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Summary 

This document reports the findings of a market and research review related to state-of-the-art highly 

insulating window frames. The market review focuses on window frames that satisfy the Passivhaus 

requirements (window U-value less or equal to 0.8 W/m2K ), while other examples are also given in 

order to show the variety of materials and solutions that may be used for constructing window frames 

with a low thermal transmittance (U-value). The market search shows that several combinations of 

materials are used in order to obtain window frames with a low U-value. The most common insulating 

material seems to be Polyurethane (PUR), which is used together with most of the common structural 

materials such as wood, aluminum, and PVC. 

 

The frame research review also shows examples of window frames developed in order to increase the 

energy efficiency of the frames and the glazings which the frames are to be used together with. The 

authors find that two main tracks are used in searching for better solutions. The first one is to 

minimize the heat losses through the frame itself. The result is that conductive materials are replaced 

by highly thermal insulating materials and air cavities. The other option is to reduce the window 

frame area to a minimum, which is done by focusing on the net energy gain by the entire window 

(frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net 

energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is 

calculated by subtracting the transmission losses through the window from the solar energy passing 

through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar 

irradiance, calculation period and U-value.  

 

The frame research review also discusses heat transfer modeling issues related to window frames. 

Thermal performance increasing measures, surface modeling, and frame cavity modeling are among 

the topics discussed. The review shows that the current knowledge gives the basis for improving the 

calculation procedures in the calculation standards. At the same time it is room for improvement 

within some areas, e.g. to fully understand the natural convection effects inside irregular vertical 

frame cavities (jambs) and ventilated frame cavities.  
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1 Introduction 

1.1 Background 

In northern climates the construction of well-insulated buildings is important for reducing the energy 

use for heating, especially in small residential buildings. Even in larger commercial buildings where 

internal gains may exceed the transmission losses, well-insulated buildings are desirable. This is 

because well-insulated buildings have less transmission losses and because thermal discomfort due to 

badly insulated constructions can be avoided. Because of this, focus has been put on the insulating 

capabilities of building sections for years. In Norway, for instance, the requirements for the thermal 

transmittance (U-value) of new building sections like roofs, external walls and windows were last 

restricted in 2007 (NBC 2007). Table 1 shows the U-value requirements and also the evolution of the 

U-value requirements for different building sections according to the Norwegian building code. From 

1969 to 2007 the thermal transmittance requirements of new outer walls were reduced from 0.46 

W/m2K to 0.18 W/m2K. For windows the reduction has been from 3.14 to 1.2 W/m2K. Even though 

there have been a reduction for all building envelope parts it is evident that the U-value requirement 

for windows and doors is very different that the requirements for the other envelope parts. The reason 

for this is of course that windows are built from other materials than the opaque materials used in 

typical roofs, walls and floors. 

 

Because of the large difference in U-value between windows and other building constructions, the 

energy losses through windows will contribute to a large part of the transmission losses for a building. 

For a two-story residential house with base area of 8 × 10 m2, height of 2 × 2.5 m and with 30 % of the 

walls covered by windows about 60 % of the total energy loss through the building envelope of that 

building will be through the windows, if the building envelope sections of the building comply with 

the U-value requirements of NBC (2007). If the window area is reduced to 20 % the corresponding 

percentage is about 45 %. Thus, decreasing the U-value of windows can be an important factor in 

reducing the energy use for heating in residential buildings. However, it should not be forgotten that 

windows also allows for solar energy to enter the building. 

 

The window frame is an important part of a fenestration product. Looking at a window with a total 

area of 1.2 × 1.2 m2 and a frame with a width of 10 cm, the area occupied by the frame is 30 % of the 

total. If the total area of the window is increased to 2.0 × 2.0 m2 the percentage is 19 % (still using the 

same frame). That is, a substantial part of the heat loss will be attributed to the frame, especially if the 

frame has an U-value that is higher than the glazing U-value.  
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In rating fenestration products engineers area weight the thermal performance of the different parts to 

find one number describing the entire product. Thus, to get a window with a low U-value, both the 

glazing and the frame need to have a low thermal transmittance (in addition to the edge part of the 

window). Below, typical glazing and frame types will be presented as an introduction to the window 

frame research and market state-of-the-art. 

 
Table 1. Thermal transmittance (W/m2K) requirements according to Norwegian building codesa). 

Building Sections Norwegian building 
code 1969 

(NBC 1969) 

Norwegian building 
code 1987 

(NBC 1987) 

Norwegian building 
code 1997 

(NBC 1997) 

Norwegian building 
code 2007 

(NBC 2007) 
Temperature  > 18 ºC ≥ 20 ºC  
Outer Wall 0.46 0.3 0.22 0.18 
Window 3.14 2.4 1.6 1.2 
Door 3.14 2.0 1.6 1.2 
Roof 0.41 0.2 0.15 0.13 
Floor 0.46 0.3 0.15 0.15 
a) This table simplifies the U-value requirements for some building sections and building codes. Please refer to the different 
building codes for detailed information. 
 

1.2 Report Outline 

The focus in this report lies on window frames with a high thermal performance; that is on frames with 

a significantly lower U-value than traditional frames, and frames for which special actions have been 

taken to reduce the heat loss or in other regards increase the thermal performance. Because the thermal 

transmittance of window frames is coupled to the glazing spacer (according to some calculation 

procedures), information related to typical glazing spacers is also included. The main part of the work 

in this report relates to the research review (Chapter 4) and the market review presented in Chapter 5. 

The following division in chapters is selected: 

 

• Chapter 1 gives a short background for this report. 

• Chapter 2 explains typical thermal performance rating procedure for windows and window 

frames. 

• Chapter 3 explains the typical parts that a window is made of, and typical ways of 

classification. 

• Chapter 4 presents frame related research found in scientific journals and reports. Modeling 

issues has got the most attention, but new frame designs are also presented. 

• Chapter 5 presents the most interesting results from the market review. A separate list is given 

in the Appendix.  

• In Chapter 6 the findings of the previous two chapters are summarized and discussed. 

• Chapter 7 concludes the report.  
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2 Thermal Performance Rating 
The most common way of rating fenestration products is by the U-value and the g-value (solar factor). 

The U-value is the thermal transmittance and the g-value is the total solar energy transmittance 

(denoted with a number between 0 and 1). In addition the air leakage will have an influence on the 

energy performance of the various products. The visible transmittance and condensation resistance are 

also important factors that may be noted. All these parameters can be found by performing 

measurements or simulations according to documents published by ISO, CEN and NFRC. These 

documents will not be further described here. Instead issues related to various window and frame U-

value calculation procedures and other rating procedures, important for understanding some of the 

topics in later chapters, will be described. 

2.1 Thermal Transmittance (U-value) 

First, the authors note that people should be aware of two different ways of calculating the thermal 

transmittance (U-value) of windows and window frames, in particular. These are often referred to as 

the ASHRAE procedure (based on ASHRAE SPC 142P) and the ISO procedures (described in ISO 

10077-2). (The two procedures are also described in ISO 15099.) The two approaches are different in 

the way they treat the effect of the glazing spacer on the heat transfer through the frame and the 

glazing unit near the frame. The ASHRAE method assumes that the spacer influences both the heat 

transfer through the frame and the heat transfer through the glazing in an ‘‘edge-of glass’’ region. The 

edge-of-glass region is set equal to a 63.5 mm (2.5 inch) wide area, measured from the glazing/frame 

sight line. To find the frame and edge-of-glass thermal transmittances the frame is simulated with the 

glazing/spacer inserted. The total window U-value is calculated according to 

 

,
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where Ucg is the center-of-glass U-value and where Ac, Af, Ae and At denote the center-of-glass area, the 

frame area, the edge-of-glass area, and the total window area, respectively. Ufr and Ueg are determined 

from the following equations: 
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where lf is the projected length of frame area and leg is the length of the edge-of-glass area, which is 

equal to 63.5 mm. These lengths are measured on the internal side. Φfr and Φeg are heat flow rates 

through frame and edge-glass areas (internal surfaces), respectively, including the effect of glass and 

spacer. Both Φfr and Φeg are expressed per length of frame or edge-glass areas. The summations in Eq. 

(1) are used to account for the various sections of one particular component type; e.g. several values of 

the projected frame area, Af, are needed in order to sum the contributions of different values of Ufr 

corresponding to sill, head and side jambs. Tni and Tne denote the interior and exterior temperature, 

respectively. 

 

To follow the ISO method the frame has to be simulated both with an insulation panel and with the 

glazing/spacer. A linear thermal transmittance that depends on the spacer/glazing configuration can 

then be calculated. The additional heat transfer due to the existence of the spacer is then assumed to be 

proportional to the glazing/frame sightline distance that is also proportional to the total glazing spacer 

length. Thus, the total window U-value is calculated according to 
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where Ug is the center-of-glass U-value and where Ag and Af, denote projected vision and frame area. 

At is the total window area. To find the frame U-value the frame is simulated with an insulation panel 

instead of the real glazing and spacer. Ψ and Uf  are then determined from the following equations: 
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L2D is the thermal coupling coefficient determined from the actual fenestration system (frame, glazing 

and spacer) and Lp
2D is the coupling coefficient determined from the frame/panel insert system. 

Further, Up is the thermal transmittance of the foam insert, lp is the internal side exposed length of 

foam insert, lf is the internal side projected length for frame section, and lg is the internal side projected 

length of the glass section.  

 

Note that the two ways of calculating the frame U-value in Eq. (2) and Eq. (6) give different frame U-

values. The reason for this difference is that one of the U-values is found by simulating the frame with 

the actual glazing system, while in the other method the frame is simulated with an insulation panel. 

The frame U-values presented in this report are based on Eq. (6), that is ISO 10077-2. 

   9



 

Blanusa et al. (2007) compare the ISO and ASHRAE procedures and find that the two procedures give 

U-values that differ both for the frame and the entire window product. The difference is largest for 

small windows. A maximum difference of 3 % is found for entire windows. The difference was 

explained by the way the corner regions of the window frame and glazing are treated by the assembly 

of the overall thermal transmittance for a three-dimensional window from the two-dimensional 

calculations. It is therefore important, if products are compared, that the procedures used to find the U-

value are noted.  

2.2 Energy Gain 

Nielsen et al. (2000) introduces a method to rate and select windows for new buildings or buildings 

that are going to be retrofitted. The method considers Net Energy Gain for the windows in question; 

that is, a net energy gain is calculated by subtracting the transmission losses through the windows 

from the solar energy passing through the windows, 

 
2    [kWh/m ]E I g U D= ⋅ − ⋅         (7) 

 

I (kWh/m2) is the solar gain during the heating season corrected for the g-value’s dependency on the 

incidence angle. D (kKh) is the degree hour during the heating season. The heating season is in this 

study set to 24/9–13/5. I and D are dependent on the climate and I also depends on the orientation of 

the windows. A negative net energy gain indicates that the heat loss is larger than the solar gain. 

Nielsen et al. (2000) only consider the net energy gain for the windows, and not other losses and gains. 

The net energy gain calculations are based on the temperature and solar radiation conditions of a 

Design Reference Year (hourly values), and in their study D = 90.36 kKh. Using this method it is 

possible to produce diagrams that show the net energy gain as a function of the U-value, g-value, 

orientation, and tilt of the glazing or windows, see Figure 1. The method can take into account shading 

and utilization degree of the heat transmitted into the building. The authors note that the method 

should only be used in heating dominated buildings. The method is further elaborated on in Lautsen 

and Svendsen (2005) and Svendsen et al. (2005).  

 

It is noted that similar methods also have been suggested by others, e.g. for rating fenestration 

products in Canada. There, thermal transmittance losses (using the U-value), solar heat gain and air 

infiltration losses are counted for. Arasteh et al. (2007) also presents similar plots as Nielsen et al. 

(2000), and use these to define the performance criteria for residential Zero Energy Windows. 

Through the use of whole house energy modeling, typical efficient products are evaluated in five US 

climates and compared against the requirements for Zero Energy Homes. The performance threshold 

at which a window provides net energy gain for the building rather than net energy loss is determined 
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by simulating the building in question with no heat flow through the windows, i.e., the g-value and U-

value properties of the windows were set to zero, representing perfect thermal resistance, with no solar 

transmittance. Both cooling and heating is accounted for, with thermostat set points being 21.1 ºC for 

heating and 25.6 ºC for cooling. 

 

There also exist software tools that are especially designed to evaluate the thermal performance of 

windows. An example is RESFEN (Mitchell et al. 2005), which calculates heating and cooling energy 

use and associated costs as well as peak heating and cooling demand for specific window products 

(http://windows.lbl.gov/software/resfen/resfen.html). Users define a specific "scenario" by specifying 

house type (single-story or two-story), geographic location, orientation, electricity and gas cost, and 

building configuration details (such as wall, floor, and HVAC system type). Users also specify size, 

shading, and thermal properties of the window they wish to investigate. The thermal properties that 

RESFEN requires are: U-value, solar heat gain coefficient, and air leakage rate. RESFEN calculates 

the energy and cost implications of the window compared to an insulated wall. The relative energy and 

cost impacts of two different windows can be compared. 

 

 
Figure 1. Example of net energy gain diagram for a one-family house in Danish climate during the period  24/9–

13/5 (heating season). The net energy gain is determined taking into account the orientation of the 

windows in the building and a shading factor of F = 0.7 (Nielsen et al. 2000). 

 

2.3 Classification Schemes 

There exist several certification schemes that producers can try to fulfill in order to say that their 

product is energy efficient. One of the most strict one (in regard to requirements of a low U-value), is 

the one specified by the Passivhaus Institute in Germany (www.passiv.de). To fulfill the Passivhaus 

requirements (www.passiv.de) the following demands have to be reached for the glazing, window and 

frame: 
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•  Ug ≤ 0.80 W/m2K   (window glazing) 

•  Uw ≤ 0.80 W/m2K   (window as a whole) 

•  Uf so that Uw ≤  0.80 W/m2K   (window frame) 

 

If a glazing with a Ug-value equal to 0.80 W/m2K are to be used in a window where the Uw-value have 

to be 0.80 W/m2K, the frame U-value must be smaller than 0.80 W/m2K, because of the edge of glass 

region where the spacer is situated (see Eqs. 3 and 5). If for example the glazing has a Ug-value 

considerable below 0.80 W/m2K the frame U-value may be somewhat above 0.80 W/m2K and still be 

able to fulfill the window Uw ≤ 0.80 W/m2K requirement. The exact value has to be calculated for the 

different windows configurations.  

 

The majority of the windows and frames reported below comply with the Passivhaus requirements. 

The standard ISO 10077-2 is used to calculate the frame U-value. That is, an insulation panel is used 

instead of the actual glazing, see also Chapter 2.1. 
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3 What Makes a Window? 

3.1 Window 

According to Wikipedia (2007) and Encyclopædia Britannica (2007) a window is an opening in an 

otherwise solid and opaque surface that allows the passage of light and air. Encyclopædia Britannica 

(2007) further notes that windows often are arranged for the purposes of architectural decoration. 

Since early times, the openings have been filled with stone, wooden, or iron grilles or lights (panes) of 

glass or other translucent material such as mica or, in the Far East, paper. Modern windows are almost 

always filled with glass, though a few use transparent plastic. A window in a vertically sliding frame is 

called a sash window: a single-hung sash has only one half that moves; in a double-hung sash, both 

parts slide. A casement window opens sideward on a hinge. 

 

Within this report a window is defined as consisting of: 

 

•  Window glazing 

o Glass (single, double, triple, etc.) 

o Spacer (Al, Swisspacer, Thermix, etc.) 

o Cavity gas (air, argon, krypton, xenon) 

o Glass coating (low emissivity coatings, solar control coatings, etc.) 

•  Window frame 

o Various frame/casing structures, fixed/opening windows, etc. 

o Structural frame materials 

o Highly thermal insulating materials 

 

Windows may be classified into various types, e.g. according to their operating system. One example 

is depicted in Figure 2. Figure 3 shows properties which have to be addressed in order to make a 

high-performance window with respect to thermal insulating properties. 

 

 
Figure 2. Figures showing classification of windows according to their operating system. From 

http://www.efficientwindows.org/otypes.cfm. 
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Figure 3. Properties making up a high-performance window (http://www.buildcentral.com/windows/about.asp). 

 

The U-value of the window glazing have been decreased throughout the years, e.g. from 3.0 W/m2K to 

1.6 W/m2K and further down to 1.2 W/m2K for double glazing. By applying triple glass panes and low 

emissivity coatings on two glasses, the Ug-value has been further decreased down to 0.7 W/m2K 

(argon filled cavities) and 0.5 W/m2K (krypton filled cavities). Window frame U-values above 

1.0 W/m2K for traditional window frames are therefore becoming a minimum factor in the window 

design of today, which may hamper the goal of reduced heat loss through the windows. In order to 

reduce the heat loss from buildings in general and windows in particular, it is therefore crucial to 

develop highly thermal insulating window frames. 

3.2 Window Glazing 

The glazing is usually the larger part of a window. Various classification systems of glazing types or 

window glass panes may be found in the literature, where one example is shown in Figure 4. 

 

Typical window glazing U-values depending on number of glasses, thickness of cavity, choice of 

cavity gas and number of low emissivity coatings are given in Table 2. Increasing number of glasses, 

increasing number of low emissivity coatings and application of argon or krypton instead of air, 

decreases the Ug-value substantially. The lowest Ug-value of 0.5 W/m2K is found for a glazing with 

three layers of glass, two low emissivity coatings and krypton in the cavities for a normal 4E-12-4-12-

E4 configuration (E = low emissivity coating, each cavity 12 mm, 4 mm thick glasses). 
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Figure 4. Classification of glazing types/window glass panes (http://www.efficientwindows.org/gtypes.cfm). 

 
Table 2. Typical Ug-values for window glazings depending on number of glasses, choice of cavity gas and 

number of low emissivity coatings (E = low emissivity coating, each cavity 12 mm, 4 mm thick 

glasses). 

Glazing U-value ( W/(m2K) ) 

Cavity Gas 
Glazing Configuration 

(mm) 
Air Argon Krypton 

4 5.8 - - 

4-12-4 2.9 2.7 2.6 
No low 

emissivity 
coating 

4-12-4-12-4 2.0 1.9 1.7 

4-12-E4 1.6 1.3 1.1 

4-12-4-12-E4 1.3 1.0 0.8 
Low 

emissivity 
coating 

4E-12-4-12-E4 1.0 0.7 0.5 
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3.3 Window Frame Types 

The various window frame types are at this stage divided into the groups listed below. This division is 

based on the actual frames found in the market review (see Chapter 5). Other window frame 

classification systems may also be found, e.g. the one given in 

http://www.efficientwindows.org/ftypes.cfm. In this report, the subdivisions are made according to the 

structural load carrying element for the opening windows (a fixed frame group and a glass facade 

system group have also been specified - for further details see Chapter 5.1): 

 

•  Wood frame 

•  Wood frame with insulation-filled Al cladding 

•  PVC frame 

•  PVC frame with insulation filled Al cladding 

•  Al frame 

•  Fixed wood and Al frame 

•  Glass facade system 

 

All these frames include insulating materials in addition to the structural materials.  

 

As noted above typical window frames seldom reach Uf-values below 1 W/m2K. They normally have 

Uf-values quite a bit larger than 1 W/m2K. The Uf-value for wood frames is mainly decided by the 

thickness of casement and frame in the heat flow direction. Typical thicknesses are between 80 and 

100 mm for the casement and between 60 and 70 for the frame. This results in a mean Uf-value for 

casement and frame of 1.5 to 1.7 W/m2K. For plastic frames the Uf-value is between 1.6 and 

2.8 W/m2K, and is mainly dependent on the number of air cavities and the location of the load 

carrying element which usually is of metal. Window frames constructed of metal, usually aluminum, 

should be constructed of one outer and one inner profile and separated by an insulating material (a 

thermal break), i.e. polyamide. The thermal break is necessary to meet low U-value requirements and 

also to achieve acceptable surface temperatures. Traditionally metal frames have had a high Uf-value, 

but new aluminum frames with a thermal break may have Uf-values varying from about 1.4 to 2.8 

W/m2K. 
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4 Window Frames Research 
This chapter presents various topics related to the thermal performance of window frames found in 

research papers and reports. The main focus has been on reports and papers that only study the 

window frame. But because the frame usually is a part of a complete window, research on topics 

related to windows in general is also presented. For these reports and papers the issues related to the 

frame and focusing on energy rating topics have been selected. Research focusing on the glazing and 

glazing topics are not referred in detail. 

4.1 Effect of Frame and Spacer on Window U-Value 

The thermal performance of the window frame has an effect on the thermal performance of the entire 

window, because the U-value of the entire window is an area-weighted average of the individual 

components (glazing, edge and frame). A good window frame will therefore influence the total 

window U-value positively compared to a poor window frame.  

 

Carpenter and McGowan (1989) studied the effect of various frames and spacers on the thermal 

performance of the entire window. They found that double-glazed windows with insulation spacers 

have a 6% lower U-value than those with aluminum spacers. Furthermore, insulating spacers can 

reduce the total window U-value by as much as 12% in high-performance windows (three glass 

panes), as compared with aluminum spacers. (Further, they also found that the U-value of aluminum 

frames is 39 % higher than wood frames for standard double-glazed windows and up to 52 % higher 

for high-performance glazings. The frame U-values ranged from 11.2 W/m2K for aluminum frames 

and 2.1 W/m2K for wood frames. They used a method similar to the alternate method in ISO 15099 to 

calculate the frame U-value. That is, the frames were simulated with glazing and spacer, not with an 

insulation panel to find the frame U-value.) 

4.2 Thermal Performance Improving Measures 

There are several ways of improving the thermal performance of windows and frames in particular. 

There are also several ways of assessing if one product has a better performance than another product. 

With regard to window frames the thermal transmittance (U-value) seems the most appropriate way of 

assessing the thermal performance. But when the ultimate goal is a complete window (glazing and 

frame) with a good thermal performance, other measures may also be useful, like the Net energy gain 

method presented above. Using the latter method may show that a window with a U-value of 0.97 

W/m2K (frame U-value equal to 1.49 W/m2K) have a higher net energy gain than window with a U-

value of 0.79 W/m2K (frame U-value equal to 0.75 W/m2K), Lautsen and Svendsen (2005). The 

reason for this is that the former window has a larger glazing area than the latter window.  
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With regard to frame U-value, one may look at changing the geometry as an option to modify the 

thermal transmittance. Replacing high-conductivity materials with low-conductivity materials is 

another way to reduce the thermal transmittance of frames. Here we present measures that various 

researchers have investigated in order to improve the frame’s or the window’s thermal performance. 

 

In 1992 Byars and Arasteh examined various design options for reducing the frame U-value. They 

studied the effect of substituting wood (conductivity equal to 0.1159 W/mK) with an insulating 

material and also substituting the glazing spacer with an insulating material (conductivity equal to 

0.0294 W/mK). The insulating material for the frame was not a real material with the structural 

properties needed for a window frames, but rather a material with the wanted thermal properties 

(reported in percentages of the conductivity of wood). The authors found that reducing the thermal 

conductivity of the jamb and sash from 100% of the conductivity of wood to 50% and 10% of the 

conductivity of wood for the sash and jamb, respectively, resulted in a U-value decrease from 1.48 to 

0.57 W/m2K (with an insulated spacer). The authors also investigated the effects of varying cladding 

thickness and fill materials on “clad frame” frame U-values. They found that changing the fill material 

from wood to an insulating material was more important than changing the clad thickness (i.e. from 2 

mm to 1 mm). Once the fill was insulated the, the cladding thickness and conductivity became 

important.  

 

Two papers, Noyé and Svendsen (2002) and Lautsen and Svendsen (2005), describe how the Net 

Energy Gain method can be used to find better window designs. As explained above, this method 

takes both the thermal losses and the gains into consideration. The window with the largest net energy 

gain does therefore not necessarily have the lowest frame U-value. Lautsen and Svendsen (2005) 

examine 7 different window designs. The design of the two windows having the largest net energy 

gain is presented below. 

 

The window with the largest net energy gain (18 kWh/m2 for Danish climate) is shown in Figure 5. It 

is a proposal, and the frame construction is made of fiber glass reinforced polyester, which is both 

very slim and deep. There is room for three glass panes with an unusually large gap, which has the 

effect that the depth of the frame is as much as 150 mm. The frame can be made even deeper for walls 

with more thermal insulation. The total area of the window is 1.23 m × 1.48 m and the frame width is 

25 mm. Thus, the glass percentage is 93%. The frame U-value is 1.49 W/m2K, the centre U-value of 

the glazing is 0.93 W/m2K, and the g-value is 0.58. A version of this window with shutters on the 

outside was also tested, and this window produced even a larger net energy gain. The main idea 

behind this design, besides increasing the overall solar energy transmittance from the window, is that 

it should not be necessary to reduce the insulation thickness in the wall where the window is mounted 

(Schultz and Svendsen, 2000, and Schultz, 2002). A traditional and the new design are shown in 
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Figure 6. For the new design the thermal bridge effects in the wall can be minimized or eliminated. 

The thermal bridge effect by the frame itself is also minimized. The inner and outer pane of the 

window has a hard coat low emissivity layer. Another advantage with this design is that it does not 

have a sealed glazing unit. This should increase the life time of the product (Schultz, 2002).  

 

 
Figure 5.  Frame profile made from fiber glass reinforced polyester with three layers of glass (Lautsen and 

Svendsen, 2005). The frame U-value is 1.33 W/m2K. 

 

  
Figure 6.  Traditional and new window designs illustrating how thermal bridges in the wall around the windows 

can be reduced by using a wide window. (Schultz, 2002).  
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The window with the second largest net energy gain (-2 kWh/m2 for Danish climate) has a frame 

profile that is made of wood covered with aluminum, see Figure 7. The glazing has a double layer low 

energy glazing 4-15-4 mm with 90% argon filling and a low-emissivity coating on the inner pane on 

the surface facing the gap. In order to achieve a high g-value the outer pane is made of float glass with 

low iron content. The spacer is made of plastic with a very thin stainless steel film. The height of the 

frame is reduced by about 5 cm compared to a traditional wood frames by moving the sash out in front 

of the outer frame. The glazing area is therefore increased by 15% compared to a similar window of 

wood where the frame width is 10 cm (window dimensions: 1.48 x 1.23 m). A large width is selected 

to reduce the thermal bridge between the window and the wall. 

 

A Passivhouse window was also simulated. This frame gave a net energy gain slightly smaller (more 

heat loss) than the second best frame. This window had a U-value of 0.77 W/m2K, with a frame having 

a U-value of 0.75 W/m2K. This frame is shown in Figure 8. 

 

 
Figure 7.  Slim frame profile (5 cm) made from wood covered with aluminum (Lautsen and Svendsen, 2005). The 

frame U-value is 1.33 W/m2K. 
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Figure 8. A window satisfying the PassivHaus requirements. The frame is made of a PVC frame profile with PU 

foam in the cavities (Lautsen and Svendsen, 2005). 

 

Some authors have also investigated the effect of frame geometry on new and emerging technologies, 

such as an electrochromic vacuum glazed window. Fang and Eames (2006) found that the frame rebate 

depth had a significant influence on the window U-value. Calculations of the thermal performance of a 

vacuum glazing (two glass panes) in a solid wood frame with rebate depths of 0 to 22.4 mm have been 

carried out (see Figure 9). The emissivity of the coatings on the two glass surfaces within the 

evacuated gap was 0.18. Over the depth of rebates considered, the U-value of the total window area 

(glazing had a size of 0.4 by 0.4 m2) decreased from 1.4 to 0.83 W/m2K. The U-value of the center 

glazing area decreased from 1.04 to 0.82 W/m2K. The authors also examined the effect of rebate depth 

on an electrochromic vacuum glazed window. The construction was similar to the one shown in Figure 

9, but with the glass pane to the left replaced with an electrochromic glazing system. Thus, the total 

width of the entire glazing system was wider than for the vacuum window alone. For this construction 

the total window U-value decreased from 1.48 to 1.13 W/m2K when the rebate depth increased from 0 

to 22.4 mm. The center U-value changed from 0.98 to 0.80 W/m2K.  
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Figure 9. Schematic showing of a vacuum glazing with a wood frame. W is the rebate depth. The size of the 

pillars separating the glass panes in the figure is not comparable to a real vacuum window.  

 

4.3 3D and Other Effects on Thermal Performance 

Griffith et al. (1998b) and Carpenter and McGowan (1998) studied heat transfer in curtain-wall 

aluminum frames and focused on the effect of the bolts on the heat flow and the temperature 

distribution on the warm side surface of the specimens. Both studies conclude that it is important to 

include the bolts when the thermal performance of the frames is found. They also found that two-

dimensional program gives accurate results when appropriate calculation procedures are applied.  

 

Hallé et al. 1998 studied the effect of air leakage on the heat transfer in window frames with internal 

cavities. They used computational fluid dynamic (CFD) techniques to simulate air leakage effects. The 

frame cavities were treated as solids. Two window frames (an aluminum frame with a PVC thermal 

break and a PVC frame) were examined with air leakage rates of 1.65 and 0.55 m3/h per meter crack 

length. For the infiltration case the authors found that the air-frame interaction caused the air to be 

preheated by the frame. This decreased the apparent thermal transmittance of the frame. For the 

exfiltration case, air increases the frame temperature, which increases heat losses and the apparent 

thermal transmittance of the frame.  

4.4 Heat Transfer Modeling of Window Frame Cavities 

A large part of the work related to heat transfer issues in fenestration cavities has focused on the 

glazing cavity. The goal has mostly been to develop accurate correlations for natural convection 

effects inside multiple pane windows (see e.g. Batchelor 1954, Eckert and Carlson 1961, Hollands et 

al. 1976, Raithby et al. 1977, Berkovsky and Polevikov, 1977, Yin et al. 1978, ElSherbiny et al. 

1982a, Shewen et al. 1996, Wright 1996, or Zhao 1998). Most of these papers study natural 

convection between two high vertical isothermal walls separated by two horizontal adiabatic or 
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perfectly conducting walls (a two-dimensional cavity). Some of these studies are also relevant for 

frame cavities. The natural convection correlation used to find the effective conductivity for certain 

frame cavities are from some of these studies.  

 

Studies of heat transfer in multiple pane windows also include findings of which Rayleigh numbers 

there will be secondary (or multicellular) flow (see e.g. Korpela et al. 1982, Lee and Korpela 1983, 

Zhao et al. 1997, Lartigue et al. 2000). Secondary flow enhances heat transfer through glazing cavities, 

and may also take part in frame cavities of a certain shape, see Gustavsen and Thue (2007). 

 

In solid window frames the heat flow is carried out by conduction, which can be simulated with 

standard conduction simulation software. In window frames with internal cavities the heat transfer 

process is more complex, involving combined conduction, convection and radiation. Ideally, to fully 

describe heat transfer through such window frames there is a need to simulate fluid flow to find the 

convection effects and to use either view-factors or ray-tracing techniques to find the radiation effects 

inside the cavities. But because of computational resources and the additional modeling efforts these 

simulations often require, such simulations still are rare. Instead air cavities are transformed into solid 

materials with an effective conductivity; that is, the conduction, convection and radiation effects are 

combined into an effective conductivity. Then, like for solid window frames without internal cavities, 

standard conduction simulation software can be used to find how well such sections insulate, or the U-

value. Some computer packages (like e.g. Blomberg 2000, Enermodal 2001 or Finlayson et al. 1998) 

do find the effective conductivity automatically, by applying procedures specified in international 

standards (ISO 15099 or ISO 10077-2). In some computer programs it is also possible to use view-

factors to calculate the radiation heat transfer effects (Finlayson et al. 1998). 

 

Some studies have been performed with focus on heat transfer effects in window frames, and with 

focus on window frames with internal cavities. Standaert (1984) studied the U-value of an aluminum 

frame with internal cavities. The cavities were treated as solids and effective conductivities were 

assigned to each cavity. The effective conductivities of cavities not completely surrounded by 

aluminum were calculated from a fixed thermal resistance of R = 0.37 m2K/W (λeq = L/R where λeq is 

the equivalent conductivity and L is the length of the cavity in the heat flow direction). Cavities 

completely surrounded by aluminum were assigned an effective conductivity of 0.1 W/mK. The 

thermal transmittance of the frame studied was 5.9 W/m2K. Jonsson (1985) and Carpenter and 

McGowan (1989) also treated air in window frame cavities as solids and used equivalent 

conductivities to calculate heat flow. In their studies the effective conductivity concept was formulated 

as,  
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where λeq is the equivalent conductivity, λair is the conductivity of air, Nu is the Nusselt number, L is 

the length of the air cavity, εH and εC and are the emissivities of the warm and cold sides of the cavity 

walls, respectively. hR is the black-body radiative heat transfer coefficient, which depends on 

temperatures of the interior walls of the cavity and also on cavity geometry. Jonsson (1985) used hR = 

3.3 W/m2K for different cavity geometries while Carpenter and McGowan (1989) report different hR 

values, depending on cavity height to length aspect ratios. The frames studied by Carpenter and 

McGowan (1989) had U-values between 2.1 and 11.2 W/m2K. The former value is for a wooden frame 

and the latter value for an aluminum frame. Jonsson (1985) examined windows with U-values between 

2.79 and 4.23 W/m2K.  

 

Svendsen et al. (2000) and Noyé et al. (2001) examined the accuracy of the radiation procedures 

prescribed in EN ISO 10077-2 and found that using view-factors to account for radiation instead of the 

simplified correlation in EN ISO 10077-2, results in U-values that compare better with measured 

results. The natural convection correlations of EN ISO 10077-2 were used. Two frames were 

examined, one thermally broken aluminum frame and one frame made of PVC. Svendsen et al. (2000) 

found that division of air cavities also affects the U-value, but not as much as the change of radiation 

model. 

 

Gustavsen (2001) studied heat transfer in window frames with internal cavities, and focused mainly on 

convections effects. Most of the results were published in papers and are reported below. Some results 

are however only available in the introduction part of the thesis; these will be reported here. Gustavsen 

(2001) compares the frame cavity convection correlations from various standards to relevant 

correlations found in the literature. He found that the Nusselt number correlations that are to be used 

for horizontal window frames according to ISO 15099 not necessarily is accurate for frame cavities 

with a height to length aspect ratio between 0.5 and 5, because ISO 15099 prescribes that interpolation 

have to be used for these geometries. (The correlation for cavities with an aspect ration smaller than 

0.5 is based on analytical consideration, while the correlation for high aspect ratio cavities, H/L > 5, is 

based on experiments for typical glazing enclosures.) For some geometries and Rayleigh numbers the 

correlation works but for others the correlation predicts Nusselt numbers that are not correct. Further, 

the author found that the convection correlation prescribed for frame cavities in ISO 10077-2 only is 

valid for vertical frame cavities.  
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Gustavsen and coauthors have studied several aspect of heat transfer in window frames with internal 

cavities. In Gustavsen et al. (2001a), they used infrared thermography to verify that a CFD code was 

capable of simulating the natural convection effects taking place in window frames with internal 

cavities. In a follow-up study the authors (Gustavsen et al. 2001b) examined three-dimensional 

convection effects in simple window frames with internal cavities and concluded that it appears that 

the thermal transmittance (U-value) of a four-sided section sections (with one open internal cavity) can 

be found by calculating the area weighted average of the thermal transmittance of the respective single 

horizontal and vertical sections. However, precise surface temperature predictions require three-

dimensional simulations, especially for the corners of the frames (see Figure 10). In addition, the 

authors concluded that two-dimensional heat transfer simulation software agrees well with CFD 

simulations, with regard to heat transfer rates for the simple square-shaped frames simulated, if the 

natural convection correlations used for the internal cavities were correct. 
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Figure 10.  Temperatures along the left lower horizontal part of the four-sided two-inch PVC frame compared to 

the surface temperatures along the middle of the lowest two-inch profile in the configuration made up 

of two separate horizontal profiles (Gustavsen et al. 2001b). 

 

Gustavsen et al. (2005) used computational fluid dynamics (CFD) modeling to assess the accuracy of 

the simplified frame cavity conduction/convection models presented in ISO 15099 and used in 

software for rating and labeling window products. Three (horizontal) representative complex cavity 

cross-section profiles with varying dimensions and aspect ratios were examined, see Figure 11. Stream 
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contour plots, Figure 12, and heat transfer rates were presented. The results supported the ISO 15099 

rule that complex cavities with small throats should be subdivided; however, the authors suggest that 

cavities with throats smaller than 7 mm should be subdivided, in contrast to the ISO 15099 rule, which 

places the break point at 5 mm. Further, the authors found that the agreement between CFD modeling 

results and the results of the simplified models was moderate for the heat transfer rates through the 

cavities. This was explained by inaccuracies in the underlying ISO 15099 Nusselt number correlations 

being based on studies where cavity height/length aspect ratios were smaller than 0.5 and greater than 

5 (with linear interpolation assumed in between).  

 

 
Figure 11.  Schematics of cavities studied  by Gustavsen et al. (2005). The height and the width of the two 

cavities to the left were 30 mm. The right cavity had a width of 30 mm and the height was 10 mm and 

20 mm. La was varied to between 0 and 30 mm for the cavity to the left and 3 and 15 mm for the cavity 

in the middle.  

 

Gustavsen et al. (2007) used two-dimensional computational fluid dynamics (CFD) and conduction 

simulations to study heat transfer in horizontal window frames with internal cavities (the above 

mentioned paper studied only cavities). Temperatures and U-values for typical horizontal window 

frames with internal cavities are compared; results from CFD simulations with detailed radiation 

modeling are used as a reference. Four different frames were studied. Two were made of polyvinyl 

chloride (PVC) and two of aluminum. For each frame, six different simulations were performed, two 

with a CFD code and four with a building-component thermal-simulation tool using the Finite Element 

Method (FEM). The FEM tool addresses convection using correlations from ISO 15099; it addressed 

radiation with either correlations from ISO 15099 or with a detailed, view-factor-based radiation 

model. The practice of subdividing small frame cavities was examined, in some cases not subdividing, 

in some cases subdividing cavities with interconnections smaller than five mm (according to ISO 

15099) and in some cases subdividing cavities with interconnections smaller than seven mm. For the 

various frames studied (two were made of aluminum and two of PVC), the calculated U-values were 

found to be quite comparable (the maximum difference between the reference CFD simulation and the 

other simulations was found to be 13.2 percent). A maximum difference of 8.5 percent was found 

between the CFD simulation and the FEM simulation using ISO 15099 procedures. The ISO 15099 

correlation works best for frames with high U-factors. For more efficient frames, the relative 
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differences among various simulations are larger. Finally, the effectiveness of the ISO cavity radiation 

algorithms was examined by comparing results from these algorithms to detailed radiation calculations 

(from both programs). The author conclude that improvements in cavity heat transfer calculations can 

be obtained by using detailed radiation modeling (i.e. view-factor or ray-tracing models), and that 

incorporation of these strategies may be more important for improving the accuracy of results than the 

use of CFD modeling for horizontal cavities. Figure 13 shows a stream contour plot for one of the 

PVC frames studied. 

 

 
Figure 12.  Stream contours for the cavity to the left in Figure 11 (named the H-cavity). La is the size of the gap 

opening, and ΔT is the difference between the hot and cold wall temperatures, reported in °C. 
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Figure 13.  Stream contours for one of the PVC frames studied by Gustavsen et al. (2007). 

 

Gustavsen and Thue (2007) used a commercial computational fluid dynamic program to study the 

effect of the horizontal aspect ratio (W/L) on heat flow through three-dimensional cavities with a high 

vertical aspect ratio (H/L). These are the kind of cavities that can be found in vertical window frames, 

see Figure 14. The cavities studied have two opposite isothermal vertical walls separated by four 

adiabatic walls. The vertical aspect ratios are 20, 40, and 80 and the horizontal aspect ratios range 

from 0.2 to 5. Simulations of two-dimensional cavities are also included. The simulations show that 

three-dimensional cavities with a horizontal aspect ratio larger than five can be considered as being 

two-dimensional cavities to within 4% when considering heat transfer rates. A complex flow was also 

found, for several of the cavities; one example is shown in Figure 15. Nusselt number correlations for 

the different horizontal aspect ratios are presented.  

 

 
Figure 14.  Geometry studied by Gustavsen and Thue (2007). The vertical aspect ratios, H/L, were 20, 40, and 80 

and the horizontal aspect ratios, W/L, ranged from 0.2 to 5. 
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Figure 15.  y-velocity contours (m/s) at different planes in a cavity where  (H/L,W/L) = (40,2). The Rayleigh 

number was equal to 2×104. Each plane is parallel to the y-z-plane in Figure 14. X is the total length of 

the cavity. The x-vector is pointing into the page, the y-vector is pointing from bottom to top, and the z-

vector is pointing from left to right. The figures are not in the correct scale (Gustavsen and Thue, 

2007). 

 

Fomichev and co-workers have also studied heat transfer effects in the kind of cavities that can be 

found in horizontal and vertical frame cavities (Fomichev et al. 2007). They used both experimental 

and numerical techniques (two- and three-dimensional CFD simulations) and studied the effect of the 

aspect ratios (horizontal and vertical) as well as tilt angle on the heat transfer rates. They concluded 
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that two-dimensional modeling is appropriate to predict natural convection heat transfer in horizontal 

frame cavities (such as the ones found in frame head and sill) tilted around the long axis. They further 

concluded that three-dimensional simulations is needed to predict natural convection heat transfer in 

frame cavities tilted around the short axes, such as the ones found in vertical frame sections (jambs, 

and vertical meeting rail and mullion cross-sections). Fomichev et al. (2007) also note that the frame 

cavity correlation equations suggested by ISO 15099 for vertical frame cavities do not correlate well 

with their three-dimensional CFD simulation results. The authors suggest new correlations for both 

horizontal frame sections (vertical aspect ratios between 0.5 and 5) and vertical frame sections 

(vertical aspect ratios between 20 and 40, and horizontal aspect ratios between 0.5 and 2). The 

correlations depend on both Rayleigh number and tilt angle (in addition to the aspect ratios). Fomichev 

et al. (2007) in addition did some studies of the convection heat transfer effects for ventilated frame 

cavities. 

4.5 Exterior and Interior Surface Modeling 

When the thermal performance of fenestration products is found, through the calculation of the U-

value, surface conditions (surface resistances) are among the properties. And like for modeling of 

internal frame cavities, these properties will pay a more important part for high performance frames 

than for frames with a poorer performance. Accurate treatment of the surface conditions is therefore 

important, to be able to accurately predict the thermal transmittance and also to distinguish between 

various designs with regard to obtaining desired glass/frame surface temperatures.  

 

Curcija and Goss (1993) used a finite element method to study two-dimensional, laminar convection 

over an isothermal indoor fenestration surface (glazing/frame assembly). Results were reported for 

three typical configurations: glazing with no frame, a single-step frame and a double-step frame. The 

authors present local indoor surface convective heat transfer coefficient to be used in two- and three-

dimensional heat transfer analysis of fenestration systems (valid both for the glazing and the frame 

part of the product).  

 

Carpenter and Elmahdy (1994) examined the thermal performance for four complex fenestration 

systems (flat glazed skylight, a domed skylight, a greenhouse window and a curtain wall) using 

computer simulation tools and guarded hot box testing. They found discrepancies of up to 16 % 

between the simulated and measured cases, and explain the difference by uncertainties in the warm 

and cold side film coefficients and lower warm-side air temperatures because of stagnant airflow. 

They also found that that the thermal simulations must account for thermal bridges like bolts in curtain 

walls and curbs in skylights.  
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In 1994 Curcija and Goss investigated three different ways of modeling heat transfer boundary 

conditions for complete (two-dimensional) fenestration systems (with wood frame). A computation 

fluid dynamics (CFD) program was used in order to allow for fluid flow in the glazing cavity. Two of 

the surface models incorporated fixed indoor and outdoor coefficients and one incorporated variable 

(position dependent) coefficients. Component and overall U-factors were compared. The authors 

found that the U-values from using variable boundary conditions generally were lower than the ones 

calculated using constant surface heat transfer coefficients. The average difference was approximately 

15 %. Curcija and Goss (1994) further noted that the effects of variable boundary conditions, which 

more accurately model local heat transfer on the indoor and outdoor fenestration surfaces, create 

“insulated” zones in the vicinity of the edge-of-glass region, which can significantly change the local 

heat transfer and temperature distribution when compared to constant-boundary-condition situations. 

This effect of lower heat transfer in these “insulated” zones could be used in the design process, so 

that altering the frame design on either side of the frame could create more pronounced outdoor 

insulated zones and less pronounced indoor insulated zones, therefore improving the condensation 

resistance of the fenestration system. The results also showed that the edge-of-glass area used when 

simulating frame and edge of glass (with spacer) should not be defined as 63.5 mm (2.5 in) from the 

sight line, since 102 mm (4 in) is a more realistic measure. 

 

In 1998 Griffith et al (1998a) and Arasteh et al (1998) examined how improved radiation modeling 

(using view-factor models instead of fix coefficients) could improve the prediction of surface 

temperatures when modeling projecting fenestration products. Griffith et al (1998a) found that using 

view-factor modeling could improve the accuracy of the models for predicting surface temperature 

and lower the results for U-values for projecting windows (skylights, greenhouse windows).  

 

Branchaud and co-workers examined the local heat transfer taking place in open frame cavities (open 

to the exterior environment) in 1998. The study shows that there can be a significant variation of the 

local convective heat transfer coefficient on the outdoor surface of a fenestration system. The variation 

is mainly a result of the products geometry. Based on the CFD simulations carried out, the authors find 

that significant convective heat transfer effects extend only up to one times the width of the cavity 

opening, for the cavities studied. 

 

Schrey et al. (1998) studied the local heat transfer coefficient for two flush-mounted glazing units. 

One of the glazings had a foam spacer while the other one had an aluminum spacer. No window frame 

was included in the studies. Wright and Sullivan (1994) used a two-dimensional CFD code to study 

the natural convection effects in a vertical rectangular window cavity, but did not consider frame heat 

transfer. Secondary flow was also reported. 
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4.6 Spacer Research 

The glazing spacer and the location of the spacer in the frame may influence the thermal performance 

of the window, as seen in some of the reported work above. We therefore also include the result from 

some papers related to spacer research, although the focus in this report is on the window frame. 

 

Elmahdy and Frank (1993) studied the effect of various spacers on the surface temperature of double 

pane glazings, without frame. Hot box measurements and finite-difference modeling were performed. 

Four different spacers were considered: Aluminum spacer, silicone foam spacer, a corrugated metal 

spacer and a thermally broken metal spacer. As expected, as the thermal resistance of the spacer bar 

increases, the glass surface temperature on the warm side of the spacer bar increases and the glass 

surface temperature on the cold side decreases. They also modeled the various glazing/spacer 

configurations inserted in a simple wood sash, and found that the difference in the glass surface 

temperatures between the various configurations was smaller as a result of the added sash. Elmahdy 

and Frank (1993) expect the differences to get even smaller for thicker frame profiles.  

 

Löffler (1997) and Löffler and Buck, (1997) presents foamglass as a possible spacer material, and 

investigates the possibility for windows without a frame. The authors claim windows without a frame 

will have a transparent area which is 10 to 15 cm larger at each edge. This will increase the solar gain 

and at the same time reduce the heat loss from window (if the frame has a lower heat resistance than 

the glazing). 

 

Elmahdy (2003) describes several different spacer types, see Figure 16, and examines the thermal 

performance of various spacers by experiments. The spacers were mounted between two clear glass 

panes, and with air in the glazing cavity. The size of the specimens was 152 mm by 1200 mm. The 

specimens were tested without and with frames.  

 
Figure 16.  Spacer bar assemblies studied by Elmahdy (2003). 
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By examining warm-side glass surface temperature of the various glazing units, Elmahdy (2003) 

found that IG8 had the highest temperature. Units IG 4 and IG9, which almost experienced the same 

temperatures, had the second highest temperatures. Thus, these units are therefore best suited for 

reducing warm-side surface condensation. Unit IG7 had the lowest surface temperature while unit IG5 

had the second lowest temperature. The temperature difference between the best and the poorest-

performing units was 6 K. The temperatures on the warm and cold sides of the specimens were 21 and 

-18 ºC, respectively. The experiments showed that the warm-side surface temperature for all 

specimens were almost the same when moving away from the edge-of-glass region (about 60 mm 

from the spacer). Glazing units (1000 mm by 1000 mm) were also tested as part of a complete 

window. The frames were made of various materials (redwood, vinyl, thermally broken aluminum and 

foam-filled fiberglass). The foam-filled fiberglass frame combined with glazing unit IG8 offered the 

warmest glass surface temperature (measured 10 mm from the lower sight line). The thermal 

resistance of each configuration (glazing/spacer/frame) was also tested, and it was found that the wood 

frame windows performed the best, regardless of spacer configuration. The only exceptions were for 

spacer bars IG4 and IG6, for which the thermal resistance values for the vinyl frame and the wood 

frame performed almost the same.  

4.7 Evaluation of Condensation Risk 

Several studies have been performed on evaluation of condensation risk in fenestration products. But, 

for high-performance products internal condensation should not be a problem. On the other side, 

external condensation may be a problem for the exterior pane of the glazing system. Still this is a 

problem for the glazing and not for opaque frames. This topic is therefore not covered in more detail 

here. Interested readers may are referred to e.g. Moshfegh et al. (1989), Carpenter and Hanam (2001), 

and Kohler et al. (2003). 

4.8 Other Topics (Material Properties, etc) 

In this chapter we present research that could not be sorted under the headings above. Most of the data 

are related to the material properties of typical and unusual frame materials.  

 

Erten et al. (1996) investigated reinforced mosaic door and window frames as an alternative to wood 

frames to be used mainly in housing in the Eastern Black Sea region. These frames have been applied 

increasingly by the regional people in their houses. The paper deals with the production, application, 

details and failures of reinforced mosaic frames, but does not address the thermal properties of the 

frames, which probably is rather poor. 

 

Jakubowicz and Möller (1992) examined a PVC window frame that had been naturally aged for 20 

years. One of the main findings was that the heaviest degradation, detectable by IR spectroscopy, had 
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occurred in a relatively thin surface layer of about 100 μm. The surface degradation effects were also 

confirmed by impact strength measurements. Still, after removing the surface layer the impact strength 

was rather low compared with expected values for undegraded PVC. They therefore concluded that 

some kind of degradation also had occurred in the bulk material. Still, the PVC frame investigated 

would probably fulfill the requirements for approval according to most national standards.  

 

Gustavsen and Berdahl (2003) studied the normal spectral emissivity of an anodized aluminum 

window frame profile, and an untreated aluminum profile. The normal spectral emissivity was 

measured in the wavelength interval from 4.5 to 40 μm (wavenumbers 2222 cm-1 to 250 cm-1). Total 

emissivity values were also reported. Specimens were cut from the edge and from the middle of the 

six-meter long anodized aluminum profile. Specimens facing the internal cavities (thermal break 

cavity and all aluminum cavity) were measured. The authors found that the normal total emissivity is 

fairly constant (between 0.834 and 0.856) for exterior parts of the anodized profile and for surfaces 

facing the thermal break cavity. The normal total emissivity of the all-aluminum internal cavities was 

found to vary between 0.055 and 0.82, with the smallest value close to the middle of the profile.  

 

Larsson et al. (1999) studied a super insulated window experimentally and numerically. The test was 

performed in steady state. A three pane glazing and wood frame was investigated. Fluid flow was 

simulated inside the internal cavities of the glazing while fixed film coefficients were used for the 

boundaries. A special test room was used for the experimental part of the work. The authors compared 

measured and calculated temperatures, and found good agreement between numerical and 

experimental results.  
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5 Market Review of Window Frames 
Highly thermal insulating window frames found in the market are presented, where the U-values for 

the frames are given (Uf). The Uf-values are calculated according to Eq. (6); that is, an insulation panel 

is used instead of the actual glazing system, according to ISO 10077-2. The frame configurations with 

the various materials used are given together with some drawings, photos and temperature profiles. In 

addition, some other properties are given, e.g. window glazing U-value (Ug), total window U-value 

(Uw), linear thermal transmittance (Ψ), window glass pane spacer used and physical dimensions 

(w × h). This report gives a selection of the window frames found. The Appendix contains a more 

complete list. 

 

In this report the authors wanted to collect and present the best window frames available, with their 

respective frame U-value. In the search for such frames the authors quickly found out that some of the 

best available frames on the market were the ones presented and rated by the Passivhaus Institute in 

Germany. To fulfill the Passivhaus requirements the window frames need to have Uf values (window 

frame) so that Uw ≤ 0.80 W/m2K (window as a whole) (see Chapter 2.3). Since the frames complying 

with the Passivhaus Institute requirement seem to be the best ones out there (when the U-value is used 

as rating parameter), it was decided to focus on these frames. That is; in order for a window frame to 

be of interest, it had to comply with the requirement of the Passivhaus Institute. Most of the frames 

presented below and in the appendix are therefore rated by the Passivhaus Institute, and/or comply by 

their requirements. However, an extensive separate web-search was also performed, aiming at finding 

window frames with a low U-value. However, this search did not result in very many frames different 

from the frames rated by the Passivhaus Institute. A problem with some of the frames found was a 

lacking frame U-value. Sometimes the total window U-value was presented, but not always. The 

authors decided to present only frames with a known U-value. Some exceptions were however 

allowed, in order to allow for some frames made of a specific material or frames having a specific 

geometry.  

 

Because of the above, and because the search was performed through Internet search engines with 

English and German search terms, the list will not be a complete one, including all window frames 

complying by the above mentioned criteria. However, the authors expect that the list presented in the 

Appendix, and the examples below, include most of the materials used, and give an overview over 

some of the best window frames (lowest Uf-value) available.  

5.1 Various Window Frame Examples 

Various window frame examples are given, where the main focus is to achieve as high thermal 

insulation properties (U-value) as possible. Both traditional window frame/casing systems and glass 
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facade systems are shown. For simplicity reasons the various window frames are (at this stage) divided 

into the following groups: 

 

•  Wood frame 

•  Wood frame with insulation filled Al cladding 

•  PVC frame 

•  PVC frame with insulation filled Al cladding 

•  Al frame 

•  Fixed wood and Al frame 

•  Glass facade system 

•  Window frame examples with higher U values than the Passivhaus requirement 

 

The above frame subdivisions are made according to the structural load carrying element for the 

opening windows. In addition, a fixed frame group and a glass facade system group are also specified. 

With the wood, PVC, Al and wood/Al window groups it is implicitly meant (without stating it) that 

these frames incorporates larger volumes of a highly thermal insulating material (or several) in order 

to obtain a window U-value below 0.80 W/m2K, which is the requirement for a Passivhaus window. 

Normal window frames consisting of only wood, PVC, Al or wood/Al, and thereby with higher frame 

Uf-values resulting in window Uw-values larger than 0.80 W/m2K, are not dealt with in this context. 

As Al claddings may or may not be thermal insulated, and managing the Passivhaus requirement, it is 

added one wood and one PVC window frame group with insulation filled Al claddings. 

5.1.1 Wood Frame 

Examples of three wood window frames are given in Figure 17-Figure 19, where further details may 

be found in appendix. In these examples PUR is applied as a highly thermally insulating material 

inside the structural wood frame construction. Typically, as is also the case in these examples, the 

PUR elements are placed more or less in the middle of the frame. 
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Figure 17. Example of a wood window frame with low U-value - Super-Warmfenster U 07 Serie HF 8120 by 

HEUSER Türen + Fenster-Metalbau GmbH. One photo to the left, one schematic drawing in the 

middle and one temperature profile to the right. Wood frame with PUR. Frame U-value 

Uf = 0.65 W/m2K. From http://www.passiv.de and www.heuser-tueren-fenster.de. 

 

 
Figure 18. Example of a wood window frame with low U-value - VÖRDE-Passivhausfenster by H. Buck GmbH 

Fenster und Türen. Photos with corresponding drawing to the left, thereafter one schematic drawing 

and one temperature profile to the right. Wood frame with PUR and PUR recycled material (purenit). 

Frame U-value Uf = 0.72 W/m2K. This frame may be bought with and without Al cladding. From 

http://www.passiv.de and www.fenster-buck.de. 

 

 
Figure 19. Example of a wood window frame with low U value - N Tech Passiv Superspacer by NorDan AS. 

Wood frame with PUR. The frame U-value is not stated, whereas the total window U-value is reported 

to be Uw = 0.7 W/m2K. From http://www.nordan.no. 
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5.1.2 Wood Frame with Insulation Filled Al Cladding 

Examples of three wood window frames with insulation filled Al claddings are given in Figure 

20-Figure 22, where further details may be found in appendix. In these examples PUR is applied as a 

highly thermally insulating material inside the structural wood frame construction and in the Al 

claddings. In addition, as seen for the frame in Figure 21, XPS may also be utilized. Typically, as is 

also the case in these examples, the PUR elements are placed more or less in the middle of the frame. 

 

 
Figure 20. Example of a wood window frame with insulation filled Al cladding with low U-value - EGE-THERM 

PLUS by EGE Holzbau GmbH & Co. KG. One photo/drawing to the left, one schematic drawing in the 

middle and one temperature profile to the right. Wood frame with PUR, PUR recycled material and 

PUR filled Al cladding. Frame U-value Uf = 0.77 W/m2K. From http://www.passiv.de and 

www.ege.de. 

 

 
Figure 21. Example of a wood window frame with insulation filled Al cladding with low U-value - KombiRoyal Plus 

PH by NIVEAU Fenster Westerburg GmbH. One schematic drawing to the left and one temperature 

profile to the right. Wood frame with PUR and XPS filled Al cladding. Frame U-value Uf = 0.68 W/m2K. 

From http://www.passiv.de and www.niveau.de. 
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Figure 22. Example of a wood window frame with insulation filled Al cladding with low U-value - ed[it]ion passiv 

by Internorm International GmbH. One photo/drawing to the left, one schematic drawing in the middle 

and one temperature profile to the right. Wood frame with PUR and PUR filled Al cladding. Frame 

U-value Uf = 0.73 W/m2K. Compare with fixed window in Figure 27. From http://www.passiv.de and 

www.internorm.com. 

 

5.1.3 PVC Frame 

Examples of two PVC window frames are given in Figure 23-Figure 24, where further details may be 

found in appendix. In these two examples PUR is applied as a highly thermally insulating material 

inside the structural PVC frame construction. The placement of the PUR elements are varying from 

the frame edges to the middle of the frame. 

 

 
Figure 23. Example of a PVC window frame with low U-value - REHAU Clima Design by REHAU AG + Co, 

Hochbau. One photo/drawing to the left, one schematic drawing in the middle and one temperature 

profile to the right. PVC profile with PUR. Frame U-value Uf = 0.71 W/m2K. From http://www.passiv.de 

and www.rehau.de. 
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Figure 24. Example of a PVC window frame with low U-value - eCO2 by Kochs GmbH. One photo/drawing to the 

left, one schematic drawing in the middle and one temperature profile to the right. PVC profile with 

PUR (λ = 0.030 W/(mK)). Frame U-value Uf = 0.74 W/m2K. From http://www.passiv.de and 

www.kochs.de. 

 

5.1.4 PVC Frame with Insulation Filled Al Cladding 

Example of one PVC window frame with insulation filled Al cladding is given in Figure 25, where 

further details may be found in appendix. In this example PUR is applied as a highly thermally 

insulating material inside the Al cladding, while there is no insulation material inside the PVC frame. 

 

 
Figure 25. Example of a PVC window frame with insulation filled Al cladding with low U-value - GEALAN S 7000 

IQ Passivhaus by GEALAN WERK Fickenscher GmbH. One drawing to the left, one schematic 

drawing in the middle and one temperature profile to the right. PUR filled Al cladding. Frame U-value 

Uf = 0.82 W/m2K. From http://www.passiv.de and www.gealan.de. 

 

5.1.5 Al Frame 

Example of one Al window frame is given in Figure 26, where further details may be found in 

appendix. In this example PUR is applied as a highly thermally insulating material inside the structural 

Al frame construction. The whole Al profile is filled with the PUR elements. 
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Figure 26. Example of an Al window frame with low U-value - RP-ISO-PURAL BP by Pural Profilwerk GmbH & 

Co. KG. One schematic drawing to the left and one temperature profile to the right. Al frame filled with 

PUR. Frame U-value Uf = 0.71 W/m2K. From http://www.passiv.de and www.pural-profile.de. 

 

5.1.6 Fixed Wood and Al Frame 

Example of one fixed wood and Al window frame is given in Figure 27, where further details may be 

found in appendix. In this example PUR is applied as a highly thermally insulating material inside the 

structural wood and Al frame construction. About half of the frame, towards the outer side, is filled 

with the PUR elements. 

 

 
Figure 27. Example of a fixed wood and Al window frame with low U-value - ed[it]ion passiv, Fixverglasung by 

Internorm International GmbH. One  schematic drawing to the left and one temperature profile to the 

right. Wood and Al frame filled with PUR. Frame U-value Uf = 0.63 W/m2K. Compare with opening 

window in Figure 22. From http://www.passiv.de and www.internorm.com. 
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5.1.7 Glass Facade System 

Examples of two glass facade systems are given in Figure 28-Figure 29, where further details may be 

found in appendix. 

 
Figure 28. Example of a glass facade system with low U-value - ON TOP PLUS by Endl-Wagner GmbH.Picture 

on the top, one schematic drawing to the left and one temperature profile to the right. Wood-Al profile. 

Frame U-value Uf = 0.65 W/m2K. From http://www.passiv.de and www.endl.at. 
 

 
Figure 29. Example of a glass facade system with low U-value - FWT 50-1 HA E-plus by esco Metallbausysteme 

GmbH. Two schematic drawings to the left and in the middle, and one temperature profile to the right. 

Wood-Al profile. Frame U-value Uf = 0.73 W/m2K. From http://www.passiv.de and www.esco-

online.de. 
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5.1.8 Window Frame Examples with Higher U-Values than the Passivhaus Requirement 

Figure 30 shows a wood window with PUR and two layer window glazing from NorDan with a 

window Uw-value of 1.2 W/m2K. Figure 31 shows a wood window (without any highly thermal 

insulation materials) and three layer window glazing from Elitfönster with a window U-value of 

Uw = 0.9 W/m2K. Figure 32 shows a fiberglass window from Thermotech with window U-values of 

Uw = 1.0 W/m2K and Uw = 1.6 W/m2K for a three-layer and two-layer window glazing, respectively. 

These window U-values are higher than the Passivhaus requirement of Uw ≤ 0.80 W/m2K. 

 

 
Figure 30. Example of a wood window frame with a relatively low U-value - N-Tech Lavenergi Superspacer by 

NorDan AS. Wood frame with PUR. The frame U-value is not stated, whereas the total window U-

value is reported to be Uw = 1.2 W/m2K. Note that a two-layer window pane is employed in this case 

(not three-layer). From http://www.nordan.no. 

 

 
Figure 31. Example of a wood window frame with a relatively low U-value - Elit Extreme 0,9 Fönster, AXH by 

Elitfönster AB. The frame U-value is not stated, whereas the total window U-value is reported to be 

Uw = 0.9 W/m2K. A three-layer window pane is employed in this case with a window glazing U-value of 

Ug = 0.6 W/m2K. From http://www.elitfonster.se. 
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Figure 32. Example of a fiberglass window frame with a relatively low U-value - Thermotech windows by 

Thermotech Windows Ltd. The frame U-value is not stated, whereas one specific total window U-value 

is reported to be Uw = 1.0 W/m2K with a window glazing U-value of Ug = 0.7 W/m2K for a three-layer 

window pane (322 AFG TiR, #2,#5). The corresponding U-values for a two-layer window pane 

(211 AFG TiR, #3) system is Uw = 1.6 W/(m2K) and Ug = 1.4 W/m2K. From 

http://www.thermotechfiberglass.com. 

 

5.2 U-Value Comparison for Various Window Frame Types 

An Uf-value comparison of the various window frame types are given in Table 3. The U-values 

(calculated according to the procedures in ISO 10077-2, with an isolation panel instead of the actual 

glazing) are examples and are not meant to be representative values for the different frame categories. 

From Table 3 it is seen that a specific wood frame (opening window) has a low frame Uf-value of 

0.65 W/m2K, whereas a fixed wood and Al frame has as low Uf-value as 0.63 W/m2K. Note also that 

the PVC frame with insulation filled Al cladding has a frame Uf-value of 0.82 W/m2K, and may still 

fulfill the Passivhaus requirements of a window Uw-value ≤ 0.80 W/m2K provided that the window 

glazing U-value is less than 0.80 W/m2K. For this specific PVC frame (Figure 25) the window 

Uw-value = 0.80 W/m2K and glazing Ug-value = 0.70 W/m2K. 

 

With window glazing Ug-values as low as 0.7 W/m2K and even 0.5 W/m2K (triple glass, two low 

emissivity coatings, argon and krypton filled cavities, respectively), it is seen that the frame Uf-value 

is becoming the minimum factor. 

5.3 Materials Applied in Window Frames 

Table 4 gives the thermal conductivity for various window frame materials. Other properties, e.g. 

mechanical properties like the tensile strength, elasticity modulus and as impact hardness, are also 

important when materials are selected. Some materials which may be the best ones with respect to 

obtaining a very low thermal conductivity, exhibit usually not the required mechanical strength. In 

addition, other properties than the mechanical and thermal properties will also be important, e.g. 
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durability and climate exposure resistance are of outmost importance. Waste treatment, recycling and 

environmental impact of the various frame materials should also be considered. 

 

Some materials may also represent a health hazard even if they are safe in their intended use. 

Polyurethane (PUR) is an example of this. During a fire PUR will when burning release hydrogen 

cyanide (HCN), which is very poisonous. The toxicity stems from the cyanide anion (CN-) which 

prevents cellular respiration. Generally, hydrogen cyanide may be found in the smoke from nitrogen 

(N) containing plastics. From the frame table in appendix, it is observed that PUR is definitively the 

most widespread applied highly thermal insulating material in the various window frames. This fact 

may be doubtful with respect to the above discussion concerning HCN poisonous release during a fire. 

Note that some low-conducting polymer foams like polyethylene (PE) and polypropylene (PP) with no 

additives do only contain carbon and hydrogen, and will therefore release only CO2 (and maybe some 

CO) during a fire, i.e. no nitrogen or chlorine compounds. PE and PP foams may therefore represent 

possible substitutes for todays large use of PUR in highly insulating window frames. Advantages and 

disadvantages of using various structural window materials may be found at 

http://www.greenspec.co.uk/html/materials/windowframes.html, where the pro and cons do not 

necessarily present the whole and fully truth, but rather a specific point of view. 
 

Table 3. Window frame types with examples of their corresponding Uf-values*. 

Window Frame Type Schematic 
Drawing 

Thermal 
Insulation 

Fill 
Material 

Figure 
Reference 

Uf-value* 
(W/m2K) 

Wood frame 
 

PUR Figure 17 0.65 

Wood frame with insulation filled Al cladding 
 

PUR and 
XPS Figure 21 0.68 

PVC frame 
 

PUR Figure 23 0.71 

PVC frame with insulation filled Al cladding 
 

PUR Figure 25 0.82 

Al frame 
 

PUR Figure 26 0.71 

Fixed wood and Al frame 
 

PUR Figure 27 0.63 

Glass facade system 
 

PE and 
EPDM 

(support) 
Figure 28 0.65 

*) Uf-values are calculated according to the procedures in ISO 10077-2, with an isolation panel instead of the actual glazing system. 
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Table 4. Thermal conductivity values for various window frame materials. Note that the tabulated values are 
from specific sources and that variations exist. Specific correct values need to be determined for each 
product and from each producer. Naturally, the thermal properties are influenced by the mass density 
of each material. 

Window Frame Materials 
Thermal 

Conductivity 
(W/mK) 

References 

Highly Thermal Insulating Materials 

Polyurethane (PUR) foam 0.021-0.050 1, 2, 3, 4, 5 

Polyurethane (PUR) recycled material (e.g. Purenit) 0.06-0.1 2 

Polyethylene (PE) foam 0.034-0.067 5, 6, 7, 8, 9 

Polypropylene (PP) foam 0.034-0.067 9 

Polyvinylchloride (PVC) foam 0.035 4 

Polyetherimide (PEI) foam 0.025 9 

Polystyrene (PS) foam (e.g. extruded/expanded, XPS/EPS) 0.027-0.057 3, 4, 9 

Fiberglass matting 0.033-0.044 3 

Cork 0.039-0.052 3, 5 

Materials Utilized Partly as Thermal Insulation and Various Joint Materials 

Polyethylene (PE) (in glass facade systems) (HDPE) 0.33-0.50 10 

Ethylene-propylene-diene-monomer (EPDM) rubber  0.25 10 

Polyamide (Nylon) 0.25-0.30 10 

Common Structural Frame Materials 

Wood (pine/spruce) 0.11-0.17 11 

Aluminium alloy 6061 (Al) 160 10 

Polyvinylchloride (PVC) 0.17 4, 10 

Fiberglass composite 0.30 13 

Wood composite material (e.g. Fibrex) 0.22 12 

Glass 1.00 10 
1) http://www.puren.eu/industry-products/puren_industry.pdf (valid: 2007-10-15) 
2) http://www.puren.eu/industry-products/purenit/purenit.pdf (valid: 2007-10-15) 
3) http://www.fao.org/docrep/006/y5013e/y5013e08.htm (valid: 2007-10-15) 
4) http://www.learn.londonmet.ac.uk/packages/clear/thermal/buildings/building_fabric/properties/conductivity.html (valid: 2007-10-15) 
5) http://www.glacierbay.com/Heatprop.asp (valid: 2007-10-15) 
6) http://www.foamsearch.com/foam_types/polyethylene_foam.htm (valid: 2007-10-15) 
7) http://www.arnonplast.com/PE-Data/PE-Com-Sheet/ARNON-PE-CompareSheet.htm (valid: 2007-10-15) 
8) http://www.arnonplast.com/PE-Data/PE-Com-Sheet/Comparison-PE&FG.pdf (valid: 2007-10-15) 
9) http://www.specialchem4polymers.com/resources/articles/printarticle.aspx?id=868 (valid: 2007-10-15) 
10) EN 12524:2000. Building materials and products. Hygrothermal properties. Tabulated design values 
11) http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr113/ch03.pdf (valid: 2007-10-15) 
12) http://www.renewalbyandersen.com/servlet/Satellite/Renewal/Page/RbAStdLayout/1164649805005 (valid: 2007-10-15) 
13) NFRC 101-2006 Procedure for Determining Thermophysical Properties of Materials For Use in NFRC-Approved Software Programs 
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As a digression it may be mentioned that in February 2007 NORDAM announced that they would use 

composite materials to build window frames for the Boing 787 Dreamliner (NORDAM, 2007). 

NORDAM will use HexMC®, which is a high performance carbon molding composite, specifically 

designed for compression molding. The epoxy matrix and high carbon fiber volume content enable 

components to be molded for a wide range of applications (HEXCEL, 2007). The thermal properties 

of the window, window frame or materials applied were not noted. Use of such materials in high 

performance window frames for buildings have however not been found.  

5.4 Spacers 

5.4.1 Spacers in General 

Spacers for application in window panes represent an important component in the overall window 

design with respect to thermal properties. As this report focuses on window frames, spacers will not be 

dealt with exclusively in detail here. Some examples will be shown, though. 

 

Shortly, as an excerpt from the table of frames in appendix concerning spacers, it is found that the 

spacers applied in these window panes in order to achieve/satisfy the PassivHaus window requirement 

is mainly one of the following two types: 

 

•  Swisspacer 

•  Thermix 

 

or different variations of one of these two, e.g. Swisspacer V, Swisspacer with Al foil, Thermix TX.N, 

etc. In addition, some other spacers are also used: 

 

• Refined/stainless steel 

• TGI 

• TPS 

 

Refined or stainless steel is used as spacer bars in windows because it has a lower conductivity than 

the more common material aluminum. Stainless steel has a conductivity of about 17 W/mK while 

aluminum has a conductivity of about 200 W/mK. TGI-spacers are manufactured of stainless steel 

combined with a high quality plastic polypropylene as a strengthening and insulating material due to 

its low heat conductivity (http://www.glassinsulation.de/english/products.cfm). TPS stands for Thermo 

Plastic Spacer system, and is a butyl-based sealant, in an insulated glass unit. More details about 

Swisspacer and Thermix are given below. 
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5.4.2 Swisspacer 

From the website http://www.designbuild-network.com/contractors/joinery/giesbrecht/ the following 

excerpt concerning Swisspacer is made (see also Table 5): 

 

“Swisspacer is a thermally-improved, or warm-edge, spacer bar for insulating glazing. It is 
manufactured from special fibreglass, composite material. Swisspacer is available in two versions: 
 
• Swisspacer - the composite material is covered by an ultra thin foil of aluminium  
• Swisspacer V - with an extremely thin stainless steel foil for maximal possible insulation.  
 
These metallic foils guarantee the gas tightness and excellent sealant adhesion.” 

 
Table 5. Thermal performance data+) for Swisspacer. From the website http://www.designbuild-

network.com/contractors/joinery/giesbrecht/. 

Spacer system Aluminum High grade steel Swisspacer Swisspacer V 

Wood window – Frame U-value Uf = 1.3 W/m2K e.g. 

Ψ (W/mK) *) 0.074 0.053 0.044 0.033 

Window U-value, Uw, 1-
wing (W/m2K) 1.3 1.3 1.3 1.2 

Window U-value, Uw, 2-
wing (W/m2K) 1.5 1.4 1.3 1.3 

Min glass surface temp. 
at -10, +20 (ºC) 5.3 7.4 8.0 9.2 

PVC window – Frame U-value Uf = 1.9 W/m2K e.g 

Ψ (W/mK) 0.070 0.052 0.043 0.034 

Window U-value, Uw, 1-
wing (W/m2K) 1.5 1.5 1.4 1.4 

Window U-value, Uw, 2-
wing (W/m2K) 1.7 1.6 1.6 1.5 

Min glass surface temp. 
at -10, +20 (ºC) 6.8 8.6 9.2 10.1 

Aluminum window – Frame U-value Uf = 2.0 W/m2K e.g 

Ψ (W/mK) 0.115 0.072 0.060 0.041 

Window U-value, Uw, 1-
wing (W/m2K) 1.7 1.6 1.5 1.5 

Window U-value, Uw, 2-
wing (W/m2K) 1.9 1.7 1.7 1.6 

Min glass surface temp. 
at -10, +20 (ºC) 6.5 8.9 9.5 10.7 

*) Ψ is the linear thermal transmittance at the glass edge (W/mK) according to EN ISO 10077-2. 
+) All window U-values are based on a window area of 1.23 m x 1.48 m and glazing U-value of 1.1 W/m2K.  
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Furthermore, some additional information is given about Swisspacer and comparisons with other 

spacer materials in Figure 33 and Figure 34. Note the large thermal conductivity difference between 

Swisspacer (0.19 W/mK) and for example aluminum (200 W/mK). 

 

      
Figure 33. Selected Swisspacer information comparing thermal conductivity values with other materials (left) and 

temperature distribution in frame and lower glazing for Al and Swisspacer (right). From 

http://www.pewo-fenster.ch/isolierglas.htm. 

 

 
Figure 34. Infrared photo of two windows with Swisspacer to the left and normal Al profile to the right. From 

www.scanglas.dk/servlet/RichTextHandler?name=swisspacer.pdf.

 

5.4.3 Thermix 

From the website http://www.das-passivhaus.de/gb-fenster.html the following excerpt concerning the 

Thermix spacer is made: 
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”More intelligently is the "Thermix"-sealant, constructed from PVC and high grade steel: High grade 
steel has a conduction rate of only 26 W/mK and the used PVC a rate of just 0.21 W/mK.” 

 

Furthermore, from http://www.thermix.de/t-en/presse/2005/messe-bau-intelligenter-isolieren.php: 

 

”Thermix® bars are made of glass-fibre reinforced plastics. The water vapour and gas tightness of 
the Thermix® edge bond has been demonstrated on the basis of valid norms.” 

 

Miscellaneous information about the Thermix spacer and comparisons with other spacer materials are 

given in Table 6 and in Figure 35 and Figure 36. 

 
Table 6. Comparison of Thermix TX.N (noted as Thermix in the table below) with Al spacers*). From the 

website http://www.insulbar.de/i-it/pdf/Thermix_TXN_flyer_E_0307.pdf. 

Type of window Wood window Plastic window Thermally broken 
metal window 

Glazing Ug (W/m2K) 
Frame Uf (W/m2K) 

1.2 
1.4 

1.2 
1.9 

1.2 
2.0 

Spacer Aluminum Thermix Aluminum Thermix Aluminum Thermix

Ψ-value (W/mK) 0.08 0.040 0.08 0.036 0.11 0.053 

Improvement in Ψ 
by Thermix (%) 50 55 52 

Window Uw (W/m2K) 1.46 1.36 1.61 1.50 1.72 1.57 

*) Values for aluminum spacers are from prEN ISO 10077-1:2004/8. 
 

 

       
Figure 35. Drawings of the Thermix spacer. From the website http://www.ensinger-

online.com/prospekte/pdfdownload.php?ID=54. 
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Figure 36. Thermix TX.N spcer. From http://www.fenestration-uk.com/News/NewsItemRSS.aspx?id=1885.  
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6 Discussion 
When future window frames are going to be developed and future window frame research is to be 

carried out, it is necessary to know what the current status is. This report makes an attempt to establish 

this. At the same time it is also important to know what the aims of the research and product 

development should be, and what criteria should be used to evaluate the window and the frame. In this 

chapter a summary of the state of the art is presented in Chapters 6.2 and 6.3, with a discussion about 

the future development aims found in Chapter 6.4. Chapter 6.1 discusses briefly the frame rating 

procedures. 

6.1 Frame Thermal Performance Rating 

In Chapter 2, two different window rating procedures have been pointed out, the U-factor and the Net 

Energy Gain. For heating dominated climates the latter may be to be the way to go, although very 

different windows may be the optimum solution for different buildings (dwellings, office buildings, 

factories etc.). It might therefore be “dangerous” or misleading to look at one parameter, being either 

the Net Energy Gain or the U-value, for selecting windows. What is wanted is an optimum indoor 

climate for the users of the building. A window that has optimum properties for capturing energy 

might not be optimum with respect to giving satisfactory temperature, light and glare conditions for 

the users of the buildings. A window that works very well during winter conditions may make the 

building unhabitable in the summer season. It is therefore recommended that whole building energy 

simulation programs are used to assess the indoor climate of the building. Several windows 

configurations (e.g. thermal properties including shading, window areas, and façade distribution) may 

be considered.  

 

Still, when rating individual building components like walls, windows and doors, simple parameters 

may be wanted. In national codes, for instance, the U-value is the parameter that attracts the most 

attention, for all kinds of building elements. For opaque building sections like walls and window 

frames the U-value might also be the most appropriate parameter. But, for windows with a solar-

energy transparent glazing, what really is of interest is the right combination of parameters, e.g. light 

transmittance, solar or near infrared reflectance, U- and g-value, for the building in question, i.e. 

building type and climate. A window’s solar transmittance and reflectance properties may be divided 

into several parameters depending on the part of the solar spectrum of interest (i.e. ultraviolet, visible 

and near infrared radiation). For one building one type of window (frame, glazing and shading 

accessories) might be the right choice, but for another building a different window might be the 

appropriate one.  
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For the frame alone the U-value seems to be the right parameter if individual frames are being 

compared. 

6.2 Heat Transfer Modeling 

Based on the literature review the following summary related to heat transfer modeling of window 

frames may be presented. This summary relates mostly to the standard ISO 15099. This standard 

seems to be the most up to date and accurate standard, e.g. the standard differentiates between vertical 

and horizontal frames. The standard also refers to scientific reports and papers where it prescribes 

certain procedures or correlations. 

 

•  Conduction in solid materials can be accurately modeled with most simulation codes, 

provided that an appropriate mesh is used for the geometry in question, although it may be 

questioned whether today’s treatment of hardware penetrating parts of the frame (i.e. hinge) is 

sufficiently accurately treated. Hardware effects will be more important for high-performance 

frames than for frames with a high U-value. 

•  International standards prescribe that natural convection correlations shall be used for air 

cavities in window frames. For horizontal frames (sill and head) the correlations in ISO 15099 

are not necessarily accurate for vertical aspect ratios between 0.5 and 5, because they are 

based on interpolation between other correlations. The frame cavity correlations supposed to 

be used in vertical frame cavities according to ISO 15099 are developed for glazing cavities. 

Correlations for vertical jambs exist; see Gustavsen and Thue (2007). Fomichev et al. 2007 

has recently also developed correlations for tilted frame cavities, both for horizontal (sill, head 

sections) and vertical frame (jamb) sections. These new correlations might be more accurate 

than the currently used correlations.  

•  Frame cavities should be divided for interconnections smaller than 7 mm; ISO 15099 sets the 

break point at 5 mm. Division of frame cavities should also be considered for cavities having 

sharp angels, because little convection takes place there.  

•  According to ISO 15099 a radiation correlation is used to account for frame cavity radiation 

heat transfer. Research has shown that using a view-factor based method instead of this 

correlation improves the accuracy. 

•  There exist variable surface coefficient equations that can be used to resemble the heat transfer 

effects at the frame surfaces (i.e. in corners).  

•  CFD simulation of heat transfer in window frames (with and without frame cavities), has 

shown that CFD tools can be used to predict the thermal transmittance and surface 

temperature with good accuracy. 
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The summary shows that there is still room for improvement in the international standards used for 

calculation of the thermal performance for window frames. Some of the improvement can easily be 

incarcerated because new correlations and calculation procedure already exits (i.e. improved radiation 

modeling). Within other areas, more research is needed to improve the calculation procedures. 

 

A question that may be raised is; why not use CFD tools instead of conduction tools and natural 

convection correlations to capture the convection effects that occur at external and internal surfaces 

and in frame cavities? With CFD tools heat transfer at the internal and external surfaces and in the 

cavities will be a part of the solution process. Before a decision about moving to CFD can be made, 

one should be aware of that vertical window frames (jambs) require three-dimensional geometries to 

be simulated in order to reproduce the convection effects taking place. Therefore it seems like user 

friendly three-dimensional conduction calculation tools (with correlations for natural convection) 

should be the first target. When these are available, one may consider including fluid flow equations.  

 

CFD simulations will take more time to do than conduction simulations. There are two reasons for 

this: 1) there are more equations to solve for CFD problems, and 2) simulating vertical sections require 

three-dimensional geometries to be simulated. If practitioners should move to CFD, the added 

simulation time should not be very large, especially taking into account that many frame designers 

simulate many frame geometries to find the one with the best thermal performance. 

 

One problem that may arise when solving the full CFD problem of heat transfer in window frames and 

windows in general, is that some cases do not necessarily have a stationary solution. Procedures for 

how to find and report the thermal transmittance (which is a stationary quantity) will then be needed. 

6.3 Frame Materials and Design 

Based on the literature and market review in Chapters 4 and 5, it seems like there exists two different 

tracks for finding better windows and window frames in particular: 

 

1. Based on the current typical frame geometry (frame with a height of typically 10 cm), reduce the 

U-value as much as possible. The various strategies may then be sought: 

a. New Materials. Apply or invent new novel thermally low conducting materials which 

satisfy the requirements for being used in window frames. 

b. New Constructions/Solutions. Apply or invent new novel thermally low conducting 

constructions/solutions which satisfy the requirements for being used in window frames. 

c. Substitution Strategy. Substitute large parts of the existing window frame with known 

thermally low conducting materials, which alone can not constitute the whole frame (due 

to mechanical strength, stability etc.), e.g. polyurethane (PU) in a wood frame. 
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2. Develop new window designs where the main aim is to make windows with a very slim frame, or 

no frame at all.  

 

The first point seems to be a result of the focus on the U-value (transmission losses) by itself. Then the 

aim is to have a window with a low U-value, and since the frame is an important part of a window, the 

frame U-value should be minimized. The size of the frame is not that important, as long as the frame 

U-value is lower than the glazing U-value (which usually not is the case today). 

 

The second item is a result of using the Net Energy Gain (see Chapter 2) to rate windows. Then the 

(solar) energy gain through windows also plays an important part, in addition to the transmission 

losses. The focus is at maximizing the energy gain through the window (at least when only the heating 

season is considered). This again leads to maximizing the glazing area (in addition to increasing the 

g-value and reducing the U-value), which again results in slim frame profiles. Ultimately, the best 

window frame might be no frame at all. 

 

The market review seems to depict that the substitution strategy is the most applied one so far. 

 

As seen in earlier chapters and in the table in appendix, polyurethane (PUR) is clearly the most 

widespread applied highly thermal insulating material in the PassivHaus window frames, e.g. within 

wood frames. Certain variations of the PUR material (foam etc.) have very low thermal conductivities, 

e.g. 0.023 W/mK. This widespread use of PUR may give rise to a concern as when PUR is burning 

during a fire, hydrogen cyanide (HCN), which is very poisonous, will be released. A search for other 

highly thermal insulating frame materials, which are at least as good as PUR for frame applications, 

especially with respect to thermal properties, may/will therefore be important. 

 

The following options should be explored in order to improve the thermal performance of frames even 

more: 

 

• The slim wood frame suggested by Lautsen and Svendsen (2005) may be improved by 

replacing some of the wood in the frame with thermal insulation materials. Then the slim 

frame is retained (allowing a high net energy gain) but with a frame that has a lower U-value. 

• New insulation materials should be investigated, aiming at finding the best thermal insulating 

materials suitable for application in window frames. 

• Development or invention of new novel thermally low-conducting frame 

constructions/solutions might also be a possibility. 
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6.4 Window Frame Research and Development Aims 

The thermal performance of the window frame has undoubtedly an effect on the thermal performance 

of the entire window, because the U-value of the entire window is an area-weighted average of the 

individual components (glazing, edge and frame). Therefore, a frame with a lower U-value than the 

glazing will have a good effect on the total window U-value, and vice versa. When the thermal 

performance of the glazing is improving, it will therefore also be important to have window frames 

that can match or be better than the U-value of the glazing. If this becomes a problem, the focus will 

be on reducing the frame area.  

 

So far the best available glazing systems have a Ug-value of about 0.5 W/m2K (3 panes of glass with 2 

layers of low emissivity coatings and krypton filling). A design target for frames therefore seems to be 

a Uf-value of about 0.5 W/m2K or better. On the other hand, if window frames are compared to other 

opaque building elements, like walls, one should look at the code requirements. In Norway for 

instance, the current U-value requirement for walls is 0.18 W/m2K. Other countries have similar 

requirements. Using other parameters than the U-value (i.e. net energy gain, or performing whole 

building simulations) to find a performance target may lead to other research and development aims. 

Both Nielsen et al. (2000) and Arasteh et al. (2007) have shown that windows with a Uw-value larger 

or equal to about 1.0 W/m2K can provide a net energy gain to a building, while a window with a lower 

Uw-value may not. This depends on the window properties and the climate (outdoor temperature and 

solar radiation). 

 

One window may be optimized either with summer or winter conditions in mind, or by doing a whole 

year energy simulation. The optimum building is a building in which a heating system and a cooling 

system is redundant. With respect to this, a good window will help a building designer in building 

such a building. Thus, an optimum window is a window that minimizes the need for a heating (it 

should have small transmission losses and admit heat into the building when needed) and a cooling 

system (it keeps solar radiation out of the building, or lets heat out, when needed). A good window 

also minimizes the need for artificial lighting. Since, for most climates, the need for heating and 

cooling varies during the year the window needs to be dynamic. 

 

So far only the glazing part of a window has been considered dynamic. It is through this part of the 

window that heat can enter directly into the building (and be blocked if necessary). The frame on the 

other hand stops the sunlight from entering the building. For the frame this leads to the following 

conclusions: Either the frame has to be reduced to a minimum, allowing a maximum controllable 

glazing area. Or the frame itself has to have dynamic properties that can be utilized to fulfill the goal 

of a building with no heating or cooling system.  
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The authors of this report see the following potential technological applications for the frame, 

involving dynamic utilization of the frame: 

 

•  Include phase change materials in the frame, e.g. to store heat until it is needed (although such 

materials may be better utilized when used inside the building). 

•  Integrate a shading system with the frame and glazing in a way that also makes it usable for 

additional night time insulation (external or integrated in the glazing). Sufficient air tightness 

for the additional air or gas layer(s) is important to make this work. 

•  PV cells may be integrated in the frames; whereas due to visual considerations, there may be 

limitations in integrating PV cells in the glazing. 

•  The frame may be used for storage of smart controlling equipment for shading systems (e.g. 

external blinds or electrochromics). It should be possible to buy self-contained (wireless, if 

necessary) units, with electronic components having the same life time as the hardware 

(insulated glazing unit and frame) of the window itself. Electrochromic windows (ECWs) will 

be powered from the electrical grid system in buildings, where the solar energy transfer in the 

ECWs may be controlled automatically by the computer system in an intelligent building 

system. The automatic control system may receive input from a temperature sensor inside the 

building and a light sensor outside the building. A manual override system located on the 

windows themselves may also be desirable from a user’s point of view. 
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7 Conclusions 
This report shows that there exist several alternatives to traditional wood, PVC and aluminum window 

frames. Most of the high performance frames found in this study have a Uf-value of about 0.7-0.8 

W/m2K. The lowest Uf-value found is 0.63 W/m2K (for a traditional looking window frame). This 

frame consists of an inner layer of wood, with an aluminum cladding and polyurethane in between. 

Still there is a discrepancy between the best standard glazings, having a U-value of 0.5 W/m2K, and 

the best frame. And the difference is even larger between the thermal performance of typical walls (U-

values of 0.2-0.3 W/m2K) and window frames. It is therefore important to decrease the U-value of 

window frames even lower than the currently best frames. 

 

This report also reports and discusses heat transfer modeling issues related to window frames. Thermal 

performance increasing measures, surface modeling, and frame cavity modeling are among the topics 

discussed. The review shows that the current knowledge gives the basis for improving the calculation 

standards’ calculation procedures. At the same time it is room for improvement within some areas. 
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