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Abstract

We report on a search for anomalous kinematics of tt̄ dilepton events in pp̄ collisions at
√

s =

1.96 TeV using 193 pb−1 of data collected with the CDF II detector. We developed a new a

priori technique designed to isolate the subset in a data sample revealing the largest deviation

from standard model (SM) expectations and to quantify the significance of this departure. In the

four-variable space considered, no particular subset shows a significant discrepancy and we find

that the probability of obtaining a data sample less consistent with the SM than what is observed

is 1.0–4.5%.
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The discovery of the top quark during Run I of Fermilab’s Tevatron collider initiated

an experimental program to characterize its production and decay properties in all possible

decay channels. Within the standard model (SM) the top quark decays almost exclusively to

a W boson and a bottom quark; the “dilepton” decay channel here denotes the case where

the two W bosons from a tt̄ pair both decay into final states containing an electron or a

muon, accounting for about 7% of all SM tt̄ decays. These events are characterized by two

energetic leptons, two jets from the hadronization of the bottom quarks, and large missing

energy from the unobserved neutrinos. The CDF and DØ Collaborations’ measurements

of the tt̄ production cross section in the dilepton channel in Run I showed a slight excess

over SM predictions [1]. Perhaps more interestingly, several of the events observed in the

Run I data had missing transverse energy (6ET ) and lepton pT ’s [2] large enough to call into

question their compatibility with SM top decay kinematics. In fact, it was suggested that

the kinematics of these events could be better described by the cascade decays of heavy

squarks [3], compelling us to subject the top dilepton sample to careful scrutiny in Run II.

In a previous Letter [4], we reported a measurement of the tt̄ production cross section in

the dilepton channel at Run II and found good agreement with the SM expectation. Here we

present the results of a detailed analysis of the kinematics of that data sample. Motivated by

the possible anomalies in the top Run I dilepton sample, we devised a search for new physics

based on the comparison of kinematic features of observed events with those expected from

the SM, assuming a 175 GeV/c2 top mass [5]. The search is designed to be sensitive to

any physical process that gives rise to events with specific kinematics different from those

expected from SM top and backgrounds, especially processes that result in kinematics similar

to the aforementioned Run I events. The method seeks to isolate the subset of events in

a data sample with the largest concentration of possible non-SM physics and to assign a

probability that quantifies its departure from the SM.

Reference [4] provides a description of the CDF-II detector, the event selection, and the

data and simulation samples used for this analysis [6]. The basic selection requirements are

(i) two oppositely-charged, well-identified leptons (e or µ) with pT > 20 GeV/c, (ii) at least

two jets with ET > 15 GeV, and (iii) 6ET > 25 GeV. Several other topological requirements

are made to further purify the sample and are detailed in [4]. With this selection, the SM

predicts a yield of 8.2±1.1 tt̄ events (assuming a tt̄ cross section of 6.7 pb [7]), and 2.7±0.7

events from other SM processes (mainly production of dibosons, W + associated jets, and

7



Drell-Yan events) in our sample. Thirteen events are observed.

We consider a minimal set of assumptions about the nature of possible non-SM physics in

order to make an a priori choice of which kinematic quantities to investigate. The Tevatron

provides us with the opportunity to look for phenomena beyond the presently known mass

spectrum. This together with the hints from the Run I data sample leads us to focus our

search on events with large lepton pT and large 6ET resulting from the decay of an unknown

heavy particle. In addition, two-body decays of massive particles (e.g. heavy chargino decay

χ̃± → ℓ±ν̃) tend to result in topologies where the charged lepton and the 6ET direction are

back-to-back, whereas this tends not to be the case for the SM tt̄ dilepton signature. Thus

we expect the following variables to be sensitive to a wide range of new physics: the event’s

6ET , the transverse momentum of the leading (i.e. highest-pT ) lepton pℓ
T , and the angle Φℓm

between the leading lepton and the direction of the 6ET in the plane transverse to the beam.

We define an additional kinematic variable as follows. The initial and intermediate state

particles in the tt̄ decay impose constraints on the final state product properties, m(ℓ1ν1) =

m(ℓ2ν2) = mW and m(ℓ1ν1b1) = m(ℓ2ν2b2) = mt = 175 GeV/c2. These four constraints

leave two of the six unknown neutrino momentum components unspecified when solving

the system of kinematic equations. To fully reconstruct the event, we scan over these two

remaining degrees of freedom and compare the resulting neutrino momentum sum (6 ~ET

pred
)

with the 6 ~ET measured in the event (6 ~ET

obs
) by computing

T ( 6 ~ET

pred
) = exp

{

−
∣

∣

∣

∣

6 ~ET

pred − 6 ~ET

obs
∣

∣

∣

∣

2

/2σ2
6ET

}

(1)

where σ6ET
parameterizes uncertainty on 6ET due to mismeasurement of the underlying

event. When performing the scan we assume detector resolutions to be Gaussian for the

lepton and jet momenta and smear the observed values accordingly; the 6 ~ET

pred
value is

then recomputed according to the smeared jet and lepton energies. We define a variable T

as the square root of the integral of T over the possible values of 6 ~ET

pred
determined from

the scan and summed over a two-fold ambiguity in the lepton-b-jet pairing. This variable T

represents how well an event’s kinematics satisfy the tt̄ dilepton decay hypothesis; a non-tt̄

dilepton event has on average a small value of T compared to tt̄ events.

As mentioned before, we concentrate our search on events with large values of 6ET , pℓ
T ,

and Φℓm and small values of T . We therefore assign the following weight to each event:

W = (w 6ET
· wpℓ

T
· wΦℓm

· wT )1/4 (2)
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where w 6ET
, wpℓ

T
, wΦℓm

, and wT represent probabilities (assuming the SM) for an event to have

a 6ET , pℓ
T , Φℓm larger than that observed and a T smaller than that observed, respectively.

We then construct 13 subsets (“K-subsets”) of the data; the first subset (K = 1) contains

only the event with the lowest weight W , the second subset (K = 2) contains only the two

events with the two lowest weights, and so on.

To quantify the departure of the K-subsets from the SM predictions we do a shape

comparison using the Kolmogorov-Smirnov (KS) statistic [8]. For each of the four variables

i, the KS deviation ∆K,i between the SM cumulative function and the cumulative function

of the K-subset is computed. To assess the probability of this deviation we generate 100,000

pseudoexperiments by randomly drawing events from large Monte Carlo samples of tt̄ and

SM backgrounds. The number of events corresponding to each SM process is sampled

from a Poisson distribution with mean equal to the number of events expected after event

selection. Only pseudoexperiments with a total of 13 events are accepted. Further, in each

pseudoexperiment, K-subsets are formed and the respective ∆K,i for each are calculated.

We thus build probability distribution functions WK,i such that the probability of observing

a ∆K,i greater than or equal to that observed in the data is

pK,i =
∫ ∞

∆obs
K,i

WK,i(∆) d∆ (3)

Next we calculate the geometric mean ΠK of the four pK,i’s for each pseudoexperiment and

form the probability distribution functions MK such that the quantity

PK =
∫

Πobs
K

0

MK(Π) dΠ (4)

determines how well each K-subset agrees with the SM expectation based on the combined

information from the four variables. We define Q as the value of K with the smallest PK .

By isolating this “unlikely” subset Q (where “unlikely” here denotes having large pℓ
T , 6ET ,

Φℓm and/or small T ), we minimize the dilution of a possible signal from the inclusion of SM

events.

We use the quantity P = PQ as the test statistic to quantify the discrepancy of the data

with the SM. Generating another set of 100,000 pseudoexperiments from SM Monte Carlo

and repeating the above procedure, we determine P for each pseudoexperiment and build

the probability distribution function L(P) such that the significance of departure of the

9



Q-subset of events from the SM is

α =
∫ Pdata

0

L(P) dP (5)

α is the p-value of the test, representing the probability to obtain a data sample less con-

sistent with the SM than what is actually observed. Sufficiently low values of α would

indicate the presence of new physics in the data sample, and the Q events would represent

the subsample of the data with the largest concentration of new physics.

In order to evaluate the performance of the method, we simulated a sample of squark

decays using PYTHIA [9] and the SUSY parameters suggested in [3]. As a performance

benchmark, we construct a 50%:50% mixture of the SM and SUSY and ask how often we

would observe a p-value (α) less than 0.3% (the equivalent of a 3σ effect) when 13-event

pseudoexperiments are drawn from this sample. We find that ≈ 50% of these pseudoexper-

iments yield α < 0.3%. Moreover, the concentration of SUSY events in the most unlikely

K-subset found is on average 80%. By contrast, a KS test without using subsamples finds

α < 0.3% only 21% of the time and does not isolate a mostly-SUSY subset.

We test our procedure as well as our ability to correctly simulate our kinematic variables

in a high-statistics control sample of 973 W+ ≥ 3 jets events. We compare these data with a

Monte Carlo simulation of 6ET , pℓ
T and Φℓm using W+ associated jet, QCD, and tt̄ production

processes added in the amounts expected from the SM. We apply a 3-dimensional version of

our technique and observe that the data have a high p-value (α = 35.1%), indicating good

modeling of the data by the simulation.

We test the modeling of T in a control sample of W + 4 jets events, treating the lead-

ing jet as a second lepton and the subleading jet as a second neutrino. We apply this

reconstruction to the data and to an appropriately weighted sample of simulated tt̄ and

ALPGEN+HERWIG W + 4 parton Monte Carlo [10]. We observe a KS probability of

0.97 for the respective T distributions, indicating good agreement between simulation and

the data.

Having established that data are adequately modeled by the simulation, we apply the

outlined technique to the tt̄ dilepton sample. The distributions of the selected variables for

tt̄ dilepton events are presented in Figure 1. We find the most unlikely subset of events to

be the entire data set (i.e. Q = 13), with a p-value = 1.6%. This result is entirely driven by

the excess of leptons at low pT (< 40 GeV/c) seen in Figure 1b; since the method effectively

10
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FIG. 1: 6ET , leading lepton pT , Φℓm, and T distributions for the top dilepton sample. The hatched

regions represent the Poisson uncertainty on the expectation in a given bin.

orders the subsets from high pT to low pT , the p-value decreases as more of the low-pT excess

is included, reaching a minimum when the entire data sample is considered.

A natural question to ask about the low-pT events is whether they can be attributed to

underestimated non-tt̄ SM backgrounds. To address this, we used a displaced secondary

vertex “b-tag” algorithm [11] to look for long-lived b-hadron decays in the events; to first

order, non-tt̄ SM dilepton events do not contain bottom quarks. We present the b-tag

content of the sample as well as the distribution of events in the (pℓ
T , T ) plane in Figure 2.

We note that six of the nine low-pT events contain at least one identified b-jet. We also note

that more than half of the low-pT events are consistent with the tt̄ kinematic hypothesis

with large values of T , as opposed to the small values of T (< 0.05) favored by non-tt̄ SM

backgrounds (see Figure 1d). We thus conclude that the low-pT events are not likely to have

arisen from non-tt̄ SM processes; details of the thirteen events can be found elsewhere [12].

We next evaluate the effect of systematic uncertainties. Uncertainties in the shapes of

kinematic distributions from sources listed in Table I lead to an uncertainty in the probability
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FIG. 2: Top dilepton events in (pℓ
T , T ) plane with b-tagging information.

distribution function L(P), and consequently to an uncertainty in the significance level of our

mesurement. We consider each source of systematic uncertainty and build a new probability

distribution function L′(P). We then determine a new p-value α′ via

α′ =
∫ Pdata

0

L′(P) dP (6)

Table I shows the values of α′ obtained for different sources of uncertainty. Generating

an L′(P) with the inclusion of all systematic effects that give a p-value greater than that

observed in the data (1.6%) results in a maximum p-value of 4.5%; a minimum p-value of

1.0% is obtained when a background estimate 1σ lower than nominal is used. All other

combinations of systematic effects result in p-values lying within this range.

In conclusion, we have assessed the consistency of the tt̄ dilepton sample with the SM in

the four-variable space described and find a p-value of 1.0–4.5%. Our method is designed to

be especially sensitive to data subsets that preferentially populate regions where new high-

pT physics can be expected. No such subset was found in our data. We have noted that the

lepton pT distribution exhibits a mild excess at low pT ; however, it can be concluded that

new physics scenarios invoked to describe the high-pℓ
T /high- 6ET events observed in Run I are

not favored by the current Run II data.
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