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Objective
Investigate microscopic and long-term radiation effects on material properties. Achieve fundamental understanding of 
radiation effects for modeling and predicting performance of HLW forms and Pu immobilization phases.

Approach
•Actinide-incorporation

!244Cm(1%):YPO4, 244Cm(1%):LuPO4 (18-years old, ~ 5X1019 αααα-decay/g: same dose level as 2.4% 239Pu stored for 104

years),

!244Cm(1%), 249Bk(1%) in borosilicate glass.

•Electron microscopy (SAED, TEM)

•Laser and X-ray spectroscopy (FLN, EXAFS)

•Computational modeling

!Molecular dynamics (MD) and 

Monte Carlo simulations.

Long-term Radiation Effects

Crystalline phosphates: amorphization resistant

After 18-year accumulation of ~5x1019 αααα-decay/g 
damage, no amorphization but defect clusters and 
lattice distortion were observed in 244Cm-doped 
phosphates: evidence of lattice recovery and  defect 
aggregation at room temperature due to collective 
inter-atomic interactions.

Bubbles observed in 18-y old samples of 
phosphates doped with 244cm: evidence of 
defect mobilization and aggregation

TEM images of 244Cm:LuPO4 showing the 
presence of bubbles embedded in crystalline 
lattice.  The insert image shows an isolated 
bubble and its crystalline vicinity. 
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Formation and aggregation of defect clusters and helium 
bubbles in an 18-y old Cm:YPO4 sample under TEM scope

Mobility of radiation-induced defect clusters was enhanced by 
electron beam interaction. The electron energy was 200 keV
and current density ~1.5x10-16 A/cm2
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Laser Spectroscopic Probing and Monte Carlo Simulation of Radiation-
Induced Lattice Disorder

Inhomogeneous broadening in optical spectra is very sensitive to local structure change. 
Laser-induced fluorescence spectra for the 6D7/2→→→→8S7/2 transition of Cm3+ in LuPO4 and  YPO4
were recorded for monitoring radiation-induced local structure change.   Thermal annealing 
at 500 oC reduced line width from 20 cm-1 5 cm-1. The red curves are site-selected resonant 
excitation spectra.  The sharp peaks are due to the Cm3+ ground state splitting. 

• Monte Carlo simulation atom displacements induced by αααα-decay.

• Crystal-field calculation of ion-lattice interactions and local structure.

• Simulation of laser-induced fluorescence spectra.

Summary of Laser Experiments and Simulation: 

• No amorphization although disorder and defects exists.

• Inhomogeneous line-width measures distribution of lattice 
disorder. Crystal-field calculation provides a predictive 
understanding of laser-spectroscopic experimental 
results, and enables correlating electronic properties and 
structural disordering.

• Monte-Carlo simulation shows that the average atom 
displacements (in Gaussian distribution) is only  0.002 nm 
in both 244Cm:LuPO4 and 244Cm:YPO4, which have 
undergone  αααα-decay damage for 18 years.

• Annealing at 500 oC removed most existing lattice 
disorder.

Cm:YPO4

Monte-Carlo simulation of the spectra before annealing 
suggests an average atom displacement ~ 1/20 diameter of 
a Cm ion.
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• Two- and three-body inter-atomic potentials are included.  

• Simulations of lattice structure and dynamics without radiation damage are confirmed by neutron and X-ray 
studies. 

• Knock-on energy of 20 keV  is launched at t = 0 on a Lu atom along [111] direction. 8232 atoms are simulated and  
taken into account in analyses of defect dynamics. 

• The number of defects increases to a maximum at ~ 0.5 ps, then diminish. 

• MD simulation has been performed up to 19 ps, and long-term effects will be further simulated using kinetic 
Monte Carlo methods.  

• Analyses of defect dynamics are based on changes in Wigner-Seitz cells, partial radial distribution function, and 
distribution of interstitials and vacancies.  

Molecular Dynamics Simulations of Radiation Damage in LuPO4

— Understanding defect formation, aggregation, and annealing
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Partial radial distribution function for LuPO4 
before and after cascade collisions.  Disorder 
reaches a maximum at ~ 0.5 ps, and damaged 
lattice recovers significantly within 20 ps 
after primary collision.

• MD simulation has been performed up to 
19 ps, and long-term effects will be 

further simulated using kinetic 
Monte Carlo methods.  

• Analyses of defect dynamics are based on changes in
Wigner-Seitz cells, partial radial distribution function, 
and distribution of interstitials and vacancies.  

MD simulation of lattice 
damage and recovery after 
a single αααα-decay event 
(view along c-axis)
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Summary

Microscopic effects of radiation damage induced by αααα-decay events in crystalline phosphates (244Cm:YPO4 and 
244Cm:LuPO4) for 18 years and radiation dose reached to ~5x1019 αααα-decay/g:

Long-term radiation effects:

•no amorphization;

• residual lattice distortion after damage annealing and lattice recovery at room temperature. 

• formation of isolated defect clusters and bubbles, which mobilize and aggregate;  

Molecular dynamics simulation:

• reveals fundamental radiation effects – damage and recovery – based on collective inter-atomic 
interactions; 

•after an αααα-decay-event, displacements reach a maximum in less than 1 ps, and most damage annealed 
within 20 ps. 

Actinides in borosilicate glasses have ordered nearest neighbor ligands and radiation-induced structure damage 
has been monitored by using laser and X-ray spectroscopic methods. 
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X-ray (EXAFS) and Laser Spectroscopic Probing of Actinide Structure 
and Radiation Damage in Borosilicate Glass

• Nearest-neighbor-ligand structure for U6+ and Cm3+ in borosilicate glass has determined from analyses of EXAFS 
spectra and laser excitation and fluorescence spectra.  

• Electronic interaction between U (Cm) and O ligands were calculated and fit by experimental data in determination 
of symmetry and U-O (Cm-O) length.

• Radiation-damage-induced inhomogeneous line broadening of Cm3+ electronic transitions in 244Cm-doped 
borosilicate glass: monitor of structural damage. Spectra of laser excitation and fluorescence and self-
luminescence are being recorded periodically as the radiation dose increases.  
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FWHM: full width at half maximum intensity for Cm3+ ( 
5D7/2 to 8S7/2) fluorescence. 

As prepared sample
FWHM = 197 cm-1

After 18 months
FWHM = 326 cm-1
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