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“Conventional”
Cavity Ring-Down Spectroscopy
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» A “new” optical absorption technique.

» Photon decay time is very sensitive to cavity losses.

» Spectrum obtained as cavity loss vs wavelength.




Detection Limit in CRDS
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» Min. Detect. Abs. (MDA) =L, *(D JIJ(T)) i

» L, depends on cavity design.
» (0 J1),,,, depends on detection/digitization factors.

» Goal: Minimize L, and measure J precisely.




Cavity Modes
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Free-Spectral Range = c¢/(2*length)
FSR < laser frequency spectrum

Multiple longitudinal modes excited

Transverse Mode-beating :

Non-exponential decay

Single Mode excitation :

Pure exponential decay




Extension to Condensed Matter?
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» Use of a cell or plate in the cavity increases L
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» Absorption/ring-down time equation is complicated.

»Multilayer, dielectric mirrors have narrow bandwidth.




1._.>1_=sin’(n,/n,) n,<n,

» Broadband

» R limited by surface scattering loss.

» R>99.9999 for a “superpolished” surface.

» Evanescent wave probes absorption as in ATR.




More on TIR:
Surface Electric Field Enhancement
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»Enhanced field intensity enhances absorption.

» Direction and magnitude can be calculated.

» Average molecular orientation can be extracted.




Monolithic, Folded Resonator
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»Both polarization states resonate.

»Small (~1-3 cm) & Easily interfaced to experiments.

»BUT coated surfaces restrict bandwidth.



Folded Resonator Performance
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Miniature TIR-ring cavity
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» Monolithic polygonal solid forms the cavity.

» # of sides determines the angle of incidence.

» A single convex surface results in a stable resonator.
» Light enters/exits the ring by photon tunneling.

» Evanescent waves probe absorption at remaining facets.




TIR-ring Cavity Advantages

Laser pulse

» Miniaturizable to ~ 10 um %\/
» Extremely small loss (107 < L, <107)

» Single-mode excitation is easy \

» Broad spectral bandwidth (1000 nm+)

Evanescenl waves

» Both polarizations: orientation measurements
» Wide T and P range.

» With optical fiber, forms a remote, miniature spectrometer.




Cavities for Liquids and Other
Spectral Regions
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» Sapphire Hexagonal cavity : UV to Near-IR for liquids

» Undoped YAG Hexagonal cavity : Mid-IR for liquids

» Fluoride glass Square cavity: Thin films in the Mid-IR




Photon Tunneling: Single gap
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»100 % T only at contact
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»>T=50 ppm ~ 2Hm.
(633 nm; 45°; fused silica)



Photon Tunneling: Cavity
Transmission
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»~100% T at ~2 d m.
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»>~50 ppm T at ~4 Ll m.

> L = ~50 ppm at 4 lm.

coup

508 |

10 20 30 40 b0 |

dap Width (um)

(0 20 30 40 50 60 70 80
Cap Width (um)

(633 nm; 45°; fused silica)



Coupling and Cavity Finesse

(633 nm; 45°; fused silica)
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> Finesse is stabilized w/respect to changes in gap width.




The Experiment
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Measuring Molecular Orientation
at the Surface

Before I, adsorption After I, adsorption
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»Large difference in decay times for S- vs P-polarization.

» E-field direction and magnitude are known.

»Results indicate I, molecules lay flat on average.




Field Enhancement ~ 4

/

MDA= = N.F(T) = 1x107

» S-polarized absorption identified as physisiorbed I,.
» Knowing orientation provides the correct field enhancement.

» Estimated detection limit: 60 ppm of a monolayer.




Now 107 but 10 is possible
Now 107 but 102 is possible » Single Mode excitation
»16-Bit digitizer

\ » Analog Detection

MDA = L, *()J/J), ..

Now 80x10°but <107 is possible

» Other optical materials
» Different spectral regions

» Smaller cavities




Single Molecule Detection?

» Achieved at 2 K with double-modulation (~107)

»At 2 K, pentacene cross-section is ~ 10"'* cm?/molecule

> For an MDA ~ 1012
Area=1.2x10"° cm?

F.E.~3 _
" (N/A) F_ = 1x10*?

1018 cm? ~4{1L1mI

>N ~ 4 molecules




DOE Needs Addressed

» Technology Needs:
Rugged, miniature spectrometer

Detection of TCE, PCE, PB, Cs, and others

Characterize plumes

Long-term monitoring/stewardship

Headspace analysis
> Science Needs
Advances fundamental measurement science

New platform for Molecular Recognition
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Analyte Detection with Non-specific Binding Matrix on Fused Silica
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Fused silica substrate

Highly Mon-specific Binding
Matrix Molacule

N. . J = recognition site """'i_" = analyle




Latest Developments

» A hexagonal TIR-ring sapphire resonator is operational for liquids
» Single mode excitation with a standard diode has been achieved
» Superpolished surfaces have been functionalized with cyclodextrins

» Functionalized surfaces show extremely low loss

» CRADA and licensing agreement with Informed Diagnostics Inc.
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