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RESEARCH OBJECTIVES 

 In a moist oxidizing environment, such as in the proposed geological repository at Yucca 
Mountain, rapid alteration rates are expected for spent nuclear fuel.  Laboratory simulations and 
studies of natural analogues demonstrate that the dominant alteration products of spent fuel under 
repository conditions will be uranyl phases.  There is an inadequate database concerning the 
effects of the alteration products on the release of radionuclides, but this information is essential 
to provide a radionuclide-release estimate.  It is likely that many of the radionuclides contained in 
the spent fuel will be incorporated into the uranyl phases that form during alteration, potentially 
with a profound impact on the future mobility of radionuclides in the repository.  Our objective is 
to develop a theoretically founded and experimentally verified understanding of the incorporation 
of radionuclides into uranyl phases under repository conditions. The research will permit a more 
realistic estimate of the release rates of the radionuclides from the near-field environment. 

RESEARCH PROGRESS AND IMPLICATIONS 
 

This report summarizes work conducted under DOE grant DE-FG07-97ER14820, which 
has been funded since September, 1997.   In addition to significantly improving our 
understanding of factors impacting the mobility of radionuclides in Yucca Mountain, our research 
is important for understanding the mobility of actinides in the vadose zone, in altered U mine and 
mill tailings, and in soils contaminated by U. 
 
Structures and Chemistry of U6+ Compounds Relevant to Yucca Mountain 
 

At the beginning of our EMSP research, understanding of the crystal structures, 
chemistries, stabilities and occurrences of the uranyl compounds relevant to Yucca Mountain 
performance was entirely insufficient, from the perspective of their impact upon repository 
performance.  In most cases the crystal structures were unknown for these phases, and even their 
chemical formulae were in doubt.  Detailed structural analysis of uranyl phases relevant to 
repository performance has therefore been a high priority of our ongoing research.  Suitable 
natural crystals have never been found for many of the compounds of interest, so we invested 
considerable effort in developing synthesis procedures for growth of crystals ∼100 µm in 
dimension.  We have now published the detailed structures and chemistries of more than 75 
uranyl compounds that are relevant to Yucca Mountain.   
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Structures we have reported include those of studtite, becquerelite, haiweeite, weeksite, 
boltwoodite and compreignacite, all of which have been identified as alteration phases on spent 
fuel and UO2 in laboratory experiments.  Of these, studtite is particularly interesting because 
studtite and metastudtite are the only peroxide minerals known in nature. Although we had 
successfully synthesized Np-bearing metastudtite early during this project, we placed renewed 
emphasis on determining its structure after four presentations at the Fall 2002 Materials Research 
Society meeting reported identifying studtite or metastudtite on spent fuel in alteration tests 
conducted with de-ionized water. 

 
Our structure studies have focused on several important chemical classes of U6+ 

compounds, and include detailed structural analysis, chemical characterization, and in many 
cases, discovery of new phases.  New structures can be understood in the context of the hierarchy 
of structures developed by us, which serves as the basis for prediction of radionuclide 
incorporation  mechanisms.  

 
Uranyl oxide hydrates are usually the first phases to form following the onset of oxidative 

alteration of spent fuel; we have reported 12 structures.  Uranyl silicates are expected to form in 
the repository, owing to the presence of Si in the groundwater; we have reported 5 structures.  
Studies indicated that uranyl molybdates may be important alteration phases owing to the 
presence of Mo in spent fuel; we have undertaken an extensive study of the crystal chemistry of 
uranyl molybdates, and have reported 28 structures.  Uranyl sulfates incorporating S released 
from corroding steel may form in the repository; we have reported 14 structures, including 3 
containing a novel uranyl sulfate cluster that may be an important uranyl sulfate complex in 
groundwaters or hydrothermal fluids.  Uranyl phosphates have very low solubilities, and thus we 
proposed the possible use of phosphate in backfill to reduce the mobility of actinides; we have 
reported 12 structures.  Our studies of uranyl carbonates have revealed 9 new structures. 

 
XANES and EXAFS Studies of Uranyl Compounds  
 

X-ray absorption spectroscopy (XANES and EXAFS) can provide a wealth of 
information concerning the oxidation states and coordination environments of U and Np in 
samples of environmental interest.  However, a basic understanding of the relationships between 
XAS spectra for structures containing actinides has not been fully developed.  We have therefore 
undertaken a systematic study of the U LIII-edge XANES and EXAFS spectra for a series of 
crystalline uranium compounds that have well-refined structures, known valence states and that 
display a range of coordination environments about U6+.  We selected structures that contain the 
uranyl ion in a variety of coordination environments, as well as structures that have been reported 
to contain U6+ in unusual 6-fold coordination geometry, such as the 4+2 geometry in Li4UO5. 
 
 Spectra were collected at the BESSRC beam line at the Advanced Photon Source.  We 
studied 13 compounds that included uranyl silicates, uranyl carbonates, uranyl phosphates, uranyl 
sulfates, and uranyl oxide hydrates, several of which may form in Yucca Mountain once 
containers are breached. XANES spectra of the 13 compounds are consistent with hexavalent 
uranium, and posses various features related to the specifics of the U6+ coordination geometries. 
 
Thermochemistry of U6+ Compounds  
 

Recent advances in the understanding of the crystal chemistry and structures of U6+ 
compounds important for repository performance provide the foundation for studies of their 
thermodynamics.  We have conducted preliminary high temperature oxide melt drop-solution 
calorimetry to measure drop-solution enthalpies (∆Hds) of select U6+ carbonate, oxyhydrate, and 
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phosphate phases. Experiments were done, with the assistance of Prof. Alexandra Navrotsky, 
using a Calvet-type high temperature custom-built calorimeter located at the University of 
California-Davis.  

 
Prediction of Radionuclide Incorporation into Uranyl Compounds  
 

The structural hierarchy of uranyl compounds we developed has been continuously 
extended by our studies.  The hierarchy is provides a broad conceptual basis for understanding 
structural relations among various uranyl compounds, many of which posses complex structures, 
as well as providing the basis for predicting and explaining compositional variations and 
mechanisms for radionuclide substitutions.  Likely sites for incorporation of radionuclides such as 
135Cs, 90Sr, Np and Pu have been established. 

 
Ion Exchange of Cs and Sr into Uranyl Compounds  
 

We have demonstrated exchange of Cs into boltwoodite and compreignacite, and Sr into 
becquerelite.  Our studies indicate that uranyl compounds can exchange lower-valence 
radionuclides with solutions after they grow, and that they can incorporate such radionuclides 
during growth.  These phases may either sequester radionuclides or release them, depending upon 
the relative activities of different ions in the solution. 

 
Experimental Studies of Np5+ Incorporation into Uranyl Compounds  
 

The long half-life of Np-237 (2.14 x 106 years), radiotoxicity and potentially high 
mobility of Np5+ in chemically oxidizing groundwater make it a major dose contributor in current 
performance-assessment models for the potential repository at Yucca Mountain, Nevada, and 
therefore one of the most important radionuclides for the long-term performance of the 
repository.  One of our major objectives is to determine if incorporation of Np5+ into selected 
uranyl compounds can occur.   

 
Our initial studies of Np5+ incorporation into uranyl compounds focused on four phases: 

the Ca uranyl silicate uranophane, Ca[(UO2)2(SiO3OH)2](H2O)5, and the uranyl oxide hydrates 
meta-schoepite, UO3.2H2O, Na-compreignacite, Na2[(UO2)3O2(OH)3]2(H2O)7, and β-UO2(OH)2. 
Our intent to study incorporation of Np5+ into structures mandated that we develop one-step 
synthesis techniques for each.  We conducted >100 synthesis experiments to optimize our 
synthesis approaches, which included a double -containment method because of the radiological 
hazards of Np-237.  We then synthesized each compound at either 70°C or 100°C from solutions 
containing from 10 to ∼450 ppm Np.  Products were recovered and washed with boiling water, 
and aliquots of the mother solutions were taken before and after the synthesis experiments. 
Portions of each powder were also washed in acetic acid to strip any Np that may have been 
sorbed to the surface of the crystals.  Products were confirmed by X-ray powder diffraction, and 
products and solutions were analyzed using ICP-AES for U, Na and Ca, and ICP-MS for Np.   

 
Neither meta-schoepite or β-(UO2)(OH)2 incorporated more than a few ppm Np.  In 

contrast, Na-compreignacite and uranophane appears to have incorporated Np5+ into their crystal 
structures in proportion to the Np concentration in the mother solution, with crystals of each 
containing more than 400 ppm Np (of total Np + U).  The Np concentration in the crystals was 
not significantly reduced by washing in acid, thereby demonstrating incorporation, rather than 
sorption onto the mineral grains.  This study indicates that incorporation of Np5+ into uranyl 
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compounds that form in Yucca Mountain is possible, and that this incorporation may have a 
significant impact upon the mobility of Np.  
 

Development of a bent-Laue X-ray analyzer for measuring XAFS of trace transuranium 
actinide in U solids  

  
We have been developing a special detector for XAFS data collection at the MRCAT 

beam line at the Advanced Photon Source.  This detector, which uses a bent-Laue configuration, 
allows us to collect high-quality X-ray absorption spectra from low levels of Np in U compounds.  
Because the Np-Lα fluorescence (Lα1 = 13.944 keV, Lα2 = 13.760 keV) is very close in energy 
to the U-Lα fluorescence (Lα1 =  13.615 keV, Lα2 = 13.439 keV) and occurs at higher energy, 
the use of standard fluorescence detectors is precluded.  Employing a bent Laue analyzer, which 
provides superior energy discrimination, isolates the signal of the relatively small amount of Np 
in our samples.  Several published reports and one paper (submitted) have resulted from this 
work.   

 

Characterization of Np-doped U3O8 
 

Np-doped U3O8 was examined at the MRCAT beam line at the Advanced Photon Source 
using the bent-Laue detector that we helped develop.  Analyses of XANES spectra indicate that 
Np occupies distorted U sites in U3O8 and most likely occurs as Np(IV).  As Np(IV) replaces U in 
U3O8, the ratio of U(VI) to U(V) must increase until all U is hexavalent in NpxU3-xO8.  Charge 
balance, therefore, requires that the value of x not exceed one in NpxU3-xO8.  Powder X-ray 
diffraction analyses of Np-doped U3O8 indicates that it forms a homogeneous solid solution from 
approximately 0.1 wt.% Np up to 9.5 wt. % Np, and that the dependence of the lattice parameters 
on Np concentration suggests that a complete solid solution is possible for values of x in NpxU3-

xO8 from zero to one; that is, between end-member compositions U3O8 and NpU2O8.  The 
substitution of Np(IV) for U in U3O8 impacts significant strain to the sheets, although the 
distortion to the sheets quickly reaches a maximum for x of 0.3 and above; in fact, the distortion 
is nearly isovolumetric, with the a and b cell parameters changing in a complementary fashion, 
such that the area defined by the a-b plane remains nearly constant (the c cell dimension changes 
only slightly).  As noted, Np(IV) occupies six-coordinated U sites in NpxU3-xO8, such as occur in 
beta-U3O8, and we suggest that NpU2O8 is isostructural, or nearly so, with beta-U3O8. 

 
Synthesis of uranyl oxyhydroxides from Np-bearing U3O8 
 

Exposure of Np-bearing U3O8 to humid air (100% relative humidity) at 90° and 150°C 
under nominally oxidizing conditions produces a variety of U(VI), Np(V) and Np(IV) solids.  The 
primary sink for Np during corrosion of Np0.33U2.67O8 at 150° C is crystalline NpO2; corrosion of 
Np0.33U2.67O8 at 90° C produces approximately equal proportions of crystalline NpO2 and Np2O5.  
Dehydrated schoepite, (UO2)O0.25–z(OH)1.5+2z (0 ≤ z ≤ 0.15), is the predominant U(VI) compound 
formed in these experiments and does not incorporate measurable amounts of Np (earlier reports 
of Np in this solid were the result of an interference inherent to the analytical technique used – the 
same technique used to “discover” Np in dehydrated schoepite formed from spent fuel [Buck et 
al. 1997]).  Results have been presented at several conferences. 
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XAFS examinations of spent fuel and its corrosion products 
 

Detailed understanding of the structural roles that Np, Pu and Am play in spent fuel and 
the uranyl compounds formed as corrosion products is an important part of understanding the 
crystal-chemical and potential geochemical behaviors of these actinides.  As part of this effort, we 
have conducted the first-ever EXAFS examinations of fully radioactive spent nuclear fuel.  
Owing to our development of the bent-Laue detector for XAFS (see above), we have been able to 
obtain high-quality EXAFS spectra from Pu, and Np in unaltered spent fuel at concentrations of 
1.3 and 0.08 wt.%, respectively.  Preliminary analyses indicate that both Np and Pu are 
tetravalent and substitute for U in the UO2 fuel.  Similar high-precision EXAFS analyses of 
uranyl oxyhydroxides (dehydrated schoepite) formed during the oxidative alteration of spent fuel 
after more than eight years (104 months) in humid air have demonstrated that Np is not 
incorporated into these solids, a result consistent with other studies we have conducted, which 
also found no incorporation of Np into schoepite (see above). 

 

EXAFS of lanthanide-bearing silicates and effects of lanthanide substitutions on physical 
properties 
 

Lanthanides are useful, non-radioactive chemical analogues of many actinides of 
environmental concern, so we have also been examining solid-state structural effects of 
lanthanide substitutions in synthetic crystals of zircon (ZrSiO4).  A major part of this effort is 
aimed at developing our capabilities for collecting EXAFS data from compounds with elements 
that may experience absorption-edge interferences from neighboring elements, as is the case for 
many actinides and lanthanides.  Furthermore, non-radioactive lanthanides provide useful 
surrogates for examining structural changes induced by substitutions into crystalline materials, 
such as ZrSiO4. Recent efforts at Argonne have focused on examining REE substitutions by XRD 
and XAS.  Results of these studies indicate that coupled substitutions of REE and P into zircon 
induces substantial strain at the Si site, limiting the degree of solid solution between zircon and 
xenotime (YPO4).  EXAFS analyses indicate that REE occupy Zr sites rather than interstitial 
sites, as has been proposed.  A recent compressibility study of REE- and P-doped zircon is 
“softer” (lower compressibility), delaying the onset of the high-pressure phase transformation to 
riedite.  Such changes to the physical properties of zircon (a notably durable mineral) suggests 
that substitutions of actinides and lanthanides into waste forms and uranyl alteration products 
may impact the long-term durability of substituted solids. 
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