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Alfvén Cyclotron Instability and Ion Cyclotron Emission

N. N. GORELENKOV*and C. Z. CHENG

Princeton Plasma Physics Laboratory, Princeton University,
P. O. Box 451, Princeton, New Jersey 08543 USA

Abstract

Two-dimensional solutions of compressional Alfvén eigenmodes (CAE) are studied in the
cold plasma approximation. For finite inverse aspect ratio tokamak plasmas the two-dimensional
eigenmode envelope is localized at the low magnetic field side with the radial and poloidal local-
ization on the order of a/+/m and a//m, respectively, where m is the dominant poloidal mode
number. Charged fusion product driven Alfvén Cyclotron Instability (ACI) of the compressional
Alfvén eigenmodes provides the explanation for the ion cyclotron emission (ICE) spectrum ob-
served in tokamak experiments. The ACI is excited by fast charged fusion products via Doppler
shifted cyclotron wave-particle resonances. The ion cyclotron and electron Landau dampings
and fast particle instability drive are calculated perturbatively for deuterium-deuterium (DD)
and deuterium-tritium (DT) plasmas. Near the plasma edge at the low field side the velocity
distribution function of charged fusion products is localized in both pitch angle and velocity.
The poloidal localization of the eigenmode enhances the ACI growth rates by a factor of 4/m
in comparison with the previous results [N. N. Gorelenkov and C. Z. Cheng, to appear in Phys.
Plasmas, June (1995)] without poloidal envelope. The thermal ion cyclotron damping deter-
mines that only modes with eigenfrequencies at multiples of the edge cyclotron frequency of the
background ions can be easily excited and form an ICE spectrum similar to the experimental ob-
servations. Theoretical understanding is given for the results of TFTR DD and DT experiments
with v40/v4 < 1 and JET experiments with veg/va > 1.
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1. INTRODUCTION

The Ion Cyclotron Emission (ICE) in hot and dense plasmas has been studied in experiments
on Joint European Torus (JET) [1, 2] and Tokamak Fusion Test Reactor (TFTR) [3, 4] (see
also references contained therein). The frequency spectra of ICE signal present sharp peaks at
harmonics of bulk ion cyclotron frequency evaluated at the low magnetic field side of the plasma
edge. Typically, the ICE spectra show a broadband part for the frequency w > Sw;pedge and
regular spaced peaks with w = lw.pedge, Where wepeqge is the outer edge deuterium cyclotron
frequency. The narrow width of ICE spectrum peaks (Aw/w < a/Ry, where a and Ry are the
minor and major radii of the tokamak plasma, respectively) indicates that the ICE is localized in
the low field side of the tokamak. The correlation between the amplitude of ICE spectral peaks
and the neutron emission rate was observed in JET [1] and in TFTR [4] in deuterium-deuterium
(DD) and deuterium-tritium (DT) experiments. The experimental results, reviewed in Ref. [1]
clearly demonstrate that charged fusion products provide the free energy to generate ICE.

However, ICE in TFTR [4] has special features different form the JET observations. At the
beginning of NBI, peaks of the ICE signal correspond to the harmonics of He? and T charged
products. Later on, the spectra peaks are determined by thermal ion damping in DD, DT and
TT discharges. The broadband part of the ICE signal does not correlate with the neutron
emission rate.

In this paper the ICE is considered to be the resonant cyclotron instability of compressional
Alfvén (fast Alfvén, or magnetosonic) eigenmodes (CAE) driven by fast fusion product ions.
Similar approach has been used in earlier studies [5-7], where the excitation of Alfvén Cyclotron
Instability (ACI) is associated with the free energy source of fast charged fusion product ions
which are in cyclotron resonance with compressional Alfvén waves. However, in these papers
[6-7] the ICE spectra were explained only in terms of the excitation mechanism. But, in the
paper by N. N. Gorelenkov and C. Z. Cheng [8] it was pointed out qualitatively that the thermal
ion cyclotron damping plays an essential role in forming the ACI (therefor ICE) spectra.

In papers [5, 6] ACI has been studied in the uniform plasma approximation by neglecting

the fast particle drift motion. The instability growth rate is proportional to y/n,/n., where n,
and n. are the densities of fast particles and electrons, respectively.

The extension of the uniform plasma theory to include inhomogeneous magnetic field was
reviewed by A. B. Mikhailovskii [9]. The contribution to the plasma permeability tensor from
fast particles was calculated by including the particle drift motion and bounce resonances. The
fast particle radial orbit width was assumed negligible in comparison with the radial wavelength.
It was shown that the instability with growth rate proportional to y/n,/n. is stabilized in the
tokamak plasma with an inhomogeneous magnetic field if the wave propagates perpendicularly
to the magnetic field.

In paper [8] the nonlocal contribution to the permeability tensor was calculated in the drift ap-
proximation for fast particles by keeping only the resonance part of the tensor (see also Ref. [10}).
The CAE - fast particle interaction is determined by the cyclotron resonance inside the layer



which was assumed small in comparison to the mode envelope and the plasma parameter scale
lengths. The fast particle resonance contribution to the plasma dispersion leads to ACI with
growth rates proportional to n,/n.. Typically, these growth rates are small in tokamak plasmas.
It implies that in inhomogeneous plasma one should look for an absolute instability with local-
ized origin rather than a convective type instability, which convects the wave packet away before
the wave amplitude becomes large. Since the ACI growth rates are proportional to n,/n., one
expects that in the nonlinear regime the amplitude of ICE signal will be proportional to n,/n.
and the neutron emission rate. '

In papers {7, 11] the two-dimensional fast wave eigenmode structure was obtained in the large
aspect ratio limit (¢ = a/Ry < 1) without the poloidal envelope structure. A local analysis of
the wave-particle interaction was performed.

In this paper, the two-dimensional CAE structure will be presented in Section 2 for the
cold tokamak plasma with finite inverse aspect ratio. Based on the two-dimensional eigenmode
structure the thermal ion cyclotron and electron Landau damping rates are calculated pertur-
batively in Sec. 3. It is shown that only modes with eigenfrequencies at multiples of the edge
cyclotron frequency of background ions can be easily excited and can form the ICE spectrum
similar to the experimentally observed. In Sec. 4 we employ the formalism developed in Ref.[8]
to calculate perturbatively the ACI growth rates driven by both fusion protons and a-particles
in deuterium-tritium (DT) tokamak plasmas. The fast particle distribution function is assumed
to be localized in both pitch angle and velocity near the plasma edge. The conclusions are given
in Sec. 5.

2. COMPRESSIONAL ALFVEN EIGENMODES

2.1. FEigenmode Equation

In the range of ion cyclotron frequency compressional Alfvén waves have been considered to
be responsible for the ICE. To obtain the equation for localized compressional Alfvén eigenmodes
(CAE) we consider the model of inhomogeneous, magnetized plasma in a tokamak with a circular
cross section. By neglecting the background ion and electron kinetic effects and with vanishing
parallel electric field, the perturbed electric field satisfies Faraday’s and Amper’s laws which
reduce to the following equation:
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VxVxE:L—UCEbE, (1)

where we assume that E has two components perpendicular to the equilibrium magnetic field
and E(t) ~ exp(—iwt). The cold plasma permeability tensor € has elements
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for frequency w lower than low hybrid frequency, where w,; and w,, are the ion cyclotron and ion
plasma frequencies, respectively. Note that the tensor Eq. (3) is rotationally invariant, which
means that it can be used for any orthogonal coordinates perpendicular to the equilibrium
magnetic field B. Introducing parallel component of wave vector as kj = —ib - VIn E and
choosing direction 1 as the radial direction and direction 2 as the poloidal direction, we can
rewrite Eq. (1) as a system of two coupled equations for the radial and poloidal components of
the perturbed electric field
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where F = ‘;’—:?;11 — kﬁ and H = f;é“m. To further simplify these equations we make use of the
assumptions: 0In E/00 > 0In E/0r > 1, 01n(ép, €11)/8(r,68) < 8In E/0(r,0), and 0¢;; /00 <
0¢;;/0r. The first assumption implies radially localized solutions [7, 8, 11]. The system of
equations (4) can be simplified by multiplying the first equation with (r—2(8/8r)r(8/86) + H),
the second equation with (r~2(82/86%) + F), and summing them. tdt2432926 Finally, we obtain
the eigenmode equation

10 & 16 F*+H> 1 (9 0
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Whjch is Eq. (39) of Ref. [11]. Analytical solutions of Eq. (5) can be obtained in the limit
w? > w?. In Sec. 3 we will use the analytlca.l solution for qualitative analysis of CAE damping
at w ~ wg. In the limits of w? > w2 andk <« m?/r?, Eq. (5) is reduced to

18 0 1 62 w2
[;ETE + — 2 692 ] Eg 0 (6)

where v} = E@cwee /w2, = (B [4mn,) Ty o(22n:/min.) is the Alfvén velocity for a two-component
plasma, and 2; and n; are the electric charge and density of ion species ¢, respectively. Equation
(6) has been solved in the cylindrical plasma approximation [11, 13] and in the toroidal geometry
[8, 11] using small parameters 1/m and €, where m ~ 91n E/89 is the poloidal mode number.

2.2. Cylindrical Eigenmode Solution

For simplicity we choose the plasma density profile in the form

n(r) = no(1 — r*/a?)", (7)
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where 7 is the minor radius, and ng is the ion plasma density at the magnetic axis. Without
the toroidal coupling the cylindrical solution has the form Ey = E(r)exp[—iwt — inyp + im#),
where 6 is the poloidal angle, ¢ = z/Ry, Ry is the major radius of the magnetic axis and z is
the coordinate along the plasma cylindrical axis. The eigenmode radial structure is described
by the following equation:

186‘

where the potential is given by
m? w? n(r)
~— — — 9
vir) 2 2%4(0) ngy ’ )

v4(0) is evaluated at the magnetic axis with the vacuum toroidal magnetic field. If V(r) forms
a potential well, Eq. (8) can be approximated as a harmonic oscillator equation which admits
localized solutions. For chosen plasma profile Eq. (7) and m > 1, a potential well is formed at
r = 19, where r2/a2 = 1/(1 + 0;) — (25 + 1)A2%/a?, A%?/a? = /20;/(1 + 0;)/[m(1 + 0})], and s is
an integer and represents the radial wavenumber. The localized eigenmode solutlons have the
eigenfrequency [7, 13]

2,2 , 2
L vAz(rO)(l N (1+0:)(2s +21)A ) (10)

and the eigenfunction

B(r) = Eogs( ), (11)

\/§(T - T‘(])
A
where ¢,(z) = e~*"/2H,(z)/1/2!2¢v/2 and H, are the s—th order Chebyshev-Hermit functions and

polynomials, respectively. Note that in the potential well region the solution (11) is consistent
with the ordering

8Ey  /mEy
L YY) T (12)

r

For o; < 1 the eigenmode is localized near the plasma edge. Thus, to form a potential well, a
rapid variation of the plasma density profile is required near the plasma edge.

2.3. 'Toroidal Eigenmode Solution

In Eq. (6) toroidal effects are included in terms of the poloidal dependence of the equilibrium
magnetic field B = By/(1 + ecos§), where ¢ = /Ry, By is the magnetic field at the magnetic




axis. We will consider modes which satisfy the cylindrical orderings, Eq. (12). Then, in the
lowest order in (1/m) Eq. (6) reduces to
18E, & n(r)
r2 962~ v4(0) ng

(1 4+ ecos8)?FE,. (13)
This equation has a solution to the lowest order in the form [11]
= E(r,0) exp[—iwt + im(8 + ey sin ) — iny], (14)

where ¢ is the toroidal angle, E‘('r, 6) is the eigenmode envelope, and €y = ry/ Ry is determined
by the local minimum of the potential

——z—-(l + ecos§)>. (15)

m2
V(r,0) = —’;—2—(1 + € cos )% —
Substituting Eq. (14) into Eq. (6) we obtain the next order equation

(%%r% ~V(r,8)+ 2—(1 + €g cos 6);) E(r,8) = 0. (16)
The potential well has a minimum at § = 0 and » = 7y, which allows a radia,lly and poloidally
localized eigenmode if ¢ is not too small. As we will see later, ¢ = 1/3 is enough for CAE to
be localized at the low field side in a region with § < 1. Assuming that E(r,8) = EyX (r)Y (6),
averaging Eq. (16) over the poloidal angle, and taking the limit E(r,8) — 0 as 6 — +m/2,
weoobtain a radial envelope equation for X(r), similar to Eq. (8). The solution is given by
X(r) = ¢o(vV2(r — ry)/A) with the eigenfrequency given by Eq. (10), where Alfvén velocity is
evaluated at 7 = 3,8 = 0 and

A?%)a* = \[20:/(1 + ;) /[m(1 + 0:) (1 + &)]- (17)

The last term in the round brackets in Eq. (16) vanishes in the poloidal integration. It means that
this term corresponds to a small contribution on the order of 1/4/m to the eikonal, Eq. (14), and
a small frequency contribution on the order of v4 /7 « w. To simplify further in the derivation we
will neglect this term. Later we will show that our analytical solution agrees with the numerical
solution of Eq. (16). After multiplying Eq. (6) by X (r) and integrating over the minor radius,
the poloidal envelope Y'(8) is determined by the following higher order equation in 1/m

% V(re,0)r2 €o8?
(5@5 + A+ 5 T+ e Y (6) = 0. (18)

Note that the constant ) is on the order of m0? and is introduced to provide a localized poloidal
envelope solution. The contribution of A in the equation for X(r) leads to a negligible term to
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the eigenfrequency on the order of 6%v4/r. The localized solution at small poloidal eigenvalue k
is given by Y'(9) = d),c(‘/—e) where ©% = \/4(1 + €9)/(2s + 1)egA/ry. For a localized eigenmode
with © < 1, we have ¢y > 4/m for o; ~ 1, s = 0. For typical poloidal mode numbers, m > 15, it
requires €5 > 1/4 to have a localized poloidal envelope.

In summary, the localized CAE solution is given by

Ee—-EOQbk(\/—) (\/_(TA ))

This analytical solution agrees well with the numerical solution of Eq. 16, which was obtained
by using a shooting method with the boundary conditions: E(r,8) = 0 and 8E(r,8)/8r = 0 at
r = 1.3a. The results are presented in Fig.1, which shows a good agreement on the poloidal
envelope solution for w = 3w.pg, s =0, k=0, 0; = 0.2 and m = 36.

exp[—iwt + im(0 + €y sin ) — inp]. (19)

3. CAE DAMPING

3.1. Perturbative Analysis

Kinetic effects due to resonance interaction of thermal ions and electrons with CAE can be
included perturbatively. These effects are described by the antihermitian part of the permeability
tensor for each species [9, 12]. We expand the perturbed electric field and the eigenfrequency
as E = E’ + E! and w = w® + w!, where E! and w! are due to small kinetic corrections to the
magnetohydrodynamic eigenmode and eigenfrequency. Then, from Eq. (1) the expression for
~ the growth rate is given by

- Im [E & B/ [E-
J

Further we will neglect the small correction to the perturbed electric field E ~ E°. The radial
component of the perturbed electric field is related to the poloidal component by

1 F
B,=—Ey =7
which results from Eqgs. (4) in the leading order of 1/m.

1 duwle
w2 Ow

-Ed3r (20)

Ey, (21)

3.2. CAE-particle Resonance

The electron transit time damping of CAE is not important when the number of resonant
electrons is small, i.e., when the parallel phase velocity exceeds the electron thermal velocity vr..
The main resonance contribution to the electron permeability tensor is given by [12]

2
& =ivE ﬁe“’zk e,

(22)




where (. = w/|ky|vre, Be = 8mn.T./B?, ky ~ m(1 + ¢)/qRo — n/ Ry, and ¢ is the safety factor.
Then, in the limit w? > w? the electron Landau damping rate is given by

Ye = —wﬁegee_cz- (23)

The thermal ions contribute to the damping through the cyclotron resonances. Considering

the limits of b; = k3 v, /2w? ~ w?0d,/wiv] < 1, wa/lkylvr; > 1, where vp; = /2T /m; is the
ion thermal velocity, the antihermitian part of the ion permeability tensor has the form [12]

~A ~A . n A ~A Z lweiv/2 Zp(@z) ’

Cirr = 7'6191' = T = €gg = 'k]]‘vT Cl (24)
] 1

where (i = vV2(w — lwe)/ |kyjlvrs, Zp is the plasma dispersion function, and

w2 (b, AP
gi=—22] —=

The thermal ion damping rate can be obtained from the energy transfer rate from the mode to
the thermal ions. Integrating over the the mode localization region, we have

Imz < E|lef|E >= ImZ/E* & Ed’r = 27rfE9 (1—1/X) 2ImZelgeRdeZ, (25)

where Z is the coordinate along the major axis of the torus, A is the electric field polarization
given by Eq. (21). Note from the form of the variable (;;, the tensor éf is nonvanishing in the
vicinity of the resonance surface R = R, determined by the resonance condition w = lw(R,).
The width of the resonance layer is on the order of R|kj|vri/lws; < a. Assuming that the plasma
parameters and the perturbed electric field envelope in the resonance layer change slowly we can
perform the integration over R in Eq. (25) and we have

ImS < Ej¢4E >= —21?R? / dZE2(1 ~ 102 Gitnn. (26)
p il

When the cyclotron resonance layer intersects the eigenmode location, the thermal ion cyclotron
damping rate is maximum and is given by

. a wd ’UA
Y = EA w202 Zgzlv (27)

where A is given by Eq. (17), and dZ = rdf is assumed.




3.3. CAE Damping Rates

To drive the CAE unstable the fast ion growth rate must be higher than the total damping
rate. The CAE can be most unstable if the damping rate is smallest. The electron Landau
damping can be minimized by choosing modes with phase velocity higher than the thermal
electron velocity, i.e., k| <« w/vr. [11, 12]. The ion cyclotron damping is significant if ions
are in cyclotron resonance with the mode and if the cyclotron harmonic number is not high.
Therefore, eigenmodes localized near the plasma edge and with eigenfrequencies corresponding
to low multiples of the edge thermal ion cyclotron frequency can be weakly damped due to low
edge plasma ion density and temperature. For higher cyclotron harmonics with | = w/ws; > 5
the thermal ion damping is exponentially small.

The damping rate are computed for typical TFTR supershot plasma parameters [14]: Ry =
2.52m, a = 0.9m, the safety factor profile q(r) = gqo/[1 — 1.32r2/a® + 0.54r*/a?] for r < aq,
go = 0.85, the toroidal magnetic field at magnetic axis By = 4.75T, the bulk plasma density
profile is given by Eq. (7) with o; = 0.2, the temperature profiles T;(r) = 2T.(r) = 10 x (1 —
r2/a%)2keV. We consider plasmas with deuterium and tritium ions. For neutral beam ions we
assume a Maxwellian velocity distribution function with the temperature profile T3 (r) = 50 x
(1—7?/a®)%keV and the density profile ny(r) = nyio(1—7%/a?)°, where 0, = 1. For DT plasmas
with deuterium and tritium beams the damping rates are given in Fig.2 for npy = npg = 10 x
nspo = 10 X ngpe = 0.15 x 10cm 3. Here we choose m ~ n. As expected, CAE with frequencies
equal to harmonics of the edge deuterium cyclotron frequency have negligible damping rate and
can be most easily excited by fast particles. For eigenmodes with w < 2w.redqe there is no
thermal ion cyclotron damping in our model because the perturbed electric field rotates in the
electron cyclotron gyration direction. The cyclotron damping in this range of frequencies is
mainly due to the NBI ions which have a slowing down anisotropic velocity distribution function
[14]. The resonance layer for beam ion - CAE cyclotron resonance can have a finite width due
to the Doppler frequency shift, which produces a perturbed electric field component that rotates
in the ion cyclotron gyration direction and will lead to a finite cyclotron damping.

In Fig.3 we present the damping rates for a pure tritium thermal plasma and tritium beams
with npg = 10 X nyro = 0.3 x 10Mem=3. As expected from Eq. (24), at fixed eigenfrequency
the tritium cyclotron damping rate is less than the deuteron cyclotron damping rate because of
lower tritium cyclotron frequency (or higher tritium cyclotron harmonic number). From Fig.3
one can see that in tritium plasmas, CAE eigenmodes with frequency at edge tritium cyclotron
harmonics can be more easily excited.

Note that by assuming the ACI growth rate to be a slowly varying function of frequency (see
[8]) the emission spectra due to the ACI should consist of two distinct parts. The low frequency
part contains sharp peaks with widths proportional to the growth rates or to the density of fast
particles. The high frequency broadband part with w > 5w;pedze is determined mainly by the
fast ion driving mechanism because of exponentially small thermal plasma damping. Due to high
velocity of fast particles and finite k), and thus high Doppler frequency shift to the cyclotron




resonance, the neighboring fast particle-mode cyclotron resonances will be easily overlapped.
The thermal ion damping will contribute to a slight modulation in the broadband spectrum.

4. ICE SPECTRUM

4.1. Basic Equations

To understand the ICE spectra we consider the ACI driven by charged fusion products based
on the formalism developed in Ref.[8]. Then, the fast particle resonance contribution to the
anti-hermitian part of the dielectric permiability tensor is given by

4mesc
f X

<Elf[E>=—i),
lo

w

8¢  wB Ores(PoEots0) 1 (28)

X /dP(Pdé’duPGf* -E*G;-E [—Q— + ey ;9%] fr
where the subscript f denotes the fast particles, P,, &, u are adiabatic invariants, P, = es)/
2rmysc — y R, € = v?/2, p = v} /2B, v is the poloidal magnetic flux, o is the sign of the
parallel velocity, vectors G; and G| have components in 7,6, coordinate system with G; =
{—iv  8J1/0z; viwdi[(wez); vy i} and G) = {—1v 8J1/0z; v, 1Ji/z;vyJ1}, respectively, J; = Ji(z)
is the | — th order Bessel function of the first kind, z = k vi/we, ff = fr(Py, &, p,0) is
the fast particle equilibrium distribution function. All quantities in Eq. (28) are taken at the
resonance point on the drift trajectory of fast particles with 8 = 6,.,(P,, &, 1, o) determined by
the resonance condition

w ~ lwes(r(6),8) —wps(r(8),0) =0, (29)
where r(6) describes the fast particle drift orbit. Also we let
wps =k - (V) + va) = kyov2E,/1 — uBJE - ?gw% (R% - 1) (1 - %?) . (30)
where v4 is the magnetic drift velocity. Also, I? in Eq. (28) is given by
1? = 87{| d(lw.s +wpy)/dt [* +Cld*(lwes + wpy)/dt*[}~/° (31)

where C' = 2.6943, the time derivatives are taken along the fast particle drift trajectory.

Eq. (28) includes fast particle FLR effects and is obtained by integrating the high frequency
gyrokinetic equation along the particle orbit. wp; presents the Doppler shift due to the parallel
and drift motion. The term / has the time dimension and gives the time of fast particle -
eigenmode resonance interaction during one pass through the resonance layer. The sign of the
growth rate (Eq. (20) and Eq. (28)) depends on the signs of £ and p derivatives of the distribution
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function and the weights with which these derivatives are integrated over the phase space. These
weights are given by three terms. The first is driven by FLR effects, i.e., G; and Gj vectors
which are the same as in the local theory. The second term [ is pure nonlocal. And the third
term is related to the two- dimensional structure of the perturbed electric field E. Typically
this term gives a comparable contribution to the instability in comparison with the FLR driven
term. It allows an instability even for vy < v4, where vy is the fast particle birth velocity.

The plasma inhomogeneity and finite banana width can lead to a large velocity space anisotro-
py of fast particle distribution function. The anisotropy is higher near the plasma periphery on
the low field side, where the spatial gradient of fast fusion products is higher [15]. The edge fast
particles are mainly barely trapped particles which come from the plasma center and have the
highest radial excursion from the magnetic surface. The fast charged fusion product distribution
can be expressed as

B
i1 = ns(PY£o)8 (E22 = o). (32)
where f,(v) represents the velocity distribution, and A, is the pitch angle of barely trapped par-

ticles. Ag can be obtained from the equation (ef/2mm¢c) Y(R, Z)|r=poRro,z=0 = Pp. Integrating
Eq. (28) by parts and using Eq. (32) we obtain

4n%eiB
<ERfE>=-i} ——— [dP, x

lo myWesw

X {F(52) — F(&) - [ deny L [ 0 e 8

21 *
BO 58_ + 5 -6—,u’j| I G; -E G’l 'E} !p:AoE/BO’ <33)

where F = (1 + lwea& [(wBp))ns foI*Gy* - E*Gy - E(E/By), 12 = E12(P,) (&1 < &) are the
energy limits determined from the resonance condition Eq. (29) at fixed P,. The differential
operators in Eq. (33) operate on all quantities to their right hand side. These quantities are
taken at the resonance point 8 = 8,.,(P,, &, u, o).

4.2. ACI Growth Rate

The numerical results of ACI growth rates are presented for JET[1] and TFTR[14] DT
plasmas. The fast particle density profile is chosen as ny = ngo(l — P, /)%™ [14], where
nso is the central fast particle density, ¥ = esy;/2mmysc, and ¥, is the poloidal magnetic flux at
the plasma surface. Because the ACI growth rate depends linearly on the fast particle density
at the CAE localization region, the effect of fast particle profiles will only modify the growth
rate slightly. The velocity distribution is chosen as in Ref.[8]

4By B (v — vo)?
0= 1—Ap— _(v—w)* ), )
! Bug(vr— + vy )/ °B, & o ( gy n(E(v = v)) (34)




where vp_ is an adjustable parameter, vp, = \/QT,,/ (my + my), m; and m, are the mass of
reacting nuclei, T; is the temperature taken to be 50keV for beam heated plasmas, and 7 is
the Heaviside step function. This distribution function is typical during the initial stage of
NBI heated TFTR discharges. The velocity spread of the fast particle distribution function is
due to the thermal velocity spread of the reacting nuclei. The positive velocity gradient of the
fast particle distribution may also result from anomalous fast particle losses caused by MHD
magnetic perturbations or toroidal ripples. As noted earlier [8, 9], the thermal spread is a
stabilizing factor for the ACI. Therefore, ICE observed in the steady state phase of tokamak
discharges may indicate an anomalous fast particle loss.

Consider the JET DT discharge #26148 at 13.2 s with edge plasma profiles given by TRANSP
simulations[l], Ry = 2.96 m, a = 1.2 m, By = 2.87T, and the safety factor profile ¢(r) = go/[1 —
1.2172/a? + 0.38r*/a?*] for r < a, go = 0.9. For the bulk deuterium and tritium plasmas their
densities are npg = 10X npg = 0.3 x 101%cm =3 with density profiles given by Eq. (7) with ¢; = 0.3,
and their temperature profiles are given in section 3.3 with T;(0) = 10 keV; andT.(0) = 7 keV.
For the beam components, nypg = 10 X nypg = 0.1 X npg, and for fusion protons and a-particles
Ngo = 30 X npg = 2. X 10%m=3. Other parameters are taken to be similar to those in section 3.3.

Presented in Fig.4 are the ACI growth rates driven by a-particles (solid curve) with vp_ =
vry+ = 0.107vso and by fusion protons (dashed curve) with vy = vy, = 0.058v,. For each
frequency the two-dimensional eigenmode structure is obtained with the analysis of Section 2.
The toroidal mode number n is varied to find the ACI with the maximum growth rate. The
upper n limit is determined by the electron damping. Typically n ~ m, which provides enough
Doppler shift for the protons with birth velocity vy = 2.4 x 10%m/sec to excite the instability
at half edge proton cyclotron harmonics. It require thats kj > wepedge/Vpo =~ 3.5m* for JET
and k; > 7m~! for TFTR. Note that at the edge ¢ > 4 and kj ~ —n/R. In JET DT plasmas the
tritium density is small, and the ion cyclotron damping is mainly due to deuterium, and therefore
ICE has peaks at the harmonics of deuterium edge cyclotron frequency. The ACI growth rates
presented in Fig.4 are consistent with the JET ICE spectrum. The proton driven ACI has lower
growth rates than the a driven ACI by the density ratio of the a-particle to the proton, and
thus the neutron emission rate ratio of DD to DT plasmas.

Fig.5 presents growth rates of the ACI driven by o-particles and protons for the TFTR DT
plasma (shot #73255) at the time 250 ms after the start of NBI[4]. The central ion densities
are npg = npy = 0.15 x 10¥%em ™3 for thermal ions, nypo = nyre = 0.1 X npg for deuterium and
tritium beam ions, and ngy = 50 X nyy = 2 X 10%em =3 for fusion protons and a-particles with
vpr_ = vy, for both groups of particles. The rest of plasma parameters are listed in Section 3.3.
Fig.6 presents the ACI growth rates for DT discharge with the same plasma parameters as in
Fig.5, but with a broader fast particle velocity distribution vr_ = 2v7,. Comparison of Figs. 5
and 6 shows that in TFTR the ACI growth rates are more sensitive to the velocity spread of the
distribution function of a-particles than protons, where v49 < v4 and vy > va. In steady state
the fusion reaction saturates, and the fast products has a classical slowing-down distribution in
energy. However, the anisotropy of the fusion product distribution can still lead to ACI, but
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with lower growth rates. Therefore, in TFTR DD and DT steady state plasmas the ICE signal
will be proportional to the neutron emission rate.

In contrast with Ref.[8] we have obtained the ACI driven by a-particles at high cyclotron
harmonics. The poloidally localized CAE provides conditons for the ACI to be excited by a
single cyclotron resonance. Without the poloidal localization, neighboring cyclotron resonances
have a stabilizing effect on ACIL Finally, in Fig.7 we present the ACI growth rates driven by
a-particles in TFTR DT shot #73273 at the time 250 ms after the start of tritium NBI[4]. The
plasma is characterized by a large tritium population with the central thermal tritium density
nre = 0.3 x 10%em ™3, the central tritium beam density nyrg = 0.1 X npg, the central a-particle
density nqo = 2 x 10%m =3, and vr_ = vp,. The contribution from the thermal deuterium is
small and will be neglected. Modes with frequency at low number harmonics of edge tritium
cyclotron frequency are least damped by the thermal tritium ions and will be unstable.

5. CONCLUSIONS

A two-dimensional analysis of compressional Alfvén eigenmode has been performed. The
analytical results are in good agreement with the numerical solutions of the two-dimensional
eigenmode equation. The eigenmode solution is characterized by an envelope localized in both
the poloidal and radial directions at the low magnetic field side of the plasma edge. Two-
dimensional CAE solutions have been employed to calculate the ACI growth rates driven by
fusion products to explain the experimentally ICE spectra.

We have shown that the thermal ion cyclotron damping determines the form of ICE spectra.
The ACI growth rates for deuterium and tritium plasmas are consistent with the experimentally
observed ICE spectra. In DD plasmas odd deuterium harmonics are excited by protons due to
the Doppler shifted cyclotron resonance. The growth rates are proportional to the density of fast
particles, which is consistent with ICE peak signal amplitudes and the neutron emission rate.

The low frequency part of ACI (and thus ICE) spectrum contains sharp peaks with widths
proportional to the ACI growth rates or the density of fast particles. The high frequency broad-
band part with w > Swcpedqe is determined mainly by the Doppler shifted fast particle - CAE
resonance because of exponentially small thermal plasma dampings. Due to high velocity of fast
particles and finite k (i.e., high Doppler frequency shift to the cyclotron resonance) the fast
particle cyclotron resonances with the neighboring modes will overlap. The theoretical results
of ACI spectra agree with ICE observations.

Based on the studies, several issues can raised for experimental checks. First, the ICE
amplitude can be increased by increasing the population of barely trapped fast particles by the
adiabatic compression in major radius. The adiabatic compression provides the transition from
confined counter-passing particles to barely trapped particles[16]. The second is the excitation
of the loss-cone instability for the anomalous scattering of confined counter-passing particles.
The destabilizing factor is due to the counter-injection of tritium beams which allow a positive
shift of a-particle parallel velocity at the plasma edge.
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Finally we emphasize the importance of ICE phenomena in the charged fusion product par-
ticle physics for the purpose of the diagnostic of edge plasma parameters and for studying the
channeling of a-particle energy to thermal ions through ACL
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Figure 1: The CAE poloidal envelope at r = ¢, which corrsponds to the minimum of the poten-
tial given by Eq.15. The numerical eigenmode solution is presented by the real and imaginary
parts of the eigenmode envelope.

Figure 2: Ion cyclotron (solid curve) and electron Landau (dashed curve) damping rates of
CAE versus eigenfrequency in a deuterium-tritium plasma with the thermal ion density profile
np(r) = np(r) = 0.15 x 10(1 — r2/a?)%2em =3, and the neutral beam injected DT ion density
npp(r) = myr(r) = 0.5 x 1013(1 — r2/a%)%2cm=3. Other plasma parameters are: B, = 4.75T,
Ry = 2.52m, a = 0.9m, the safety factor profile q(r) = go/[1 — 1.32r%/a® + 0.54r*/a%], for r < a,
go = 0.85, the bulk plasma temperature profiles Tp(r) = 27T.(r) = 10 X (1 —r2/a?)%keV, and the
beam ion temperature profile Typ(r) = 50 x (1 — r?/a®)2keV .

Figure 3: Ion cyclotron (solid curve) and electron Landau (dashed curve) damping rates versus
eigenfrequency in a tritium plasma with the density profile np(r) = 0.3 x 101(1 —72/a2?)%2cm =3,
and NBI tritium ion density profile nyr(r) = 0.3 x 1013(1—72/a?)em 3. Other plasma parameters
are the same as in Fig.2.

Figure 4: The ACI growth rates driven by protons (dashed curve) and a-particles (solid curve)
for JET DT plasmas. The velocity distribution functions of fast particles are given by Eq. (34),
where for protons vr_ = wvry = 0.058v,, and for a-particles vr_ = vpy = 0.107Tvy. Fast
particle densities are nag = 30 X nyy = 2. X 10%m=3. The thermal ion density profiles are
np(r) = 10 x ny(r) = 0.3 x 10*(1 — 72/a?)%3em =3, Other plasma parameters are: By = 4.757,
Ry = 2.96m, a = 1.2m, the safety factor profile ¢(r) = go/[1 — 1.217%/a® + 0.387*/a?] for
r < a, go = 0.9, and the bulk plasma temperature profiles atdt2432926 T;(r) = 1.43 x T.(r) =
10 X (1 —r2/a?)%keV.

Figure 5: The ACI growth rates driven by protons (dashed curve) and a-particles (solid curve)
for TFTR DT plasmas. The velocity distribution functions of fast particles are given by Eq. (34),
where for protons vy_ = vpy = 0.058v,, and for a-particles vp_ = vy = 0.107v49. Fast particle
densities are 149 = 50 X nyy = 2. x 10%e¢m=3. Other parameters are the same as in Fig.2

Figure 6: The ACI growth rates driven by protons (dashed curve) and a-particles (solid curve)
for TFTR DT plasmas, but with wider velocity spread in the fast particle distribution functions:
for protons vr_ = 2vpy = 0.116vy, and for a-particles vy = 2vpy = 0.214v49.

Figure 7: The ACI growth rates driven by a-particles for TFTR DT plasmas. The frequency
spectra peaks are at harmonics of edge tritium cyclotron frequency due to negligible deuterium
damping. The fast particle velocity distribution functions are given by Eq. (34) with vp_ =
vpy = 0.107v,. Other parameters are the same as in Fig.5
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