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Compound 

Amount, % by weight

Liquid Sludge Salt cake Slurry

H2O 40 34 11 56

NaNO3 21 25 82 15

NaNO2 16 3.8 1.7 5.6

NaAlO2 13 1.2 1.4 6.0

Na2CO3 6.2 5.3 1.5 7.0

Na3PO4 2.3 16 1.6 0.8

NaOH 0.6 2.2 0.5 1.9

Hanford High Level Nuclear Waste

Background

Major Inorganic Components

P Nitrate, precursor to peroxynitrite, is ubiquitous
component in strongly alkaline Hanford wastes
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#  Although ONOO- is strong oxidant and nitrating agent, it is unreactive unless
 protonated or combined with Lewis acids such as CO2 or metal ions

#  Formation pathways: #  Decomposition:

#   Efficient, inexpensive synthesis (Baeyer-Villiger reaction):



P To determine the extend of radiation-induced peroxynitrite
generation in nitrates 

P Through mechanistic studies of peroxynitrite reactions to
assess their contribution to the degradation of high level
waste

P Determine the feasibility of using peroxynitrite for
destruction of organic complexants and for removal of
chromium for more efficient waste vitrification

This project provides information relevant to: (i) extent and
nature of radiation-induced chemical modification of Hanford
waste during storage and  (ii) potential applications of
peroxynitrite in remediation technologies.  Within this context,
the specific research objectives are:

Project Scope



P Establishing that peroxynitrite is a major oxidant produced by
radiation in solid nitrates present in waste tanks.  This can
result in considerable accumulation of the chemical energy in
solid waste

P Complete mechanistic description of the catalyzed peroxynitrite
reactivity pathways.  Radicals species produced by these
reactions contribute to the waste chemical degradation

P Demonstration that peroxynitrite could find applications in the
pretreatment of the Hanford waste for disposal.  These include
mineralization of organic complexants and oxidative dissolution
of chromium

The most significant results and implications of this project are:

Progress Summary
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Radiolytic Accumulation of Peroxynitrite 
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Spectroscopic Detection of ONOO-
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Peroxynitrite Accumulation Kinetics

P Accumulation rapidly decelerates with absorbed radiation dose



NO3
-

ONOO-  + 1/2  O2NO2
-

γ

         Product
      Salt

ONOO-

NO2
-

Initial Stationary
NaNO3 0.60 0.01 0.17
KNO3 0.73 0.002 1.3
CsNO3 1.9 0.0 1.25

         Product
      Salt

ONOO-

NO2
-

Initial Stationary
NaNO3 0.60 0.01 0.17
KNO3 0.73 0.002 1.3
CsNO3 1.9 0.0 1.25

Radiation Yields

Product radiation yields (molecules/100 eV)
in solid alkali nitrates
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          Product
 Salt   

ONOO- NO2
-

Ratio
ONOO-/NO2

-

NH4NO3 0.03 0.2 0.16

NaNO3 0.7 0.1 6.4

KNO3 5.1 0.8 6.4

CsNO3 11 1.1 10

hν
NO3

-

ONOO-

 + 1/2 O2NO2
-

Photochemical Peroxynitrite Accumulation

Product quantum yields (%) at 248 nm
in solid alkali nitrates

P UV photolysis affords doping nitrate salts with large amounts of ONOO-

P electronically excited NO3 isomerizes to ONOO-



P H+-catalyzed oxidations proceed through equilibrium formation
of conjugate peroxynitrous acid (ONOOH); homolytic cleavage
of O-O bond in ONOOH is the rate-determining step (k = 1.6 s-1)

P CO2-catalyzed oxidations proceed through rate-determining
formation of nitrosoperoxycarbonate (ONOOCO2

-) adduct; 
k(CO2 + ONOO-) = 3 x 104 M-1s-1

P In both cases, limiting oxidation yields are below stoichiometric
limits based upon consumption of ONOO-

P In both cases, strongly oxidizing radical species are produced
as reactive intermediates

Proton- and Carbon Dioxide-Catalyzed Oxidations by ONOO-

Reactivity of Peroxynitrite in Solution
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Mechanisms of Catalyzed Reactions

H+-catalyzed pathway:

CO2-catalyzed pathway:
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Comparison with •OH radical

Reactivity of ONOOH

Yield of IrCl6
2-:

P Reactivities of the oxidizing intermediate produced from ONOOH
and the “authentic” •OH  radical are identical
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Acidity of Carbonate Radical

 •OH + HCO3
- (or H2CO3

-) !  H2O +  •CO3
-

•CO3
- + H+ º •HCO3

P Carbonate radical is a strong acid,
pKa(

•HCO3) < 0

P Rate constants tabulated for •CO3
-

can be used over 0 < pH < 14
without change



•R/R-

couple

Eo(•R/R-)

 (V, NHE)

k(•R + ONOO-)

M-1s-1

•OH/OH- 1.90 4.8 x 109

•CO3
-/CO3

2- 1.59 3.7 x 106

•N3/N3
- 1.33 7.2 x 108

•NO2/NO2
- 1.04 < 2 x 104

•ClO2/ClO2
- 0.93 3.2 x 104

Oxidation of ONOO- by Inorganic Radicals

Pulse radiolysis data

P Reaction pathways
electron transfer:

               •CO3
- + ONOO- ! CO3

2- + •ONOO;  •ONOO ! •NO + O2

atom abstraction:
                     •OH + ONOO- ! •HO2 + NO2

-

P Oxidation potential of ONOO- can be estimated as: 
E0(•ONOO/ONOO-) = 0.8 V
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Decomposition of Peroxynitrite in Solution

2 ONOO- + H+ ! 2y O2 + 4y NO2
- + (2 - 4y) NO3

- +  H+

Simplified mechanism:
pH-dependent oxygen yield

P NO2
- does not inhibit O2 evolution, while organic •OH scavengers do

P This inhibition is reversed above pH 8 by excess of NO2
-
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P Oxidation cleanly produces Cr(VI) in the form of chromate, CrO4
2-

P Stoichiometric ratio )[ONOO- ]/)[Cr(III)] is 3/2, i.e., the oxidizing
equivalents of ONOO- are utilized completely

P The rate is first order in both [ONOO-] and [Cr(III)], suggesting
that the rate-determining step is SN2 nucleophilic attack of
ONOO- on Cr(OH)4

-.  The rate constant for this step is 6.5 M-1s-1

P Peroxynitrite is a better oxidant for Cr(III) than hydrogen
peroxide; under identical conditions, the rate ratio is - 3

P The rate of oxidation decreases with the solution aging

P Addition of Mn(II) strongly promotes oxidation

Summary

Oxidative Dissolution of Chromium(III)
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Proposed mechanism
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Cr(III) aged in alkali prior to ONOO- addition
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P Mn accelerates oxidation of Cr

P Oxidation proceeds to completion

P Amounts of Cr and Mn found in Hanford tanks are nearly equal
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