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ABSTRACTABSTRACT

The incorporation of Sr, Ce, and Cr into nickel

hydrous oxide films has been studied using “in-

situ” X-ray Absorption Spectroscopy (XAS) and

electrochemical techniques.  Sr  (II) and Ce (III,

IV) hydrous oxides were found to co-precipitate

and form separate phase domains.  Cr (III)

occupies Ni vacancy sites, while Cr (VI) was

found in the interlamellar position in the Ni(OH)2

films.  Bond distances and co-ordination numbers

have been obtained.
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TECHNICAL  APPROACHTECHNICAL  APPROACH

• radioactive contamination resides in corrosion scales
and surface films

• corrosion is essentially an electrochemical process

• simulate film formation via electrochemical deposition

• study incorporation of heavy metal ions and
radionuclides in the film by “in situ” spectroscopic
techniques, i.e., synchrotron X-ray absorption (XAS)
and vibrational (laser Raman, infrared) spectroscopy

• use the basic knowledge gained to develop
decontamination, decommissioning, and disposal
technologies
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• corrosion films of base metals Fe, Ni, Cr, and Steel

• radioactive contaminants-Sr, Cs, Ce, U, Pu

• pH (1-14), ion concentration, T (25 to 95 degrees C)
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XAS-Electrochemical Cell

b- graphite working electrode
f- gold counter electrode
i- reference electrode (SCE)
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ProcedureProcedure

• Cathodic co-deposition of Ni(OH)2 + Me+z

– 0.1 M Ni(NO3)2 + 0.0005 to 0.1 M Me+z salt solutions,
pH= 5.1

– current density = -5 to -20 mA/cm2

• Anodic co-deposition of NiOOH + Me+z

– 0.05 M NiSO4 + 0.5 M Na2SO4 + 0.0005 to 0.1 M Me+z

salt solution, pH= 7.4

– applied potential =1.1 V vs SCE
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STRUCTURE OF Ni(OH)2STRUCTURE OF Ni(OH)2

Brucite structure--- Ni(OH)2 layersBrucite structure--- Ni(OH)2 layers

OHOH

NiNi
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•lattice sites (vacancies) -Cr (III)

•interlamellar positions - Cr (VI)

•co-precipitation and deposition in separate

phase domains - Sr (II), Ce (III, IV)
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• See only Sr-O bonds for Sr (II) in Ni(OH)2 and NiOOH

from EXAFS data down to 12 K, Sr (II) concentration =

0.0005 to 0.1 M

• Sr-O distance = 2.62 Å, similar to Sr (II) in solution and

pure Sr(OH)2 cathodically deposited

• Coordination number, N~ 8-10

•Co-precipitation and formation of separate domains are

suggested; extent of surface adsorption not delineated so far
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(a) Sr K-edge EXAFS for Sr2+ in α-Ni(OH)2 (dotted)
and in 0.1 M Sr-acetate solution (solid)

(b) Corresponding k3-weighted Fourier transform
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CERIUMCERIUM

•Found mixed Ce (III) and Ce (IV) phases
co-deposited with Ni(OH)2

•Only Ce (IV) found with NiOOH; phase
corresponds to hydrous CeO2

•Determined Ce-Ce bond distances and
coordination numbers from analysis of
EXAFS data
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Cyclic voltammogram at a graphite electrodeCyclic voltammogram at a graphite electrode

*  0.04 M Ce (III) acetate + 0.05 M NiSO4 + 0.5 M Na

acetate solution

* scan rate = 10 mv/sec
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XANES of Ce co-deposited with Ni(OH)2 film (solid) and
spectrum of 0.08 M Ce (III) acetate solution (dotted)
XANES of Ce co-deposited with Ni(OH)2 film (solid) and
spectrum of 0.08 M Ce (III) acetate solution (dotted)
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Ce-L3 edge XANES spectra
(a)  CeO2

(b)  Ce(OH)4

(c)  Ce co-deposited with NiOOH

Ce-L3 edge XANES spectra
(a)  CeO2

(b)  Ce(OH)4

(c)  Ce co-deposited with NiOOH

E-E0 (eV)

-20 -10 0 10 20 30 40

N
or

m
al

iz
ed

 X
A

N
E

S

0

1

2

3

(a)

(b)

(c)

AA

BB

CC DD



CHROMIUMCHROMIUM

• Co-deposition of Cr(III) with Ni(OH)2 results in Cr(III) in
lattice sites substituting for Ni (II)

*Bond distances found: Cr-O = 1.99 Å (N=6), Cr-Ni = 3.09 Å
(N=6)

• Co- deposition from CrO42- solution yields Cr (VI) in
interlamellar positions

*Cr-O distance = 1.66 Å, N=4, as in CrO4
2-

*Cr-Ni distance = 3.41 Å, N=2
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Cr K-edge XANES

(a)  Cr (III) in Ni(OH)2

(b)  Cr (VI) in Ni(OH)2
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Fourier transform (k3-weighted) of Cr K-edge EXAFS

(a) Cr (III) incorporated into α-Ni(OH)2

(b) Cr (VI) incorporated into α-Ni(OH)2

Fourier transform (k3-weighted) of Cr K-edge EXAFS

(a) Cr (III) incorporated into α-Ni(OH)2

(b) Cr (VI) incorporated into α-Ni(OH)2
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Cr3+ -----> Ni lattice sitesCr3+ -----> Ni lattice sites



Cr6+ -----> Interlamellar sites



CONCLUSIONSCONCLUSIONS

Scientific significance:

* Demonstrated the utility of XAS for determining “in
situ” the mode of incorporation and local structure of
metal ion contaminants in thin, disordered simulated
corrosion films.

* Bonding configuration dependent on size and charge
of ion, structure of host oxide, solution composition, pH,
etc.
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Practical relevance:Practical relevance:

• Knowledge of binding site will be useful in designing

decontamination procedures

– surface-adsorbed contaminant -----> “mild treatment”,
e.g., oxalic acid contacting

– ions in lattice sites -----> “aggressive treatment” with
complete dissolution of corrosion scale, e.g.,
electropolishing in hot phosphoric acid

– co-precipitates -----> selectively dissolve
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• Study the effect of radiation on the
structure and mechanism of incorporation of
contaminant metal ion into corrosion films

• Investigation at pH < 4, ion concentration <
0.0005 M, 25 < T < 95 degrees C
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