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INTRODUCTION

The international community has selected multicomponent silicate
glasses to host high-level radioactive wastes. Although these materials
will be the front line of defense in interim and long-term storage
strategies, there are few quantitative models to predict their durability in
the complex fluids of subsurface environments. As we began this
project, four problems had limited advances:

1. Lack of standardized reactor systems to measure the kinetics of
dissolution (corrosion) and yield reproducible inter-laboratory data.

2. Absence of comprehensive studies establishing the dissolution
kinetics of the endmember silicate glass: S102(am).

3. Inability to interpret the dissolution rates of complex
multicomponent glasses. (up to 18 components!)

4. Absence of predictive model that quantifies possible rate-
modifying effects of solutes in natural and engineered systems.

This EMSP project addresses each problem in a multi-phase investigation.
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STRATEGY

1. Develop reactor system(s) to measure glass dissolution kinetics at 30 - 300°C.

2. Establish baseline: Dissolution kinetics of high purity S102 glass
- temperature dependence 1n distilled-deionized water
- rate-enhancing and -inhibiting effects of solutes, Na+ and Al3+
- net reactivity in solutions that approximate natural water compositions
- solution pH

3. With S102 baseline, introduce new component(s)
- determine controls of important structural solutes on reactivity
- construct a progressively complex predictive model for multicomponent glasses

4. Quantify relationships between durability and structure.
- use baseline data to develop general model for S102 polymorph reactivity
- quantify role of hydration in long-term durability



PHASE 1:
Methods Development

Two sources of high purity silica glass were used:

* Fused quartz from Quartz Scientific, Inc. ™
 Amorphous silica produced by flame pyrolysis of SiCl4 from Corning, Inc. ™

These materials were ground sieved to obtain the 200-300 micron fraction. Samg
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Flow through rates are controlled by the syringe pump (2 to 12 microliters/min)
while peristaltic pump governs recirculation rate (10 mlL/min). Reactors have
CSTR behavior when recirculation rates exceed injection rates by =17X.
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PHASE 2:

Constructing a Baseline for Silica Glass and Comparisons to Quartz

The first reported measurements for silica glass
dissolution kinetics at 200°C show dependence
on sodium concentration (left). Sodium

(0.05 m NaCll) increases rates by ~50X
compared to those measured 1n deionized water.
Behavior 1s similar to quartz (right).
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The dependence of dissolution rate on

Al concentration (left) shows inhibition

by a factor of only <10 1n solutions containing
0.05 m NaCl. At these conditions, boehmite
solubility 1s exceeded at approximately

5 micromoles Al at these conditions but the

extent of inhibition appears continuous without
inflection. Quartz exhibits similar behavior (right).
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PHASE 3:
Role of Hydration in Glass Durability

Silica Glass (Corning)
'Hydrated' and Freshly Crushed
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Arrhenius diagram shows the faster rates observed when silica
glass 1s pretreated by subjecting the starting materials (from
Corning, Inc.) to 60°C solutions for approximately 1,000 hours.
Work 1s underway to characterize OH contents for a suite of
pretreated materials and correlate with dissolution properties.



WORK IN PROGRESS

 Develop comprehensive model of silica glass dissolution kinetics

* Correlate dissolution rates with estimates of OH content in glass
using spectroscopic methods.

o Construct predictive model that describes relationships between
dissolution rates and glass structures modified from S102(am)
compositions by Na, Ca, B, and Al.

 Develop dissolution rate model for reactivity in solutions that
simulate fluid compositions of subsurface environments.
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