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Experiments to destabilize the Toroidicity-induced Alfvén Eigenmode (TAE) by
energetic alpha particles were performedv on the Tokamak Fusion Test Reactor using
deuterium and tritium fuel. To decrease the alpha particle pressure instability threshold,
discharges with an elevated value of q(0) > 1.5 were used. By raising q(0), the radial
location of the low toroidal-mode-number TAE gaps moves toward the magnetic axis and
into alignment with the region of maximum alpha pressure gradient, thereby (in theory)
lowering the value of By(0) required for instability. No TAE activity was observed when
the central alpha particle By reached 0.08% in a discharge with fusion power of 2.4 MW.
Calculations show that the fusion power is within a factor of 1.5 to 3 of the instability

threshold.
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1. Introduction

Accurate prediction of the effects of a large alpha particle population on collective
instabilities is a prerequisite for the design of a fusion reactor. Of particular concern is the
alpha-driven toroidicity-induced Alfvén eigenmode (TAE).[1] In an ignited tokamak like
the Internation Tokamak Experimental Reactor (ITER), the TAE instability could lead to
large losses of fusion alpha particles which could either quench the burning plasma or
damage the first wall of the reactor. Relevant experiments can be performed in the
Tokamak Fusion Test Reactor (TFTR)[2] when using deuterium and tritium (DT) as fuel.
One of the initial goals of the DT TFTR experiments was to create alpha-driven TAE
modes in order to validate the existing TAE stability codes. These codes could then be
more confidently applied to TAE stability calculations for a reactor.

The threshold for excitation of the alpha-driven TAE instability has been difficult to
reach in TFTR. Even the discharges with the highest production of fusion power[3]
attained on TFTR reach only a modest value of B (0) = 0.33%. There is also poor
alignment between the low-n TAE gaps, where n is the toroidal mode number, and the
maximum in the alpha pressure gradient. Consequently, typical TFTR discharges are
calculated to be stable to the TAE instability.[4,5] Various experiments have been
performed to reduce mode damping and therefore the mode threshold. For example, ion
Landau damping was calculated to be a dominant damping mechanism for low-n alpha-
driven TAE modes in TFTR supershots.[6] Experiments which rapidly decreased the ion
temperature and damping using He gas puffing or pellet injection were performed.[7,8]
No clear indication of alpha-driven TAE activity was observed. More recent analysis of
these experiments suggest that the Landau damping of the D beam ions was dominant
and the alpha pressure in the experiment was not sufficiently reduced to exceed the TAE
instability threshold.[5,7]

This paper reports the result of an experiment following a different approach to
lowering the TAE threshold by better alignment of By(R) and q(R).[4,9] Analysis of
standard [low-q(0)] DT supershots[4,5] has shown that the low-n TAE structure is
normally localized in the outer half of the plasma minor radius, where the alpha particle
drive is relatively low. The alpha drive can not be easily moved to this location due to
the peaked neutron source profiles in supershots. By increasing the value of the central
safety factor, q(0), the radial location of the TAE gaps move inward and are aligned more
closely with the location of the maximum alpha pressure gradient. The result is higher
growth rates and lower B (0) thresholds.

In the expenment high q(0) was obtained but no enhanced TAE activity was

observed. The details of this experiment are presented in the following section.




Measurements made of the TAE signatures by three independent diagnostic instruments
are presented in the third section. The final section presents the TAE stability analysis
and some conclusions to be drawn from this experiment.

‘ 2. Experiment

Typical TFTR supershots have values of the safety factor, q(0), < 1.[10,11]
Alternative discharge scenarios, however, have been developed to produce q(0) > 1 by
initiating the discharge with: (1) large major radius in order to have a lower initial current
density at the magnetic axis, (2) low plasma current, and (3) neutral-beam injection that is
initially predominantly in the direction of the plasma current to maximize the off-axis
beam-driven current.[10] A discharge with geometric axis R = 2.60 m, magnetic field Bt
= 4.8 T, and plasma current Ip = 1.0 MA was developed with 8.1 MW of neutral beam
injection beginning at 2.5 sec composed of 5.6 MW T and 2.5 MW D. The ratio of beam
power injected in the direction of the plasma current to that injected counter was adjusted
to 2:1 to optimize q(0) = 1.5. As can be seen in Fig. 1, this resulted in a relatively high
value of q(0) > 1.3 which rose gradually over time. The plasma current was increased to
1.8 MA at arate of 1.6 MA/sec beginning at 3.0 sec to reduce first orbit and ripple loss of
the alpha particles and to increase the  limit to allow more alpha power production. The
small decrease in the plasma current beginning at 4.2 sec was designed to stabilize
external kink modes by lowering the edge current density. These current ramps had little
effect on the value of q(0).

To maximize the fusion power, an additional 10 MW of neutral-beam power were
injected into the plasma between 3.7 and 4.5 sec. The resulting total of 18 MW was
slightly co-dominated with the co-injected portion being 2.5 MW D and 8§ MW T for a
total of 10.5 MW while 4.7 MW D and 2.8 MW T were injected in the counter direction.
The increased heating produced a peak rate of = 8 x 1017 neutrons/sec, or a peak fusion
power of 2.4 MW,

A critical parameter in evaluating the shear Alfvén continuum gap structure is the q
profile.[5] The poloidal magnetic field was measured using a twelve-channel motional-
Stark-effect (MSE) polarimeter.[12,13] This data, along with magnetic and kinetic profile
data, was used by the free-boundary equilibrium code VMEC[14] to determine the q
profile evolution. The calculated q profile is shown in Fig. 2 at t = 4.36 sec, the time of
maximum attained Bq. The magnetic axis was at Rpag =2.73 m and q(0) = 1.51 £ 0.26.

The other critical parameter needed to evaluate the TAE stability is the radial profile
of Bq, Fig. 3. This parameter is calculated by the time-dependent interpretive transport
code TRANSP.[15,16] The peak value of By(0) is calculated to be 8 x 104 with a volume




average of <Bo> = 8 x 10-3. The Py, profile is localized in the core of the plasma with a
half-width at half maximum of 0.21 m compared to a minor radius of 0.93 m. The peak in
the gradient of By (R) is located at a major radius of 2.94 m which is a minor radius of
0.21 m.

3. Results

Signatures of the TAE instability were monitored by three independent diagnostics:
the microwave reflectometer,[17] the Mirnov coil array,[18] and the escaping alpha
particle detectors.[19] These instruments have been successful in detecting both beam-
driven and ICRF-driven TAE instabilities.[5,18,20] The reflectometry observed no
coherent mode activity in the Alfvén range of frequencies between 200 and 400 kHz at
normalized minor radii of 0.3 and 0.5 r/a.

A small-amplitude magnetohydrodynamic (MHD) mode in the Alfvén range of
frequencies was observed with the Mirnov array for the same discharge as Fig. 2.[18] At
4.0 sec, this mode had a frequency of about 300 kHz which decreased to about 200 kHz
beginning at 4.25 sec as shown in Fig. 4. This mode belongs to a class of MHD activity
called the “Alfvén Frequency Mode” or AFM and is common on TFTR.[21] It is not a
TAE driven by energetic particles. AFM’s have been seen in Ohmic discharges, after
pellet injection, during neutral-beam heating, and during ICRF heating.

The characterizing feature of an AFM is the frequency evolution of the mode. As for
any Alfvén mode, the frequency is inversely proportional to the square root of the
electron density as n-1/2, The electron density is increasing throughout the plasma during
the time period shown in Fig. 4. In the core of the plasma, the rate of density increase is
constant. At the edge of the plasma, the rate of density increase gets larger at about 4.25
sec. This is mirrored in the data: At about 4.25 sec, the frequency of the mode decreases
as n-1/2, The mode of Fig. 4 is thus identified as an AFM rather than an alpha-particle-
driven TAE because the frequency evolution is determined by the density evolution at the
edge where there is no alpha-particle drive, rather than at the core where the alpha
particles could drive the TAE unstable. In TFTR, only the core-localized TAE’s are
expected to be driven by the alpha particles due to the localization of the alpha’ particle
pressure, Fig. 3. [5]

The rate of alpha particle loss to the wall was measured by the set of 3 escaping
alpha particle detectors.[19] The alpha collection rate at 90° below the plasma midplane
is shown in Fig. 5. The detectors at 45° and 60° below the midplane showed similar




results. The 90° detector recorded the loss of alpha particles with pitch angle between 45°
and 83° and gyroradius between 2 and 11 cm.

The high-power heating phase and large increase in neutron production began at 3.7
sec, 0.5 sec before the increase detected by the escaping alpha particle detectors. The
small, 20%, increase in loss rate after 4.2 sec is interpreted as being due to Changes in the
total current and current profile, not due to any TAE activity. The increase in loss rate
during the downward current ramp is in reasonable agreement with the predicted first
orbit loss rate as calculated by the ORBIT code.[22] This code integrates the Lorentz force
equation to trace the alpha particle orbit under the influence of the tokamak external
fields, the internal fields as measured with the MSE polarimeter, and the measured
neutron profile. The results of this modeling are shown as the circles in Fig. 5. In
contrast, when a strong TAE was driven by ICRF minority tail ions, the loss rate of tail
ions increased by a factor of 5 to 8.[23]

In summary, no coherent mode was measured by the microwave reflectometer, only
the usual AFM was observed by the Mimov coil array, and no increase in the lost alpha
particle rate above that expected due to the decrease in current was observed. We
therefore conclude that no perceptible alpha-particle-driven TAE was excited in this
discharge.

4. Discussion and Conclusion .

The TAE stability for this discharge has been calculated for toroidal mode numbers n
=1, 2, 3, and 4 using a gyrofluid model.[4,9,24,25] The calculation used the q and
pressure profiles from the VMEC-generated equilibrium. To determine the damping and
growth rates of the TAE, the TRANSP calculations of the radial profiles of the electron and
ion density, alpha pressure, and neutral-beam pressure profile[16] were used. The TAE
growth rates are shown in Fig. 6. Even with the modified q profile and elevated value of
q(0), the achieved By(0) is still below threshold for excitation of the TAE. That threshold,
however, has been reduced by almost an order of magnitude from a typical TFTR
supershot.[4] According to the analysis shown in Fig. 6, a doubling or tripling of the
fusion power would have raised By(0) above the threshold for n = 1 instability.

Analysis of this experiment was also made using the global kinetic/MHD stability
code NOVA-K [1] and is shown in Fig. 7. It was found that the n = 3 mode was most
unstable for this plasma. The calculated growth rate is a factor of 4 too small to overcome
the damping of the TAE. The NOVA-K calculations are also in agreement with the



gyrofluid code conjecture that raising q(0) lowers the TAE threshold, although the
sensitivity of NOVA-K to changes in q(0) is much less.

The experiment that was performed was not a strenuous test of the predictions
because of the low B (0) achieved. Raising the beam power during the heating phase
would have raised the fusion power production. If the beam power were 30 MW instead
of 18 MW, up to 5.7 MW of fusion power could be generated which would increase
Ba(0) by a factor of about 2.4 to 0.19%. However, more beam power would also lead to
more damping of the mode by beam ions so that the threshold By (0) value may also
change. Discharges with higher beam powers were attempted, but the fusion power was
limited by large carbon blooms during neutral-beam injection. Higher power experiments
could be performed in the future using recently developed discharge scenarios that allow
up to 25 MW of neutral-beam injection into high-q(0) plasmas without blooming.[26]

It has also been found that the addition of very early beam injection before the main
heating pulse produces a plasma with large regions of negative shear. Recent calculations
with the NOVA-K code suggest that low or slightly negative shear could further lower the
B« (0) threshold for the core localized TAE. Calculations with the gyrofluid code have
shown that the Global Alfvén Eigenmode (GAE) can also be destabilized by negative
shear in the core of TFTR plasmas.[4]

In conclusion, DT experiments were performed on TFTR to drive toroidicity-induced
Alfvén eigenmodes with alpha particles. In order to lower the alpha particle pressure
threshold, discharges with higher values of q(0) than typical supershots were used. No
TAE’s were observed using microwave reflectometery or a Mirnov array and no
enhanced losses of alpha particles were observed on the escaping alpha particle detectors.
TAE stability analysis showed that the moderate fusion power produced by this discharge
produced a central alpha particle pressure that was still below the instability threshold.
The threshold, however, had been reduced by about a factor of 10 as calculated by a
gyrofluid code. Therefore, higher fusion powers are needed to adequately test the
hypothesis of lowered thresholds by increased values of q(0).
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(b) neutral-beam injected power, (c) neutron rate, and (d) central safety factor, q(0), as

measured by the motional-Stark-effect polarimeter. The arrow is at the time of peak

Ba(0).
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Fig.2. = The q profile at t = 4.36 sec, the time of peak B (0), from MSE measurements

interpreted by the VMEC equilibrium code.
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Fig. 3. The By, profile along the tokamak equator at time of peak By (0) from TRANSP.
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Fig. 4. MHD activity measured by the Mirnov coil array during the main heating

phase of the discharge shows the usual Alfvén Frequency Mode which is not an alpha-

particle-driven TAE.
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Fig. §. Loss rate of alpha particles from the plasma measured 90° below the plasma
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normalized to the code calculation at t = 4.36 sec.
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Fig. 6. TAE mode growth rates calculated by the gyrofluid code as a function of the
central Bq for discharge 80788 at time of peak B¢ . The achieved Bg was below the
threshold for TAE excitation. Here THp = Rmag/V A(0) where VA(0) is the Alfvén velocity

at the magnetic axis.
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Fig. 7. TAE stability threshold for the most unstable toroidal mode, n = 3, as

calculated by the NOVA-K code. Here, Yy and ¥y are the TAE growth and damping rates,

respectively.
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