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Background

Hanford High Level Nuclear Waste

Major Inorganic Components

Compound

Amount, % by weight

Liquid Sludge Saltcake Slurry

H,O
NaNO,
NaNO,
NaAlO,
Na,CO,
Na;PO,

NaOH

40

21

16

13

6.2

2.3

0.6

34 11
25 82
3.8 1.7
1.2 1.4
5.3 1.5
16 1.6
2.2 0.5

56

15

5.6

6.0

7.0

0.8

1.9

P Nitrate, precursor to peroxynitrite, is ubiquitous
component in strongly alkaline Hanford wastes

NATIONAL LABORATORY



Peroxynitrite

Nitrate Peroxynitrite
O ,
| O\ /O
/N\ < > N-O
O O
) G° =-26.6 kcal/mol )G°=+16.3 kcal/mol

# Although ONOO is strong oxidant and nitrating agent, it is unreactive unless
protonated or combined with Lewis acids such as CO, or metal ions

# Formation pathways: # Decomposition:
pK,=6.6
NO3’ > *NOz"———> ONOO ONOOH ONOO" + H*
'O+ *NO, — ONOO k=0.8s"
‘NO + "0y’ —> ONOO" NO, + H*

# Efficient, inexpensive synthesis (Baeyer-Villiger reaction):

HNO, + H,O, ——> ONOO™ + H" + H,0
27 22 2 BROOKHIAEN
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Project Scope

This project provides information relevant to: (i) extent and
nature of radiation-induced chemical modification of Hanford
waste during storage and (ii) potential applications of
peroxynitrite in remediation technologies. Within this context,
the specific research objectives are:

P To determine the extend of radiation-induced peroxynitrite
generation in nitrates

P Through mechanistic studies of peroxynitrite reactions to

assess their contribution to the degradation of high level
waste

P Determine the feasibility of using peroxynitrite for
destruction of organic complexants and for removal of

chromium for more efficient waste vitrification
BROOKHEVEN
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Progress Summary

The most significant results and implications of this project are:

P Establishing that peroxynitrite is a major oxidant produced by
radiation in solid nitrates present in waste tanks. This can
result in considerable accumulation of the chemical energy in
solid waste

P Complete mechanistic description of the catalyzed peroxynitrite
reactivity pathways. Radicals species produced by these
reactions contribute to the waste chemical degradation

P Demonstration that peroxynitrite could find applications in the
pretreatment of the Hanford waste for disposal. These include
mineralization of organic complexants and oxidative dissolution

of chromium
BROOKHIAEN
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Radiolytic Accumulation of Peroxynitrite

Radiation-induced coloration due to ONOO"
In solid alkali nitrates
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Spectroscopic Detection of ONOO-

Raman spectral changes in irradiated CsNO,
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Peroxynitrite Accumulation Kinetics

_ Qradiation

NO; s ONOO"
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P Accumulation rapidly decelerates with absorbed radiation dose
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Radiation Yields

g
RN

ONOO" NO; + 120,

Product radiation yields (molecules/100 eV)

In solid alkali nitrates

Product ONOO

.. : NO;
Salt Initial Stationary
NaNO; 0.60 0.01 0.17
KNGO, 0.73 0.002 1.3
CsNO, 1.9 0.0 1.25
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Photochemical Peroxynitrite Accumulation

[ONOO™], nrmol/g
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photolysis time, min

ONOO

NO; + 120,

Product quantum yields (%) at 248 nm
In solid alkali nitrates

Product ONOO-| NO- Ratio
Salt * |ONOO/NO;,
NH,NO, 0.03 0.2 0.16
NaNO; 0.7 0.1 6.4
KNO, 5.1 0.8 6.4
CsNO, 11 1.1 10

P UV photolysis affords doping nitrate salts with large amounts of ONOO
P electronically excited NO, isomerizes to ONOO-
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Reactivity of Peroxynitrite in Solution

Proton- and Carbon Dioxide-Catalyzed Oxidations by ONOO"

P H'-catalyzed oxidations proceed through equilibrium formation
of conjugate peroxynitrous acid (ONOOH); homolytic cleavage
of O-O bond in ONOOH is the rate-determining step (k = 1.6 s™)

P CO,-catalyzed oxidations proceed through rate-determining
formation of nitrosoperoxycarbonate (ONOOCO,") adduct;
k(CO, + ONOO') =3 x 10* M's™

P In both cases, limiting oxidation yields are below stoichiometric
limits based upon consumption of ONOO

P In both cases, strongly oxidizing radical species are produced
as reactive intermediates
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Mechanisms of Catalyzed Reactions

H*-catalyzed pathway:
ONOO +H"
“ ke 28%
ONOOH {*NO,,”OH}—— *OH +*NO,
rate-limiting . H-O ; i
l 72% lNOé %2_» NO3 + NO, +2H"
H'™+ NOj OH™ +°NO,
CO,-catalyzed pathway:

rate

ONO, +CO, 2, ONO,CO,; — » {NO,,*CO;} 2225 *NO, + *CO5

limiting
65 %\ /

NO; + CO,
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Reactivity of ONOOH

(yield,/yield) - 1

Comparison with "‘OH radical

HZO NZO radiolysis w |I’C|62'
Tmeon =
ONOOH IO “NO»

5l 0 Yield of [rC12:
1 5- E 1=k2 X[Noz_]

N Y k, [IrCl,”]
1.0 4
- O pulse radiolysis k,/k,=0.61K 0.01

N o stopped flow k,/k, = 0.63K 0.05
0.0 -

[NO, ]1/[IrC1.>"]

P Reactivities of the oxidizing intermediate produced from ONOOH
and the “authentic” ‘OH radical are identical BROOKHELAEN
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Acidity of Carbonate Radical

‘OH + HCO, (orH,CO,) ¥ H,0+ CO,
CO, +H* 2 HCO,

=
a
1 N 1

e/10°M'em”™

fraction of deprotonated radical

o O O
Q. 002 oo O
P Carbonate radical is a strong acid,
ﬁ% PK_(HCO,) <0
$ ¢ i at pH 10
s | o P Rate constants tabulated for ‘CO,’
& atpHO0.8
&° Qsz;u. can be used over 0 < pH < 14
(] .
| & A without change
5 .0 <>.
_ ’/: .o.
IIIIIII [
Y et
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Oxidation of ONOO" by Inorganic Radicals

Pulse radiolysis data

‘R/R- E°(CR/R) | k(R+ONOO)
couple (V,NHE) Ms1
‘OH/OH- 1.90 4.8 x 10
'CO;/CO* 1.59 3.7x 10°
"Ny/Ny 1.33 72x 108
‘NO,/NO, 1.04 <2x10?
‘Cl10y/CIO, 0.93 3.2x 104

P Reaction pathways
electron transfer:

‘CO; + ONOO™ ' CO,# +'ONOO; ‘ONOO !

atom abstraction:

‘OH + ONOO" ¥ "HO, + NO,

P Oxidation potential of ONOO™ can be estimated as:
E°CONOO/ONOO) =0.8V

‘NO + O,
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Decomposition of Peroxynitrite in Solution

% O, yield

50 -

20NOO +H" ¥ 2yO, +4yNO, + (2 -4y)NO; + H’

pH-dependent oxygen yield

@ cexperimental

simulated

pH

Simplified mechanism:

ONOO™ =="NO + Oz

H20 2H ™+ 2NOy”

*NOy + OH™
A

NOz
ONOOH —> *OH +°NO2

ONOO™

Y
H™+NO2 +°03

(high NO7 )

0> +NO>”

(low NO3 )

P NO, does not inhibit O, evolution, while organic ‘OH scavengers do

P This inhibition is reversed above pH 8 by excess of NO,
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Oxidation of EDTA by Peroxynitrite

ONOO+ Hf — ONOOH —'OH + 'NO,
_N—CHy=C_ + *OH —> _N—CH=C{ + H,0
R> O- R> (O}

R |R,N'CHCO, + 'OH (or 'NO,) — R;R,NH + CH,0 + CO, + OH" (or NO,")

100

at pH 5.7; [EDTA] = 0.1 mM

remaining EDTA, %

0O 50 100 150 200 250
[ONOO']/[EDTA], BROOKHEVEN
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Oxidative Dissolution of Chromium(lll)

Summary

P Oxidation cleanly produces Cr(VI) in the form of chromate, CrO,*

P Stoichiometric ratio )[ONOO 1D [Cr(lI)] is 3/2, i.e., the oxidizing
equivalents of ONOOQO™ are utilized completely

P The rate is first order in both [ONOO and [Cr(lll)], suggesting
that the rate-determining step is Sy2 nucleophilic attack of
ONOO on Cr(OH),. The rate constant for this step is 6.5 M's

P Peroxynitrite is a better oxidant for Cr(lll) than hydrogen
peroxide; under identical conditions, the rate ratio is - 3

P The rate of oxidation decreases with the solution aging

P Addition of Mn(ll) strongly promotes oxidation

BROOKHFIAVEN

NATIONAL LABORATORY



Oxidation of Cr(OH), by Peroxynitrite

D Absorbance

0.01 -

0.00 §§§§§§§i§§§§§§§\

2 Cr(OH),” + 30NOO" + 20H ¥ 2CrO,2 + 3NO, + 5H,0

Kinetics

(scanning interval 1 min)

in 2.5 M NaOH

1 Cro,”

-0.01 4

Proposed mechanism

limitin

t
Cr(ll) + ONOO" ie»g Cr(V) + NO,’
Cr(Ill) + Cr(V) —> 2Cr(1V)

2 Cr(IV) + 20NOO™ —» 2 Cr(VI) +2NO,
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450

2 Cr(Ill) +30NOO" —» 2Cr(VI) +3NO,
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Effect of Aging on Cr(lll) Oxidation

oxidation halftime, min

Cr(lll) aged in alkali prior to ONOQO- addition
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Catalytic Effect of Mn(ll) on Cr(lll) Oxidation

P Mn accelerates oxidation of Cr

P Oxidation proceeds to completion

P Amounts of Cr and Mn found in Hanford tanks are nearly equal

remaining Cr(lll), %
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