DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microelectromechanical flow control apparatus

Abstract

A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

Inventors:
 [1]
  1. NE Albuquerque, NM
Issue Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
963868
Patent Number(s):
7540469
Application Number:
11/043,588
Assignee:
Sandia Corporation (Albuquerque, NM)
Patent Classifications (CPCs):
F - MECHANICAL ENGINEERING F16 - ENGINEERING ELEMENTS AND UNITS F16K - VALVES
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Okandan, Murat. Microelectromechanical flow control apparatus. United States: N. p., 2009. Web.
Okandan, Murat. Microelectromechanical flow control apparatus. United States.
Okandan, Murat. Tue . "Microelectromechanical flow control apparatus". United States. https://www.osti.gov/servlets/purl/963868.
@article{osti_963868,
title = {Microelectromechanical flow control apparatus},
author = {Okandan, Murat},
abstractNote = {A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jun 02 00:00:00 EDT 2009},
month = {Tue Jun 02 00:00:00 EDT 2009}
}

Works referenced in this record:

Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps
journal, February 2000