DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Apparatus and method for the production of gel beads containing a biocatalyst

Abstract

An apparatus and method for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below themore » gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.

Inventors:
 [1];  [2];  [2]
  1. Oak Ridge, TN
  2. Knoxville, TN
Issue Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
OSTI Identifier:
871347
Patent Number(s):
5712212
Assignee:
Lockheed Martin Energy Systems, Inc. (Oak Ridge, TN)
Patent Classifications (CPCs):
B - PERFORMING OPERATIONS B01 - PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL B01J - CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY
C - CHEMISTRY C12 - BIOCHEMISTRY C12N - MICROORGANISMS OR ENZYMES
DOE Contract Number:  
AC05-84OR21400
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
apparatus; method; production; beads; containing; biocatalyst; large-scale; continuous; columnar; based; chemical; cross-linking; hydrocolloidal; gels; contain; immobilize; microorganism; enzyme; alginate; carrageenan; mixture; bone; gelatin; modified; provide; immobilization; matrices; entrap; retain; allowing; effective; contact; substrates; release; products; immobilized; biocatalysts; formulated; spheres; concentrations; matrix; dispersion; nozzle; submerged; heated; non-interacting; liquid; typically; organic; immiscible; water; allow; efficient; formation; spherical; droplets; specific; gravity; fall; force; direct; chilled; upflowing; sufficient; residence; time; cooled; below; gelling; temperature; form; solid; temperature-controlled; aqueous; solution; chemicals; fixing; add; stability; flow; rates; streams; varied; control; proper; section; accommodate; differing; settling; velocities; valve; provided; removal; stabilized; bottom; column; cooled below; liquid stream; specific gravity; flow rates; residence time; direct contact; solution containing; aqueous solution; flow rate; organic liquid; provide sufficient; continuous production; liquid streams; allow efficient; form solid; sufficient residence; immobilized biocatalyst; beads containing; bone gelatin; chemical cross-linking; continuous removal; effective contact; solid sphere; /502/435/

Citation Formats

Scott, Charles D, Scott, Timothy C, and Davison, Brian H. Apparatus and method for the production of gel beads containing a biocatalyst. United States: N. p., 1998. Web.
Scott, Charles D, Scott, Timothy C, & Davison, Brian H. Apparatus and method for the production of gel beads containing a biocatalyst. United States.
Scott, Charles D, Scott, Timothy C, and Davison, Brian H. Tue . "Apparatus and method for the production of gel beads containing a biocatalyst". United States. https://www.osti.gov/servlets/purl/871347.
@article{osti_871347,
title = {Apparatus and method for the production of gel beads containing a biocatalyst},
author = {Scott, Charles D and Scott, Timothy C and Davison, Brian H},
abstractNote = {An apparatus and method for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 27 00:00:00 EST 1998},
month = {Tue Jan 27 00:00:00 EST 1998}
}

Works referenced in this record:

Techniques for Producing Monodispersed Biocatalyst Beads for Use in Columnar Bioreactors
journal, June 1987


A new technique for the production of immobilized biocatalyst in large quantities
journal, June 1985