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Abstract

We discuss the design and current status of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux,
VUV pulses driven by a high-current, GeV electron beam from the existing Lawrence Berkeley National Laboratory
(LBNL) laser-plasma accelerator, whose active acceleration length is only a few cm. The proposed ultra-fast source
would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast
science with pulse lengths of tens of fs. Owing to the high current (& 10 kA) of the laser-plasma-accelerated electron
beams, saturated output fluxes are potentially greater than 1013 photons/pulse. Devices based both on SASE and
high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.
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Recent advances in laser-plasma accelerators
have demonstrated generation of low energy spread,
GeV beams [1]. These experiments used an intense
(>1018 W/cm2) laser pulse focused into a plasma
channel (∼1018 cm−3), created using a gas-filled
capillary with length of a few centimeters, to gen-
erate plasma waves with accelerating fields on the
order of 100GV/m. The bunches emerging from a
laser-plasma accelerator have naturally short du-
rations (tens of fs, on the order of the plasma pe-
riod), and are intrinsically synchronized to the laser
driver, making such a source ideal for ultra-fast
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pump-probe applications. These laser-plasma accel-
erator experimental results [1] open the possibility
of a new class of compact, high-peak flux, free-
electron lasers in which the conventional accelerator
is replaced by a GeV-class laser-plasma accelerator
(several cm in length), in principle greatly reducing
the size and cost of such light sources [2–4].

In this paper we discuss recent design work for a
proposed FEL driven by the existing laser-plasma
accelerator at LBNL. The base machine and FEL
parameters are given in Ref. [3]. They include e-
beam characteristics of 500 MeV, 0.2 nC, 20-fs
FWHM duration (i.e., 10-kA peak current), εN =
1 mm-mrad normalized transverse emittance, and
an uncorrelated energy spread of 0.25%. Recently
the THUNDER undulator [5] has been transported
to LBNL from Boeing and, after magnetic measure-
ments are concluded, is scheduled for installation
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Table 1
FEL Parameters and Numerical Simulation Results

Radiation wavelength, λ 31 nm
Resonant photon energy 40 eV
FEL parameter, ρ 0.007
3D Gain length 0.2m
Slippage length 7 µm
Spontaneous radiation power 8 kW
Steady-state saturation power 29GW
Energy/pulse (at 5 m) 0.2mJ
Peak brightnessa (at 5 m) 2× 1016

Saturation length (SASE, 10 kA) 5m
a photons/pulse/mm2/mrad2/0.1%BW

into a new experimental area in early 2008. Its
characteristics include a 21.8-mm period, linear po-
larization, and a minimum gap of 4.8 mm producing
a peak B of 1.02 T (K = 1.85); the field may be ta-
pered linearly in each 50-cm section. Wiggler-plane
focusing is provided by a canted-pole topology,
leading to a β-function of 3.6 m at 500-MeV energy.

Presently, we are considering two modes of FEL
operation: (1) self-amplified spontaneous emission
(SASE) and (2) external seeding by a high-harmonic
generation (HHG) source at 31-nm wavelength. Ex-
isting laboratory HHG sources have demonstrated
production of ultra-short (tens of fs) coherent pulses
(31 nm) 0.3µJ of energy (see, Ref. [6]), and we
have adopted nominal seed parameters of a Gaussian
pulse with 15 MW peak intensity and a duration of
20 fs. HHG seeding has significant advantages over
the simpler SASE mode of operation as it will pro-
vide improved temporal coherence, reduced fluctua-
tions, and a much reduced power saturation length.
On the other hand, SASE operation avoids possible
difficulties with mode overlap and shot-to-shot ac-
celerator energy jitter and, moreover, allows simple
wavelength tuning by varying the undulator gap.

Table 1 lists the expected FEL performance for
the 10-kA beam SASE case. These results were ob-
tained with the GINGER simulation code and pre-
sumed a normalized, uncorrelated energy spread σE

of 0.25% with no temporal energy centroid chirp. At
saturation (5 m), the proposed FEL would be capa-
ble of producing >1013 photons/pulse. Using a 5-kA
beam with HHG-seeding, the saturation length is
2.4 m, and the third harmonic power would be ≈5%
that of the fundamental (12 GW).

Inasmuch as many of the plasma-accelerator e-
beam parameters are presently not well determined
in terms of shot-to-shot jitter (e.g., beam duration
τb) or some average values (e.g., εN , instantaneous
energy spread, and chirp), we have performed a
number of FEL output sensitivity studies. For the

HHG-seeded cases, we find that the saturated power
drops by a factor of two when σE exceeds 0.5%
whereas the emittance may be as large as 4 mm-
mrad (presuming a matched beam). On the other
hand, the third harmonic power is far more sensi-
tive to εN than σE . For SASE cases, increasing σE

beyond the nominal value quickly prevents power
saturation in the 5-m length of the THUNDER un-
dulator. Simultaneously varying the charge Q and
τb shows large sensitivity to Q but relatively little to
τb over a range of 5 to 30 fs. Even in the absence of
any accelerator jitter, the RMS shot-to-shot SASE
output jitter is about ±25% in photon number at
the fundamental and ±50% at the third harmonic.

Even for the small undulator gap, we do not
expect resistive wall wakefields to significantly de-
grade the performance of the FEL for peak currents
≤30 kA. Also the induced energy chirp δE/E over a
coherence length 4πλ/ρ created by the longitudinal
Coulomb self-fields should be small compared to the
FEL parameter ρ for the parameters considered.

In this paper we have described the design and
present status of a proposed FEL driven by the laser-
plasma accelerator at LBNL. Further characteriza-
tion of the electron beam properties are currently
underway, as well as continued laser-plasma accel-
erator development, including triggered injection to
further reduce the electron beam energy spread.
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