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Introduction
• Flammible gases can be produced in high-level 

radioactive waste tanks
– Radiolytic hydrogen

– Benzene (from cesium processing activities)

• UCB is studying the processes for mixing of flammible
gases, to allow modeling of maximum concentrations

• Major topics:
– Mass transfer and mixing augmentation by injected purge jets

– Buoyancy-driven air exchange through tank roof

– Modeling of stratification of heavy gases (benzene) following loss of 
ventilation

• Extrapolates from previous research for enclosure 
fires and reactor containments
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Exchange Flows Through 
Horizontal Partitions

• Buoyancy and wind-driven pressure oscillations drive 
air ingress into inerted tanks following loss of 
ventilation

• Previous experiments had incorrectly measured 
ingress rates, suggesting simple models were incorrect

• UCB developed laser diagnostic technique to measure 
transient ingress rate and density evolution

• Simplest models for exchange flows found to work 
well; suggests that current modeling of waste-tank 
loss-of-ventilation events is accurate
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Exchange Flow Experiments
• Experiments with dyed salt water and fresh water to 

study buoyancy driven exchange flows through 
perforated horizontal partitions

Mea sure Las er
Shee t  De fle ct ion
Due  t o Re fra ct ive
Index Gra dient
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Laser Diagnostics
• Developed new method to use laser sheet to measure 

vertical refractive index (i.e. density) distribution
• Previous experiments have measured only the surface 

density, giving inaccurate results
• Typical results:
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Forced Convection in Jet-
Agitated Enclosures

• Important for understanding benzene/hydrogen mass 
transport from liquid surface in inerted tanks

• Chemical process industry experience
– jacket and helical-coil heat exchangers for heating and cooling fluids 

in agitated tanks. 

• Paddles and propellers most commonly studied due to 
higher mechanical efficiency

• However, agitation by injected jets has also been 
studied for mixing and for heat-transfer 
augmentation
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Hsu and Shih Correlation

• Study average helical-coil heat 
transfer in a jet-agitated tank

• Studied several liquids

• Weak effect of nozzle diameter
dn to tank diameter D ratio

• Weak effect of jet orientation

• Re coefficient 0.65 matches 
most values found for paddle-
agitated vessels
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Jet diameter/orientation
• Effect is weak:  Hypothesize average Nu depends on 

enclosure bulk velocity induced by jet
• For bulk scales use jet velocity/diameter impacting 

wall
– Velocity Scale

» Jet entrainment: 

» Jet momentum flux:

» Re at wall:

– Length Scale

» Jet diameter at wall

• Jet Momentum—not KE—is most important 
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Extension to Mixed 
Convection

• Model transition to natural convection following loss 
of ventilation

• Assume form for mixed convection correlation

• Plug in jet correlation and standard natural 
convection correlation NuDn = C Gr1/3

• But the Archimedes Number Ar=Re2/Gr
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Jet Mixing (1)
• Jet diameter/orientation have little effect on average 

forced-convection augmentation
• Archimedes number is most important parameter

– characterizes augmentation

– previously shown to characterize onset of stratification

• Scaled waste-tank experiment to study forced/natural 
convection heat and mass transfer from horizontal 
surfaces in a cylindrical enclosure
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Jet Mixing (2)
Cylindrical Enclosure Experimental Setup
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Jet Mixing (3)

Nondimensional Number Comparison for Waste Tank
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Jet Mixing (4)
Mixed Convection Augmentation Measurements

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0.00 0.01 0.10 1.00 10.00

Red
2/GrD

H
ea

t T
ra

ns
fe

r 
C

oe
ffi

ci
en

t, 
h(

W
/m

2 K
)

53mm Axial

26mm Axial

26mm Azimuthal

15mm Azimuthal

26mm Vertical/ Down

15mm Vertical/Down

DISCLAIMER: These measurements do not include the effect of the 

distributed flow resistance present in the SRP tank due to cooling 

pipes vertically penetrating the gas space. This effect will lower the 

heat transfer coefficient presented by these data points. 
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Jet Mixing (5)
Mixed Convection Augmentation Measurements
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DISCLAIMER: These measurements do not include the effect of the 

distributed flow resistance present in the SRP tank due to cooling pipes 

vertically penetrating the gas space. This effect will lower the heat transfer 
coefficient presented by these data points. 
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1-D/Zero-D Large Enclosure 
Modeling
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Key Features (1)
• Foundation from previous work

– Zuber scaling methodology (see Peterson, IJHMT, 1996)

– Enclosure Fire Modeling (Jalaria et al.)

• 1-D Large Enclosure Model Fundamentals
– Vertical gradients described by differential equations

» temperature, species concentration, density, turbulent kinetic 
energy and dissipation rate, aerosol concentration

– Horizontal gradients small in ambient volume

– Horizontal gradients in wall and free jets described by integral
correlations

» Follows from Zuber method scaling, short residence times

» Better description than 3-D CFD can provide, due to grid size 
limitations
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Key Features (2)
• Apply correct heat/mass transfer B.C.s at liquid 

surface and structures
– Temperature, concentration, turbulent kinetic energy known at all 

elevations

• Apply 1-D k-εε model in large enclosures
– Turbulent kinetic energy sources/sinks

» Convected in by inlet flows (i.e. break flow)

» Generated by buoyancy in free plumes and wall jets

» Convected out by enclosure discharge flows

» Dissipated in ambient volume

– Advantages of tracking vertical distribution of k and εε
» Best estimate modeling of forced-convection augmentation of 

heat and mass transfer at surfaces

» Augment vertical mixing (another way to predict transition 
from mixed (zero-D) to stratified (1-D) conditions?)
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Key Features (3)
• Key models/features

– Quasi-incompressible stratified ambient model

» Lagrangian treatment to minimize numerical diffusion/permit 
front/pool surface tracking

– Wall jet integral entrainment models

» vertical mixing by boundary layers on vertical cooling tubes

» turbulent kinetic energy generation, discharge elevation

– Free jet entrainment models

» jet trajectory, impingement/discharge elevation
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1-D Enclosure modeling:       
The BMIX code v1.0

First version in Matlab with features:
qBuoyant jets modeled by integral correlations.

qLagrangian method eliminates false diffusion from the discretized
equations.

qGives physically acceptable solutions even for very coarse 
computational grids.

qVery lax stability requirement independent of spatial steplength.

qHigh accuracy with low computational cost.

qArbitrary number of plumes and jets.

qHeat and mass diffusion included.

qMulti-component incompressible fluid.

qAccommodates varying cross-sectional area.
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The BMIX code v1.0
The numerical model illustrated on grid level.
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The BMIX code v1.0
Summary of salt/water flow exchange results
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Conclusions
• Current results contribute to understanding of tank 

gas-space mixing processes and air infiltration
• 1-D treatment of a stratified enclosure has been 

shown to accurately predict the time wise evolution of 
species mass and energy. 

• Ongoing work will focus on scaled tank experiments 
to study jet-induced forced-convection and 
heat/concentration induced natural convection mixing 
processes

• 1-D enclosure modeling work in progress to allow for 
compressible multi-component fluid and more 
complex modeling for the buoyant jets.


