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To protect human health and the environment, numerous
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Laboratory Investigations of Water Dripping Phenomenon

Water Seepage in a Fractured Basalt Replica

We investigate dripping water between parallel plates as a model of water seepage through
fractured rock and look for the existence of a chaotic component of such flow. This can be
viewed as an extension of the classic chaos experiments with the "dripping faucet" (Shaw,
1984) to drips in the presence of capillary forces as they are affected by the surface properties

and the small aperture of the parallel plates.
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Water seepage
through a dense
basalt fracture is
visualized by mating
the fracture with a
transparent replica of
the other fracture
half, dyeing the water
with a fluorescent
dye and illuminating
with near-UV light.

Time-varying water seepage in fractures undergoes channeling during a cycle of filling and

draining.

While deterministic numerical models with stochastically distributed soil properties can
describe the general spatial features of liquid distribution, they do not describe intermittent
flow, which can significantly affect predictions of solute travel-time and solute-solid interaction.

Design of Water Dripping Experiments

plates.

Effect of Capillarity on Attractor

The presence of chaos in the dripping data is characterized with phase-space plots for the raw pressure

measurements, and the times between drips.

Pressure data. Attractors using the pressure data for the open drip , smooth plates, and rough plate conditions for
0.25 mL/hr show an increased deterministic-chaotic component as the flow regime becomes more complex.
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Results of Experimental Observations

Water Seepage in Parallel Plates as a
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The water thread snaps in the smooth plates when the weight of the
water drop overcomes the capillary forces due to the presence of the
small aperture.
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Methods and Results

Small-Scale Infiltration Test at
Hell's Half Acre Site

Basalt Cverhang

HEAD AND INFILTRATION RATE AND/OR

INFLOW RATES-- Mass balance of the system,
Boundary conditions for modeling efforts, deter-

Test Design and How It is Useful
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mining temporary variations in flow/infiltration.

2. BASALT MATRIX WATER PRESSURE --
Examine wetting front propagation and volume of
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water imbibed into matrix, aid in determination of
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3. FRACTURE WATER PRESSUR -- Define head field around
matrix blocks, examine pressure propagation through system,
aid in mass balance calculations, compare with laboratory
experiments.

4. BASALT TEMPERATURE -- Determine flue viscosities,
examine thermal gradients in basalt matrix, examine any ther-
mal effects of flowpaths.

5. AIR AND WATER TEMPERATURES-- Determine fluid
viscosities, use as background for instrument corrections,
examine thermal effects on flow.

6. BAROMETRIC PRESSUR -- Determine boundary
conditions, examine pressure relationships between the air
phase and liquid phase, calculate instrument efficiency.

7. PRECIPITATION -- Provide background values for mass bal-
ance calculations, determine larger scale head/moisture fields
at the research site.

8. OUTFLOW DRIP INTERVAS -- Examine with high resolution
the temporal and spatial variability of fracture outflow, provide
detailed time series data for chaotic analysis, compare with
laboratory experiments.

9. OUTFLOW RATES ALONG FRACTURE-- Examine temporal
and spatial variation of outflow, determine mass balance of the
system.

Flow Path Observations

One-hour time slices of fracture outflow as measured by drip sensors
positioned along the express of the fracture. The bars are normalized
to the relative fraction of the total outflow that was observed at a particu
lar location along approximately 1.5 m of the fracture. Under the same
driving head in the infiltration gallery and similar fracture and waster
pressures, the fraction of the outflow is observed to vary temporally and
spatially. The investigation of this phenomenon is ongoing.

Outcrop Research Results
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Fracture water pressure was affected rapidly
by filtering water and remained practially con-
stant thereafter

Drip outflow rate exhibits a three-stage temporal
behavior, as was previously observed in soils with
entrapped air (Faybishenko, 1995).

3D Attractor of Water Dripping From a Fracture
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Conclusions

Ponded infiltration tests were conducted at two fractured rock field sites: the
Hell's Half Acre (the scale of 1 x 0.5 m) and the Box Canyon (scale of 7 ¢ 8 m)
sites. A new discovery coming from the field experiments is the temporary and
spatial instability of water flow affecting in rock permeability.

Several new technologies have been developed including piezoelectric probes,
a leak detection system, a laser surveying system, and a 3D Electrical Resistiv-
ity Tomography system.

TOUGH2 numerical modeling with a hierarchical pattern of column-bounding
and column-normal fractures confirmed the presence of complex, irregular flow
paths for liquid-phase tracer, as well as air trapping and escaping in the vadose
zone.

Laboratory experiments showed the presence of chaotic behavior in water
seepage through fracture models, and the pervasiveness of highly localized
and extremely nonuniform flow paths in the plane of the fracture.

The magnitude of deterministic-chaotic and stochastic components in the data
was analyzed using a set of nonlinear dynamical parameters such as Hurst
exponent, Lyapunov exponent, capacity dimension, correlation dimension,
information dimension, correlation time, and constructed and three-dimensional
attractors in phase-space.

Ongoing theoretical studies have shown that as a fluid film flows vertically on a
fracture surface, it is inherently unstable and may exhibit chaotic behavior, even
for low Reynold's numbers. Film waviness may enhance transfer of contami-
nants from rock to fluid by as much as five times, carrying contaminated fluid
down a fracture much faster than expected by classical flat film theory.

Planned Activities for 1998-99

Additional field and laboratory experiments will be performed to examine the
fracture/matrix interactions. Instrument a new HHA site.

Data will be analyzed from DOE sites (INEEL, Hanford, LBNL, LLNL, and
others).

Reports will be written and made available to the environmental community at
large. Papers will be submitted to Water Resources Research and Groundwa-
ter journals.

The methodology developed will be recommended to DOE sites where monitor-
Ing and remediation of contaminants using vacuum extraction, air stripping,
steam injection, barriers, etc., are problems

The Scientific Significance of the
Vadose Zone Research for DOE

The development of a unique nonlinear-dynamics method for data sets such as
fracture and matrix flow rates, pressure, and tracer concentrations.

The results of this project are expected to change the current approach used by
industry to predict flow and transport in environmental systems.

Because the nonlinearity of environmental systems limits their predictability, we
aim to determine how far into the future it is realistic to predict the state of the
environmental system, and determine the bounds for contaminant transport.
This information will be used to design remediation efforts.

The significance of the research for the DOE will be in the form of technology
developed for vadose zone monitoring and in improved vadose zone site char-
acterization and predictability.

Applications for Site Engineering Remediation
and Characterization

Fate and transport modeling.

Risk assessment under CERCLA, and performance assessment per NRC
regulations.

Enhanced decontamination of soils using vacuum extraction and groundwater
treatment using a modified pump-and-treat approach.

Ongoing and potential applications at INEEL, LBNL, Yucca Mountain, Hanford,
and Apache Leap Site
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