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The Main Objective

! To develop a Risk Based least-cost pump-
and-treat remediation design or redesign for 
contaminated aquifers.



Linkage to Site Needs

! To design or redesign risk-based 
remediation systems to reflect least cost

! To accommodate uncertainties in 
hydrogeological parameters

! To penalize, but not eliminate minimal risk 
designs, i.e designs that are less expensive, 
but have a small possibility of failure



The Approach

! Formulate and solve an optimization 
problem that has an objective function that 
minimizes the total remediation cost and 
also considers the uncertainty in the 
hydraulic-conductivity field. 



Main Characteristics of the  
Optimization Problem

! The constraints are non-linear (risk-based 
concentration constraints). 

! The objective function is non-convex with 
multiple local minima.



Methodology

! Use Robust Optimization theory. A  multi-
scenario approach (Mulvey, 1995).

! Introduce the Tunneling Method (Levy, 
1984 and 1985), an efficient method for 
solving non-convex global optimization 
problems with multiple local minima.



Why a Multi-Scenario Approach?

! The scenarios chosen to represent the 
variance in the hydraulic conductivity field 
are randomly selected using a new method 
called ‘Equal Area Selection.’

! The multi-scenario optimization approach 
addresses the issue of design risk due  to 
hydraulic conductivity uncertainty.



The Robust Optimization Formulation
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The Groundwater Model
The flow equation:
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The transport equation:
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Equal Area Sampling: Choose K values by 

examining equal area partitioning of the distribution function.

For K following a lognormal distribution:  Ai = Aj
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10 realizations K (m/hr)

K1 = 0.0026    K6 = 0.0112

K2 = 0.0040    K7 = 0.0142

K3 = 0.0055    K8 = 0.0183

K4 = 0.0071    K9 = 0.0248

K5 = 0.0089   K10 = 0.0380
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Lognormal Distribution Formula
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ββββ-Distribution vs.Lognormal Distribution
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The Hydraulic Conductivity 
Distribution - A Beta Distribution
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B(p,q) = the beta function

a, b = lower and upper bounds of the range 
of possible hydraulic conductivities.

p, q = parameters that describe the shape of 
the beta function.



The Tunneling Method

1. The minimization phase - A gradient method
to determine a local minimum of the objective 
function.

2. The tunneling phase - the objective function is 
transformed into a “tunneling function” and  
a new starting point for Phase 1 is determined.

! The Tunneling method consists of two phases:



The Tunneling Function
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f(q) = original objective function

f* = the local minimum determined in the            
minimization phase

q* = the pumping rate for the local minimum 
determined in the minimization phase

n = the pole strength
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Hypothetical Example Initial State (I)
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Interior Global Minimum (I)
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Hypothetical Example Initial State (II)
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Two Local Minima (II)
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Results

Weight = 100 mil. Weight = 500 mil.Weight = 0

Cost:
$149,328

Cost:
$496,435

Cost:
$586,926

Case I (Interior Global Minimum)
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Weight indicates measure of risk aversion to system failure



Conclusions

!Risk-based least-cost design can be 
formulated using a Robust-
Optimization approach.

!The Tunneling Method is a viable 
approach for determining the global 
optimum for a Robust-Optimization 
problem where the objective function 
is non-convex and has multiple local 
minima.


