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Auger rates are calculated for CdSe colloidal quantum dots using atomistic pseudopotential wave-
functions. We predict the dependence of Auger electron cooling on size and on correlation effects
(included via configuration interaction). Auger multi-exciton recombination rates are predicted for
bi-excitons as well as for tri-excitons. The results agree with recent measurements and shed light
on the significance of the dot surface on Auger multi-exciton decay.

PACS numbers: 71.15.-m, 71.55.-i

Auger effects are expected to play a central role in
carrier relaxation in nanostructures [1]-[10]. Two types
of Auger effects, ilustrated in Fig. 1, are prominent:

(i) Electron cooling (Figs. 1a,b: In the 3D bulk, or a
2D quantum well, the relaxation of an excited electron
to its ground state usually occurs by phonon emission.
The discrete nature of the electronic states of 0D dots
is expected [2] to prevent phonon-assisted electron re-
laxation (phonon bottleneck). Multi-phonon (combined
LO + LA) effects [3], or polaronic effects [4, 5], may
allow electronic relaxation to occur within a limited en-
ergy range around the phonon energy hwy. However,
this may not be sufficient to remove the phonon bottle-
neck in small, strongly confined quantum dots. On the
other hand, electron relaxation rates in CdSe quantum
dots were observed to be fast (7 ~ 0.3 ps in 2.3 nm ra-
dius nanocrystals [6], 7 = 0.9 — 1.2 ps for samples of size
4.3 nm [7]). It was proposed [8] that in a photoexcited
quantum dot the “hot” electron can transfer its energy
to the hole via an Auger process involving electron-hole
scattering (Fig. lab).

(ii) Auger multi-exciton recombination (Fig. 1c,d): A
ground-state biexciton can decay into an excited-state
monoexciton. Due to a large number of final mono-
exciton excited states, the efficiency of this process com-
petes with radiative recombination (i.e. 727! < T.44),
and effectively quenches the PL intensity [9]. These
events can lead to photoionization (when one of the final
electron or hole states is unbound), which was invoked to
explain PL intermittency effects [10]. The inverse Auger
process (creation of two e-h pairs from a single excited ex-
citon) has been advocated [11] as a mechanism of enhanc-
ing solar cell efficiency. A similar Auger process involves
the decay of a ground state tri-exciton into an excited
bi-exciton; this 3 — 2 Auger decay (Fig. 1d) can be even
faster than the 2 — 1 decay (Fig. 1c). Yet another type
of Auger process involves the decay of a ground state

trion into a hot electron (7. in Fig. 1e) or a hot hole (7,
in Fig. 1f).

All Auger effects illustrated in Fig. 1 are at the
heart of quantum dot carrier dynamics, and produce
phenomena distinct from bulk physics. Recently, fem-
tosecond carrier dynamics studies (see [1, 6, 9] and refer-
ences therein) have been performed on colloidal quantum
dots. These experiments have revealed various carrier re-
laxation times, which have been attributed to different
Auger relaxation processes. Since, however, the interpre-
tation of the results in terms of specific decay mechanisms
is uncertain, there is a need for accurate theoretical calcu-
lations for specific Auger decay processes. Auger effects
in quantum dots have been previously modeled using k-p
[8, 13] and tight-binding [14] Hamiltonians. However, the
conventional k-p description for the highly excited states
involved in Auger transitions might not be sufficiently ac-
curate [15]. Furthermore, the choice of the boundary con-
ditions for the k-p wavefunctions near the surface could
be problematic [16], and as we will see later, such region
plays a critical role in some of the Auger processes. There
are also problems due to the lack of atomistic descrip-
tion of the wavefunctions for multi-exciton Auger effects
which involve exchange- and Coulomb-like integrals. The
same problems exist in the tight-binding method which
lack explicit basis functions [14]. Thus, there is a need for
realistic and quantitatively reliable methods to calculate
the Auger effects in quantum dots.

We have applied our pseudopotential many-body ap-
proach [17] to calculate different Auger processes in CdSe
quantum dots. We will show that such calculations pro-
duce quantitative agreement with experiments, reveal the
dependence of cooling rates on excitation energy, predict

the ratios between 75732 and 727}!, the hidden relations
between 727! and 7. and 75, and the role of the dot

surface in Auger multi-exciton recombination.

Method of calculation: although there is no momentum



