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Objectives

• Effective compressibility of gases trapped in an 
porous medium :

– two different models
» 1D biconical pore network
» spherical pore geometry with 3D connectivity

– fitting to the field measurement
» liquid level change in response to barometric 

pressure

• Rheological properties of gas/liquid/solids system
– yield stress 
– compressibility
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Effective Compressibility (1D biconical model)
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Modeling Bubble Growth

• Pore Geometry
– All pores are biconical and 

identical.
– Three Interfaces
– Position x1 determines radii & 

positions of other interfaces 
(capillary equilibrium) r1

r21

r22

θθ

x2

x1 x3

Interface 1
Interface 2

Interface 3

r3.
• Three time scales

– long term : bubble growth 
– short term : bubble volume 

responding  to pressure change
– very-short term : interface 

jumps

Effective Compressibility (1D biconical model)
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Single Bubble 
Diffusive growth of bubble Bubble volume change in response 

to liquid pressure change at fixed 
bubble mass

Effective Compressibility (1D biconical model)
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Population Of Bubbles 
portion of bubbles studied
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• How to average 
population of bubbles?

• Assume bubbles have 
masses uniformly 
distributed between 
consecutive jumps .

• When bubbles grow large, 
they are all poised near 
pore throats.

Effective Compressibility (1D biconical model)
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Field Measurement 

• During pressure decrease

– Liquid level increases 
linearly with decrease 
in pressure.

• During subsequence 
pressure increase

– Liquid level stays 
during small increase 
in liquid pressure.

– Then, liquid level 
decreases linearly with 
increase in pressure.
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Effective Compressibility (1D biconical model)

(After Whitney et al., 1996)
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Fitting To Field Measurement
( Rb /Rt = 1.5, Nm = 10000, Pliq /Pc

e = 100 )

• Constant-volume region

– interfaces at pore throats at the 
beginning of pressure increase.  
--> Nm large (bubbles many pores 
long)

– contribution of liquid film at pore 
corners should be small-->RbD
(i.e., Rb /Rt) small

• Transition region: interface 
movement along throat to body

• Two constant-slope regions

– compressibilities are 
comparable--> P liqD (i.e., P liq /Pc

e) 
large

Effective Compressibility (1D biconical model)
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Ambiguity in Model Fit

(a) RbD = 1.0001 , P liqD = 0.003 (b) RbD = 1.5, P liqD = 100

• P l iqD ( ≡≡ Pliq/ Pc
e ) cannot be determined uniquely.

--> ambiguity in determining capillary effect.

Effective Compressibility (1D biconical model)
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Conclusions (biconical model)

• The mechanics of bubble movement in the slurry layer in 
a Hanford waste tank, responding to liquid pressure 
change, were studied using a 1D biconical-pore network 
model. 

• The model shows that there is a hysteresis in effective 
compressibility, between pressure decreases and 
increases. Impulsive jumps occur from pore throat to 
(near) pore throat during pressure decreases, and from 
pore body to (near) pore body during pressure increases. 

• The model can fit tank data from the Hanford reservation 
with good agreement provided that Nm is large and RbD is 
relatively small; however, the relative magnitude of 
capillary effects cannot be determined unambiguously.

Effective Compressibility (1D biconical model)
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Effective Compressibility (spherical-pore model)

• Pore Geometry
– All pores are spherical and 

identical.

– No interface at the pore corner 
(no pore corner)

– Able to consider the effect of 
connectivity (coordination 
number Z)

r1
αα1

Interface 1

Gas Gas

liquid

Rb

R t

Z=4
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Fitting To Field Measurement
(Nm = 10000, Pliq /Pc

e = 100, Z=6 )

• As with 1D biconical model, 
large Nm and P l iqD (i.e., P l iq /Pc

e)
are required.

• Effect of RbD

– Contrary to 1D biconical
model, large RbD (i.e., Rb /R t)
is required to fit model.

– Physically, same implication 
: small volume change at the 
beginning of pressure 
increase!

Effective Compressibility (spherical-pore model)
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Fitting To Field Measurement
(Nm = 10000, Pliq /Pc

e = 100, Rb /Rt = 4)

• Effect of coordination 
number Z
– Smaller Z fits data better.

– Physically, same 
implication : small 
volume change at the 
beginning of pressure 
increase!

Effective Compressibility (spherical-pore model)

1

1.01

1.02

1.03

1.04

1.05

1.06

94 96 98 100

PliqD

R
el

at
iv

e 
G

as
 V

o
lu

m
e 

C
h

an
g

e

Z=2 3 4 6 8



The University of Texas at Austin CPGE

Estimating Trapped Gas Volume

• With pore-geometry information, can estimate trapped-gas 
fraction

Effective Compressibility (spherical-pore model)
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Conclusions (spherical-pore model)

• Simple model using spherical pore geometry is 
considered to see the effect of different pore geometry 
and connectivity. 

• There exist steady/unsteady movements for the 
population of bubbles and a hysteresis in effective 
compressibility, between pressure decreases and 
increases as found in 1D biconical pore network model. 

• The model can fit field data with large Nm and PliqD. 
Larger RbD and smaller Z improve fit.

• This model suggests this model also requires information 
on pore size to estimate trapped-gas volume.

Effective Compressibility (spherical-pore model)
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Yield Stress of Three-phase Mixtures

• Three phases are present in the parallelogram.

• Contact angle is assumed to be zero.

• Surfactant stabilizes liquid films between bubbles.

(a) Structure of foamy sands at rest (all 
phases are evenly distributed in the unit 
cell)

(b) Structure of foamy sands in the 
presence of finite shear stress (all phases 
are still distributed in the unit cell)

gas

solid

liquid gassolidliquid
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Input Parameters

Yield Stress of Three-phase Mixture

• Fraction of three phases 
in the mixture gives 
unique geometric 
distribution in the 
triangular unit cell.

• Bubble deforms as solid 
1 is displaced; volume 
of each phase constant.

L : hypothetical length in z direction
(perpendicular to this plane)
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Existence Of Two Modes

Yield Stress of Three-phase Mixture

• There exists two modes depending on the gas 
fraction

(a) Mode 1 (r>rs ) : interface between solids forms lens

gas

solidsolid

r>rs

liquid

(b) Mode 2 (r<rs ) : interface between solids form s

lam ella and Plateau border

gas

solid so lid

r<rs

lam ella

P lateau border
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Case 1

Yield Stress of Three-phase Mixture

(d) F inal state, H>D/2

D3

Bubble 
detaches late



The University of Texas at Austin CPGE

Case 2

Yield Stress of Three-phase Mixture
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Case 3

Yield Stress of Three-phase Mixture

(a) In itial s ta te of Case 1, H=0 (b) Interface overlapping;
Initia l state of Case 3, H=Hi

(c) Two bubbles deformed,
Hi<H<D/2 (d) Final state, H=D/2

Bubble 
detaches early
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Force Calculation

Yield Stress of Three-phase Mixture

• Fx = F1x - F2x - F3x

– Fx ≡≡ forces resisting to the horizontal 
displacement, proportional to yield stress
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Example of Yield Stress Profile

Yield Stress of Three-phase Mixture

Fs=49.76%
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Yield Stress vs. Phase Fraction 

Yield Stress of Three-phase Mixture

• At given solid fraction, yield 
stress increases with gas 
fraction

• At given gas fraction, yield 
stress increases with solid 
fraction
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Conclusions 

Yield Stress of Three-phase Mixture

• Origin of the yield stress with gas/liquid/solids 
mixture has been investigated with 2D model. Forces 
resisting to the movement of three-phase mixture 
has been calculated by considering interfacial 
tension and capillary pressure only (no colloidal 
forces between solids).

• Maximum yield stress increases with gas fraction at 
given solid fractions between 39 to 68 %. There is no 
yield stress at very small gas fraction. Maximum 
yield stress increases with solid fraction at given gas 
fraction.
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Compressibility of Three-phase Mixture

• Three phases are present in unit cell.

• Whole system expands/shrinks by fraction e.

• Surfactant stabilizes liquid films between bubbles.

(a) Structure of foamy sands at rest (all 
phases are evenly distributed in the unit 
cell)

(b) Structure of foamy sands with elongation 
length e in diagonal direction; all phases are 
still distributed in the unit cell
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Force Calculation

Compressibility of Three-phase Mixture

• P = (F1y - F2y - F3y - F4y )/(DL)
– P ≡≡ external pressure applied to this system
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Results 

Compressibility of Three-phase Mixture

Smaller Capillary Effect
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Results (cont’d)

Compressibility of Three-phase Mixture

• Compressibility of three-phase mixture 
deviates more from that of given fraction of 
ideal gas as PD decreases.

– Small PD represents small particle size

– for example, P=1 atm, σσ=30mN/m, and R=0.3 micron, then 
PD=1; substantial capillary effects

• Effect of contact angle is not significant.

• There is discontinuity between two modes: 
– 2nd order phase transition
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Conclusions 

Compressibility of Three-phase Mixture

• Compressibility of gas/liquid/solids mixture has been 
calculated by 2D analysis. We assume that three-
phases are symmetrically distributed such that 
triangular unit cell represents whole system.

• Compressibility of the mixture deviates from that of 
ideal gas mixed with solids and liquid. This deviation 
in compressibility gets insignificant as PD increases.

• There exists discontinuity between two modes, 
similar to the second-order phase transition. 
Compressibility of the mixture is affected by the this 
mode, more pronounced when PD is small.


