Strontium Sorption on Amorphous Silica, Goethite and Kaolinite. I. Spectroscopy and Surface Complexation Models
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=) Our experimental program on strontium sor ption to solid
substratesis directed toward producing mechanistic, reaction-based
modelsthat can be used in reaction-transport codes to predict the
mobility and attenuation of radioactive strontium (%Sr) in the
environment.

XAFS: Strontium sorption on kaolinite
with and without CO»,

Triple-layer surface complexation model Early in the study we learned that strontium sorption was independent of temperature (25 to 80°C). All

subsequent work was conducted at room temperature. We focus this summary on three important
conclusions from our study:
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N (no solid) >FeOH + H* = >FeOH,*
>FeOH = >FeO ™+ H*

>FeOH + Na* = >FeO'Na* +H*
>FeOH + Sr2* = >Fe0 Sr2* + H*
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pH=99 (i) Strontium sorbs primarily as a hydrated outer-sphere complexes that are stable for several months
oo, over the precipitation of pure strontianite, SrCO,(s)

We collected EXAFS spectra on more than 20 amorphous silica, kaolinite, and goethite samples from pH
410 10, including comparison of low- and ambient-temperature spectra. With the exception of two
goethite samples (discussed below), the EXAFS analyses suggested that the largest fraction of sorbed
strontium on these phases was present as hydrated (i.e., water-ligated) complexes. Thisinterpretation is
based on the absence of backscattering atoms beyond the first oxygen shell in the EXAFS spectra. There
was no evidence for dehydration of asignificant fraction (>50%) of strontium and formation of inner-
sphere complexes. We conclusively demonstrated that second-neighbor backscattering would be readily
apparent in low-temperature spectra if dehydration occurred based on the analysis of strontium reference
compounds. For strontium sorbed to amorphous silicaand kaolinite, there was also no evidence in the
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=) Radioactive strontium is a somewhat unique fission product
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strontium formsr elatively weak sorption complexes, making it very -plane |
(innersphere or
pared to other asuranium, : de-hydrated ion sorption)
and plutonium. Thisisof concern at Hanford, because strontium
could be released into the environment during sluicing of waste
storagetanks.
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6. >FEOH +HCO, + Sr2* = >FeOHSICO, + H'

(B) Solution analysis alone FITEQL 4.0
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> Thiswork is motivated by thelack of fundamental data }
needed to assesslong-term hazar ds from metal pollution and the Lo . I
need for technologiesto remediate subsur face metal pollution. NPk f
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strontium are critical to the accurate prediction of its mobility in the
environment. Geochemical factorsthat may contributeto Sr
mobility in natural waters ar e the solubilities of phases such as
strontianite (SrCO,) and formation of aqueous and surface
complexes.

- Our objectivei minethe pri olling Sr
mobility by combining macr oscopic experiments, molecular analysis
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Triple-Layer Model: Sr and Na sorption to
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4. >SiOH + Sr2* = >Si0"Sr2* + H* FITEQL 4.0

Aqueous Species: 0,2, SrCOj(aa), SrCl*, NaHCO,(aq), NaCl(aq)
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Triple Layer Model: Sr sorption to kaolinite
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Cation exchange complexes: n, 03 sites nm? (schroth and Sposito, 1998)
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spectrafor backscattering from a carbonate ligand in the presence of dissolved CO,, or from a phosphate
ligand in the presence of dissolved phosphate. The macroscopic sorption data and equilibrium agueous
speciation are consistent with the EXAFS results. Similar sorption behavior in the presence and absence
of dissolved CO, or phosphate suggests that strontium coordination is the same in both systems and that
sorption involving dissolved anion ligands is minimal for amorphous silica and kaolinite.

(ii) Surface Complexation Models

Our spectroscopic results allowed us to constrain the molecular reactions used in the surface
complexation models. For amorphous silica and kaolinite, mechanistic models must describe strontium
sorption as outer-sphere complexes that retain their primary hydration sheath. Strontium sorption to
goethite is more complicated and may require strontium- carbonate surface precipitates or complexesin
addition to outer-sphere complexes.

We successfully modeled the uptake of strontium to amorphous silica as an outer-sphere complex
over a range of initial strontium concentrations ([St]iniial = 7x10°° to 10 molal) and pH (6 to 10) at
constant ionic strength. We used depr and surface (log K-gio—=—2.%nd
C) = C, =6 Fm J determined by the direct observation of the pH-dependence of >SiOH and >SiO'Na*
amorphous silica surface sites using nuclear magnetic resonance spectroscopy (NMR). From these values
and our experimental uptake data, we have determined outer-sphere sorption constants for strontium, log
K-sio-s2+=—9.5-0.2and for sodium, log K-sio-na+ = —6.6-0.4.1t is important to note that we needed the

i and dep ion determined in the NMR spectroscopic study to develop a surface
complexation model that fit both the macroscopic uptake data and the EXAFS results. It is important to
note, that the protonation and deprotonation constants yield very high surface charge. One possibility is
the total site density is lower than 4.6 site nm™. We are currently exploring this possibility and its impact
on strontium sorption to amorphous silica.

‘We modeled the uptake of strontium to negatively charged sites on the kaolinite basal plane as an
outer-sphere complex (log K-po-s2+ = 0.0) over a range of initial strontium concentrations ([St]iiiat = 10°
to 10" molal) and pH (5 to 10) at constant ionic strength. The negative sites on the kaolinite basal plane
are due to the isomorphic substitution of AI** for Si*" in the silica layer. In our model we assumed that
the protonation of this site is dependent on pH.




