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Scalar Wave Diffraction
from a Circular Aperture

C. Cerjan
Advanced Microtechnology Program
Lawrence Livermore National Laboratory
Livermore, CA 94550

Abstract

The scalar wave theory is used to evaluate the expected diffraction patterns from
a circular aperture. The standard far-field Kirchhoff approximation is compared
to the exact result expressed in terms of oblate spheroidal harmonics. Deviations
from an expanding spherical wave are calculated for both cases as a function of the
circular aperture radius and the incident beam wavelength using suggested values for
a recently proposed point diffraction interferometer. The Kirchhoff approximation is
increasingly reliable in the far-field limit as the aperture radius is increased, although -
significant errors in amplitude and phase persist.

1. Motivation

Although the problem of single mode, plane scalar wave diffraction through a circular
. aperture is often presented in elementary textbooks [1], this treatment is usually lim-
ited to the large aperture far-field limit. Besides neglecting the vectorial nature of the
electromagnetic wave, the Kirchhoff approximation to the solution of the full integral
equation for the scattered wave is used which is widely known to be mathematically
inconsistent [2]. The outstanding difficulty is thus determining the reliability of the
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standard treatment, especially if high accuracy is necessary.

An exact treatment of scalar plane wave diffraction from a circular aperture exists
[3],[4]. Since it requires the numerical evaluation of the oblate spheroidal angular
and radial functions, this theory is not widely applied. For the precise, high resolu-.

'~ tion metrology enws1oned for a recently suggested Point Diffraction Interferometer -~

(PDI)[5], it seems prudent to develop this exact approach and to gain sorne intuition
concerning its dependence on various experimental parameters such as aperture radius
and source wavelength. In the following sections, a brief overview of the theoretical
background will be presented; this development will be followed by a comparison to
the Kirchhoff results.

2. Theoretical Background -

The basic assumptions of this approach should be emphasized. A single mode plane
wave is assumed to be incident upon an infinitely thin screen with a perfectly circular
aperture. The incident wave is aligned with the center of the aperture so that off-axis
illumination is not considered in the following. This limitation is not an intrinsic diffi-
culty so that the theory can be extended to include eccentricities of the circle (ellipses,
for example) and off-axis illumination. Both types of boundary conditions are explic-
itly handled - the perfectly absorbing or perfectly reflecting conditions (Dirichlet or
Neumann) on the screen. Non-ideal materials might be an unknown combination of
these idealized boundaries. The treatment is limited to the scalar theory. A more
complex numerical computation is required for the full vectorial solution.

The exact solution, u, can be generally expressed in terms of the integral equations
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where the integration is over the closed surface X. Denoting the Dirichlet solution as
¢1 so that ¢; = 0 on the surface and the Neumann solution as ¢, so that %%"'- =0 on
the surface, the so-called Rayleigh equations for diffraction are
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and

where the integration is now performed over the aperture A [3]. These equations are
quite difficult to solve for an arbitrary aperture shape but some progress can be made
for symmetric openings.

For problems with axial symmetry, a natural choice of co-ordinate system is oblate
spheroidal co-ordinates [6]. Following Bouwkamp’s terminology (which differs from




the standard definition [6]), the oblate spheroidal co-ordinates are designated as &, ,
and ¢ and are related to the cylindrical co-ordinates 7, ¢, and z by :
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with the domains 7 > 0 and —1 < £ < 1 where a is the radius of the aperture. The
two unknown scalar waves can be expanded in a complete set of these functions
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where the ay,, are the expansion coefficients, the X*(£) are the “angular” spheroidal
functions, and the Y,(7) are the radial spheroidal functions. For circular apertures

with on-axis illumination, there is no ¢ dependence and the expansions are reduced

to
b2 =3 anXu(E)Ya(n). 9)

The integral equations, eqns. [3] and [4], can thus be reduced to the more nu-
merically tractable differential equations where the expansion coefficients, o, are
determined by the boundary conditions. The most straightforward way to proceed,
then, is to determine the “angular” spheroidal wave functions, X,(£), from their
associated ordinary differential equation

(1 - )X, — 26X, + (A + k%*€) X = 0 (10)

which has the associated homogeneous Fredholm integral equation

1
Xa(€) = tin | _exp(katt) X @dt. )
The quantity k& is the wave number 27/\. The normalizatidn chosen corresponds to
that of the Legendre polynomials in the limit ka =0

2
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~ Although the “radial” wavefunctions, Y, (1), could also be found from their asso-
ciated differential equation, a more convenient expression is

eikan 1 e—katXn (t)
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Thus once the angular functions are known, the radial solutions follow by a quadrature
which is inherently more stable due to the smoothing eflected by integration. ‘
The two solutions, ¢ 2, are now given by the expansions
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and
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In the far-field limit, 7 — oo, an =~ r and £ = cos(f), so that the general results o

approach the forms

Cikr X (4n -+ 3)X2n+1(1)
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These limiting forms explicitly display the exact deviations from sphericity. That is,
these sums should be compared to the usual Kirchhoff approximation [1]
ikr -
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where J;(z) is a Bessel function of the first kind of order 1. It should be observed
that the Kirchhoff expression is purely real except for the overall factor of exp(ikr)
— a feature not shared by the exact expression. This difference will have immediate
consequences for the phase determination of the scattered wave.

Finally, transmission coefficients for the circular aperture can be derived

4 & 20+ 3/2)[Xann(D)?
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These coefficients are useful as a verification of the numerical methods employed.

(20)

3. Numerical Results

The expansion technique ‘described above was solved in the following manner. First,
the angular wavefunctions were obtained by a relaxation method which simultane-
ously provides the characteristic values and their associated solutions on a grid for
any given value of the dimensionless quantity ka and order n [7]. These values were
extensively checked against tabulated values in those cases where comparisons existed
[6]. The normalization of the angular functions was chosen to agree with Bouwkamp’s
description eqn [12]. Once these characteristic functions were obtained, the charac-
teristic values, i, of the Fredholm equation eqn [11} were immediately calculated by
a simple numerical quadrature. The radial function evaluation is likewise straightfor-
ward since it is also derived from the integral relation eqn [13]. '

As a check on the numerical procedure, the transmission coefficients, eqn [19] and
eqn {20], were calculated and compared to those previously published [3] which were
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obtained in a much more laborious fashion using recursion relations. The results of
this comparison for a selected set of ka values are given in Table 1. In all cases
the accuracy afforded by the numerical solution was high. The table entry for 3«
~ corresponds to the suggested value for the PDI which has a = 1.5A.

Table 1
Comparison of Transmission Coeflicients.
ka | ti(exact) | t1(Kirch) | ta(exact) | t2(Kirch)
1.0 | 0.041061 0.0411 0.841502 0.8415
2.0 | 0.921772 0.922 0.917344 0.917
3.0 14179 1.42 0.976087 0.976
4.0 | 0.893444 0.893 0.987470 0.987
.5.0 | 0.957660 0.958 0.987725 0.988
3n | 1.02161 0.997258

To assess the accuracy of the Kirchhoff approximation, a series of calculations were
performed varying the quantity ka in the far-field, r = 150\. This comparison was
previously suggested by Spence {4]. The absolute value of the scalar wave solution is
compared with that of the exact solution, eqn [15], as is the phase of the solution.
For example, in figure 1 the amplitude for both the exact wavefunction and Kirchhoff
approximation eqn [18] are plotted as a function of cylindrical angle in degrees for
ka = 1. Although the qualtitative dependence is reproduced by the approximation,
it is not especially accurate. This comparison is continued in the following figures,
2 and 3, for ka = 2 and 5 respectively. The Kirchhofl amplitude clearly improves
as the aperture is enlarged for fixed wavelength. Figures 4 - 6 contain a comparison
of the phase expected for the two solutions as a function of ka. In all cases the
Kirchhoff approximation seriously misrepresents the phase of the scattered wave. In
the experimentally interesting case of ka = 3, a comparison of the two amplitudes
is given in figure 7 and a comparison of the expected phases in figure 8.




Figure 1: Comparison of exact and approximate wave function amplitudes as a func-
tion of angle for ka = 1.

Figure 2: Amplitude comparison for ka = 2.




Figure 3: Amplitude comparison for ka = 5.

Figure 4: Comparison of exact and approximate wave function phases as a function
of angle for ka = 1.




Figure 5: Phase comparison for ka = 2.

Figure 6: Phase comparison for ka = 5.




Figure 7: Comparison of exact and approximate wave function amplitudes as a func-
tion of angle for ka = 9.42478 (3r).

Figure 8: Comparison of exact and approximate wave function phases as a function
of angle for ka = 9.42478 (3x).




Figure 9: Percent fractional error in the Kirchhoff approximation as a function of
angle for ka = 9.42478 (3).

The same pattern observed in the previous, lower ka value, plots reappears — the
amplitude appears to match fairly well for all angles but the phase is only qualitatively
reproduced. Although the amplitudes seem to match well for almost all angles, a plot
of the percent deviation is given in figure 9. This deviation is defined by

PEzect— | 0K | , | @1)

Error =
¢E:mct

where the subscripts denote the exact solution or the Kirchhoff approximation. A
large fractional difference is obvious near those angles corresponding to phase changes
(fringes). Thus, even for larger apertures the Kirchhoff approximation must be used
with caution and is probably too unreliable for highly precise experiments.

Finally, an estimate of the deviation from sphericity expected in the far-field phase
can be obtained from this scalar approach. The phase function was evaluated at 0°
and 20° as a function of aperture radius to determine the departure of the phase from a
constant value. These results are given in Table 2 with the maximum deviation given
over this range of angles. The values from the scalar theory indicate that significant
excursions from sphericity are expected as the aperture radius is increased.
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Table 2
Phase differences, in degrees, expected at 0 and 20 degrees as a function of aperture radius,a.

, a(A) | #(0°) | #(20°) | maximum deviation -
0.25138310{37996| 0314~ |
0.50 | 17.870 | 15.539 2.331

. 1.00 | 9.0574 | 2.4346 6.623
1.50 | 186.05 | 167.43 18.627
2.00 | 200.87 | 364.53 163.66

4. Conclusions

A brief description of an exact scalar wave evaluation has been presented and com-
pared to the well-known Kirchhoff approximation. The results essentially verify earlier
predictions and calculations for selected cases. The comparison with published values
is very favorable, indicating the accuracy and robustness of the numerical methodol-
ogy. Some preliminary results describing the limitations of the Kirchhoff approach are
given which emphasize the large discrepancies expected in the calculated phases of
the scattered wave. This development can be extended to include off-axis illumination
and non-zero eccentricities for the aperture. Likewise, an analogous extension of the
calculational approach should be possible for the complete vector solution [8]. The
technique cannot be used to determine the effect of a non-zero thickness of the screen
“and aperture. Similarly it is also physically limited to the scalar regime, ka > 1.
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