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EM Need Addressed

• More rapid characterization and monitoring
of microbial populations for in-situ
bioremediation



Introduction

• DNAPL’s (dense non-aqueous phase liquids) and
other pollutants in groundwater can be
degraded by microbial action (bioremediation)

• In-situ bioremediation requires characterization
of native or augmented microbial populations

• MALDI-MS (matrix-assisted laser
desorption/ionization mass spectrometry)
detection of specially-designed bacterial gene
probes (PCR products) shows potential as a
rapid alternative to conventional microbial
characterization methods.



Potential advantages of characterizing microbial
populations by MALDI-MS detection of PCR
products

– Speed:  MALDI is much faster than gel electrophoresis of
PCR products

– Accuracy:  PCR size measurement in MALDI is a direct
measurement of mass

– Generality:  Any genomic region for which a suitable PCR
can be designed can be interrogated

– functional (enzymes that degrade pollutants)

– phylogenetic (16S rRNA genes)

– Sensitivity:  No need for bacterial culturing



To demonstrate the feasibility of MALDI
detection of bacterial PCR products, we
have developed a functional gene probe
assay for the particulate methane
monooxygenase gene4-6 (pmoA).  Special
PCR primers were designed for pmoA in two
species of methanotrophic bacteria that co-
metabolize trichloroethylene:

• Methylosinus trichosporium OB3b (type II )
• Methylomicrobium albus BG8 (type I)



Two technologies are combined in this
work1 for rapid “gene probe” analysis of
microbial populations:

• PCR (Polymerase Chain Reaction):
creates many copies of a selected region
from an organism’s genetic material
(DNA).

• MALDI-MS2 (Matrix-Assisted Laser
Desorption/Ionization Mass
Spectrometry):  measures molecular
mass of biomolecules (DNA3 in this case).
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MALDI-MS of Type II pmoA PCR
Products

 MALDI-TOF spectrum of the 56-base PCR product obtained from type II
methanotroph DNA, mixed with 5 picomoles of a synthetic DNA 50-mer.

 The appearance of the 50-mer peak indicates that MALDI artifacts, such as
fragmentation and cation adduction, are minor under the conditions used.

 The four peaks in the vicinity of the 56-mer in Figure 2 demonstrate that
multiple species may arise from the PCR.  Possible sources of “extra”
peaks are:

– non-specific inosine bases in the primers
– complementary strands of the ds PCR product

• calculated m/z values from published sequence:  17282 Da and
17202 Da.)

– non-templated enzymatic incorporation of an extra adenosine
nucleotide.
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Blind Analysis of Different DNA Types

MALDI-MS spectra from eight separate PCR amplifications
using type II primers with

– Type II target DNA (should be amplified)
– Type I target DNA (should NOT be amplified)
– no DNA (blank)

These amplifications and MALDI analyses were performed
“blind”--target DNA was aliquoted by one experimenter, with
all subsequent steps performed by a second.

Signal due to the type II product is observed only in those
reactions containing type II target DNA, demonstrating the
specificity of the primers in distinguishing between the same
gene (pmoA) in the two methanotroph types.



0

1000

2000

3000

4000

5000

 15000  16000  17000  18000  19000  20000  21000  22000 

type I

type II

water

type II

type II

type I

water

type I

m/z

in
te

n
si

ty
Blind Analysis of Different DNA Types

PCR with Type II Primers



0

200

400

600

800

C
o

u
n

ts

 14000  16000  18000  20000  22000  24000 
Mass (m/z)

Original Filename: c:\voyager\1dec\kris\1201_028.ms

50 ng

5 ng

1.3 ng

Effect of Target DNA Amount
PCR of Type II Methanotroph

PCR product



Type II Assay Works in Presence of “interfering” DNA
 

Type II DNA with E. coli DNA
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MALDI-MS of Type I pmoA PCR Products
 MALDI-TOF mass spectra of PCR products using the pmoA

primer pair for type I methanotrophs.

– “forward” and “reverse”--single-stranded, synthetic 99-mers
corresponding to the two PCR product strands

– “type I”--PCR using type I primers with type I target DNA

– “type II”--PCR using type I primers with type II target DNA
(negative control)

– “water”--PCR using type I primers with no target DNA
(blank).

Again, only the correct sequence is amplified.  Resolution is
poorer for this larger product than for the type II product.
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Remaining Issues for MALDI-MS
Detection

 of PCR Products
• Resolution--ability to distinguish products of similar molecular mass

– baseline resolved up to ~60 bases
– Sample preparation:  removal of salts, dNTP’s, etc.
– Instrumentation:  Delayed extraction

• Sensitivity
– for small (< 100 bp) products, can detect DNA from a fraction of a

single 25 µL PCR.
– above 100 bp, need more DNA

• Mass Range:  MALDI with a UV laser is limited to PCR products < ca.
500 bases, but recent work with IR lasers6 goes up to >2000 bases.

• Reproducibility and Convenience
– “sweet spots”:  non-uniform DNA/matrix mixture

The following results summarize our work addressing
some of these issues.
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 Before reverse-phase purification (bottom trace), no distinct
peaks were observed in a broad feature encompassing the
m/z range of the sample (mixture of synthetic
polynucleotides, pdA40-60.)

 After purification (top trace), distinct peaks ranging from 10 to
12 Da in width appear for the 40-mer through the 52-mer
(M/∆M 1000-1500).

 The mass accuracy (0.03%) and resolution illustrated here
demonstrate the utility of MALDI-TOF in this size range for
multiplexed PCR or amplification of a polymorphic region, if
suitable primers can be chosen.

MALDI-MS of synthetic pdA40-60
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Bare Metal Substrate Polymer Substrate

Polymer Substrates Improve Spot Homogeneity8

⇒  Increased Analytical Throughput

Fluorescence micrographs of HEX-labeled DNA in MALDI matrix (3-hydroxypicolinic acid)
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Cross-sectional views of DNA fluorescence in MALDI spots:
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Success Rate for Obtaining MALDI Signal from DNA/matrix Spots on Various Substratesa 
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a:  Nafion was added on top of the dried polymer layer 
b:  n is the number of the spots investigated 
c:  “-“ indicates no MALDI signal was obtained from the spot prepared on this substrate.  

Polymer Substrates Improve Spot Homogeneity8



Summary

• MALDI-MS detection of PCR-amplified bacterial targets
offers promise as a rapid method for assessing the genetic
potential of microbial populations for bioremediation.

• Type I and type II methanotrophic bacteria can be
distinguished based on MALDI-MS detection of PCR-
amplified regions of their pmoA genes.

• The design of shorter PCR products facilitates MALDI-MS
detection.

• A rapid reverse-phase purification can be used to
interface PCR with MALDI-MS.

• Polymer substrates enhance reproducibility of MALDI for
small oligonucleotides.
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