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Abstract

Steady-state operation of the advanced tokamak reactor relies on maintaining plasma
stability with respect to the resistive wall mode (RWM). Active magnetic feedback and
plasma rotation are the two methods proposed and demonstrated for this purpose. A
comprehensive modeling effort including both magnetic feedback and plasma rotation is
needed for understanding the physical mechanisms of the stabilization and to project to
future devices. For plasma with low rotation, a complete solution for the feedback issue is
obtained by assuming the plasma obey ideal magnetohydrodynamics (MHDs) and utilizing
a normal mode approach (NMA) [M.S. Chu, et al., Nucl. Fusion 43, 441 (2003)]. It is
found that poloidal sensors are more effective than radial sensors and coils inside of the
vacuum vessel more effective than outside. For plasmas with non-negligible rotation, a
comprehensive linear non-ideal MHD code, the  MARS-F has been found to be suitable.
MARS-F [Y.Q. Liu, et al., Phys. Plasmas 7, 3681  (2000)] has been benchmarked in the
ideal MHD limit against the NMA. Effect of rotation stabilization of the plasma depends on
the plasma dissipation model. Broad qualitative features of the experiment are reproduced.
Rotation reduces the feedback gain required for RWM stabilization. Reduction is
significant when rotation is near the critical rotation speed needed for stabilization.
International Thermonuclear Experimental Reactor (ITER) [R. Aymar, et al., Plasma Phys.
Control. Fusion 44, 519 (2002)] (scenario IV for advanced tokamak operation) may be
feedback stabilized with β above the no wall limit and up to an increment of ~50% towards
the ideal limit. Rotation further improves the stability.





I. INTRODUCTION

The advanced tokamak1,2 provides an attractive reactor design concept which operates

in steady state, at high power density and simultaneously maximizes plasma β, energy

confinement time and the fraction of bootstrap current. The β limit in advanced tokamaks

are invariably set by low toroidal mode number external kink modes which can be stabilized

by placing a perfectly conducting wall suffciently close to the edge of the plasma. However,

the stabilizing external wall possesses a small but finite resistivity. This converts the external

kink mode into a slowly growing magnetohydrodynamic (MHD) mode - the resistive wall

mode (RWM), which can destroy the plasma. It has now been demonstrated that both

rotation and magnetic feedback can stabilize the RWM3–5. A comprehensive stability model

which includes both plasma rotation and magnetic feedback is needed to understand the

results from present day experiments and predict the performance of feedback stabilization

in future devices such as the International Thermonuclear Experimental Reactor (ITER).6

To model the performance of the tokamak under the feedback environment, it is neces-

sary to know the response of the plasma to an arbitrary electromagnetic perturbation in the

wavelength and frequency range of interest. Once this response is known, i.e. the physics

model is identified, the detailed behavior of the system during feedback is in principle com-

pletely determined. Up to now, various efforts have been expended towards the construction

of comprehensive tools for studying the feedback stabilization of the RWM. This paper pro-

vides an account and comparison of two of these efforts and assess their status of validity

and reality.

In the limit when the non-ideal effects such as plasma dissipation and rotation are neg-

ligible, the plasma response to external electromagnetic perturbationis is completely deter-

mined by the usual ideal MHD equations and is well known. Thus for an ideal MHD plasma,

we can have a complete and detailed model for feedback. This feedback model has been

formulated.7 For tokamak geometry, it is implemented by coupling the DCON8 code, the

generalization of the VACUUM9 code and a feedback code. This code package, the NMA,7

uses the normal mode approach and utilizes the orthonormal eigenfunctions of the open

loop system as part of the dynamical feedback phase space. Since the plasma dynamics in

the open loop operation is first obtained completely, the details of the feedback, such as the

transfer functions, can in principle be obtained completely. There is no conceptual problem

in a complete simulation of the feedback process, including the multiple input, multiple

output operations. The NMA package has been utilized to study the stability of a generic

set of equilibria in the feedback geometry implemented in DIII-D.10 It has been found that

poloidal sensors are superior to radial sensors and placing the feedback coils inside is more

effective than outside of the vacuum vessel. The description of the normal mode approach

towards the feedback of an ideal plasma is given in section II.

Present day tokamaks are uaually heated by neutral beams and are rotating at frequencies

that are found to have a substantial effect on the stability of the plasma to the RWM. The

effect of feedback on such plasmas cannot be studied by using the normal mode approach.
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A more general method is needed. The rotational stabilization of the plasma comes from

the effect of dissipation coupled with the plasma rotation that give rise a phase shift to the

mode. This effect was first pointed out by Bondeson and Ward11 and has been subsequently

demonstrated conclusively in DIII-D experiments.4 Physically, this stabilization implies that

in a rotating plasma, the dispersion relation of RWM specifies both the growth rate and the

freqeuncy at which the energy and momentuem exchanged between the plasma and the

resistive wall can be conserved. With no plasma rotation, and a stationary wall, the RWM

is not expected to transmit angular momentum between the plasma and the wall — the

conservation of angular momentum is guaranteed, only the energy exchange between the

plasma and the resistive wall need to be considered. This can always proceed at a particular

(growth) rate. However, at large plasma rotations, both the energy and angular momentum

exchanges have to be dealt with. Stabilization results from the conservation of both the

energy and angular momentum can not be arranged at any complex frequency. This process

cannot be described by the usual ideal MHD for a static plasma and is outside of the scope of

the NMA. The linear non-ideal MHD stability code MARS,12 which solves for the eigenvalue

of the complex frequency in a rotating plasma can be utiltized to study the stability of

plasma with rotation. However, the complete modeling of this process requires the detailed

knowledge of the angular momentum exchange between the plasma and the resistive wall.

This depends not only on the resistivity of the resisitve wall, which is known, but also the

the dissipation process in the plasma, which is yet unknown. In this work, two dissipation

models are employed: the ion sound wave damping model and the kinetic damping model.

The predicted topology of the stability phase space has been computed for the set of generic

equilbiria and compared with the experiment. Broad agreements have been found for this

topology using either damping models, with a slight preference towards the ion sound wave

damping. However, due to the difference in the equilbria employed, it is not yet possible to

differentiate between the different models. Nevertheless, this comparison gives us a measure

of validity of the models. As far as feedback is concerned, it is important to note that the

open loop stability does not possess a complete spectrum of eigenvalues with orthonormal

eigenfunctions. Only the least stable eigenvalue with its eigenmode structure is known. The

rotation stabilization of the plasma is discussed in section III.

The effect of feedback on the stabilization of the RWM involves the use of sensors and

feedback coils to modify the stability of the plasma. The open loop stability problem studied

by MARS needed to be modified to include these sensors and feedback coils - closing the loop

on the plasma feedback process - to the (new) closed loop stability problem. This important

step has been accomplished in MARS by implementing the external coil as sources and the

placement of sensor coils into the system - the MARS-F code.13 Therefore MARS-F solves

for the closed loop stability of the plasma together with its feedback configuration. For

this, the information about the sensor loops, the feedback coils, and the gain values, all

have to be given first. The complete stability of the open loop plasma response is inferred

from a (dense) set of closed loop stability results with different feedback gains and the Pade

approximation.14 To compare the validity of these two different approaches of MARS-F and
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NMA, MARS-F was used to study the feedback stability of the reference set of equilibria,

neglecting the non-ideal effects. It is found that MARS-F gives similar feedback predictions

for the reference set of equilibria as NMA. MARS-F is then utilized to study the stabilization

of a rotating plamsa. It is found that plasma rotation reduces the growth rate of RWM.

The effect of rotation induced feedback stabilization is most significant when the flow has

reduced the growth rate substantially before the feedback gain has reached the value of 1

or 2. (In here the feedback gain is defined as the ratio of the perturbation field detected at

the sensor due to the feedback coil vs. the total field detected at the sensor.) Then feedback

can successfully stabilize the mode. Feedback stabilization of a rotating plasma is discussed

in section IV.

Lastly, the MARS-F code is applied15 to the ITER design. It is shown that the present

design can stabilize the resistive wall mode with β value above the design value. The effect

of flow can provide even more stability margin to the design. The feedback stabilization of

ITER is discussed in section V.

A brief discussion and summary is given in section VI.
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II. NORMAL MODE APPROACH TO FEEDBACK STABILIZATION OF AN

IDEAL PLASMA

Plasmas in future reactors are expected to rotate with negligible rotation speed. Feedback

stabilization of plasmas with no or negligible rotation is therefore of particular interest.

In this case, the plasma obeys ideal MHD equations. Without feedback, the dynamics

is completely determined by a set of normal modes. The behavior of feedback can be

completely described in terms of the interaction between the feedback coils with this set of

normal modes.

Central to this approach is the consideration of the energy conservation relation between

the various components of the system. This is a functional quadratic in the perturbed

plasma displacement ξ in the plasma and the perturbed magnetic fields δB in the outside

’vacuum’ region.

δWp + δK + δWv + Dw + δEc = 0 (1)

In Eq. (1), δWp is the perturbed plasma potential energy, δK is the kinetic energy,

δWv the perturbed vacuum energy, Dw, the dissipation energy in the resistive wall and δEc

the energy exchange between the feedback coil and the plasma resistive wall system. A

schematic of this geometry which is appropriate for the DIII-D feedback configuration is

shown in Fig. 1. For resistive wall mode, the frequency is very low, the kinetic energy term

is negligible. During the open loop operation δEc = 0, Eq. (1) is self-ajoint and determines

a set of normal modes, {ξi, δBi}, with growth rates {γi} and with Dw being the norm. This

is an energy principle extended from that of the usual ideal MHD energy principle with Dw

replacing the plasma kinetic energy. Only one of these normal modes(the RWM), can be

unstable. Shown in Fig. 2 is the distribution of the eddy current of the unstable RWM on

the surface of the resistive wall unfolded into the toroidal-poloidal plane. It is seen that the

perturbed current is concentrated near the poloidal angle π, i.e. the outboard midplane.

The rest of the open loop eigenfunctions are stable (damped) modes in which the resistive

wall provides the dissipation. During the closed loop operation, the feedback currents and

δEc are non zero, the requirement of Eq. (1) then demands that the amplitude of the normal

modes {αi} are determined by

∂αi

∂t
− γiαi = Ec

i Ic (2)

In Eq. (2), {Ec
i } is the excitation matrix which describes the excitation of the eigenmode

(ξi, δBi) by the feedback current Ic. The circuit equations for the currents Ic incorporates

the feedback logic

∂Ic

∂t
+

1

τcc′
Ic′ = GclFli(αi) (3)
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Fig. 1. Schematic of the feedback geometry in DIII-D. The plasma, which contributes to
the potential energy δWp and δK, is surrounded by a vacuum region which contributes to
the vaccum energy δWv. The resistive wall (vacuum vessel) contributes to Dw. The
feedback coils that contribute to the coil excitation energy δEc are located both inside (the
I-coils) and outside (the C-Coils) of the vacuum vessel.
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Fig. 2. Distribution of the eddy current of the unstable RWM on the surface of the
resistive wall unfolded into the toroidal-poloidal plane. It is seen that the perturbed current
is concentrated near the poloidal angle π, i.e. the outboard midplane.



In Eq. (3), τcc′ is determined by the self and mutual inductances of the coils, Fli is the

sensor matrix which measures the magnetic fluxes induced by the eigenmodes in the sensor

loop l, and Gcl is the gain matrix. The stability of the feedback is completely described by

Eqs. (2) and (3) above and the closed loop feedback problem is reduced to a small set of

coupled lumped circuit equations. This set of equations is, in general, non-self-adjoint. For

feedback with a single array of sensors and a single array of feedback coils, the stability may

be studied by using the method of Nyquist diagram13 and for multiple sensor arrays and

multiple feedback coils, the characterisitc of Eqs. (2) and (3) have to be solved.

Shown in Fig. 3 is the Nyquist diagrams of transfer functions P (s) for equilibria with

different Cβ’s. Here s is the varialbe for Laplace transform, and P (s) is given by

P (s) =
∑

i

FiEi

s− γi

(4)

and Cβ is defined by

Cβ =
βN − βNW

N

βIW
N − βNW

N

(5)

Cβ is a measure of the extent to which the β value is above the no wall limit. Cβ = 0 for

plasma at the no wall β limit and Cβ = 1 for plasma at the ideal wall β limit. The curves

are symmetric to the horizontal axis. Only the upper half of the curves are shown. Stable

equilibria have their curves encircle (-1.,0.). On the left is for feedback with radial field

sensors and on the right is for feedback with poloidal field sensors. It is seen that feedback

with poloidal field sensors is much more effective than with radial field sensors. One of the

advantages of using the normal mode approach is that the set of open loop eigenfunctions

are independent of the feedback configuration. We may easily rearrange the sensor locations,

the feedback scheme or the feedback coil arrangements without having to revisit the open

loop stability problem. For instance, the internal feedback coils have recently been installed

on DIII-D.16 The difference in performance of the internal I-Coils versus the external C-Coils

can be evaluated for the same set of reference equilibria. Shown in Fig. 4 is the ratio of the

excitation matrix elements from the RWM for this set of equilibria due to the I-coils and

C-coils as a function of Cβ. This represents the ratio of the effectiveness to input or extract

energy from the I- versus C-coils from the unstable RWM. We see that on the average the

I-Coils are a factor of 4 to 5 times more effective than the C-Coils.
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Fig. 3. Nyquist diagrams of transfer functions for equilibria with different Cβ. The curves are symmetric to
the horizontal axis. Only the upper half of the curves are shown. Stable equilibria have their curves encircle
(-1.,0.). On the left is for feedback with radial field sensors and on the right is for feedback with poloidal
field sensors. It is seen that feedback with poloidal field sensors is much more effective than with radial field
sensors.

Ratio of I-Coil
Effectiveness Over C-Coil

Cβ

0.0 1.00.5

EI / E C

5.0

0.0

2.5

Fig. 4. The ratio of the excitation matrix elements from the RWM for the reference set of
equilibria due to the I-coils and C-coils as a function of Cβ. This represents the ratio of
the effectiveness to input or extract energy from the I- versus C-coils from the unstable
RWM.



III. STABILIZATION OF THE RWM BY PLASMA ROTATION AND

DISSIPATION

It was first predicted by Bondeson and Ward11 that plasma rotation, coupled with the

inherent dissipation within the plasma, can provide stabilization to the RWM with a plasma

rotation at a few percent of the Alfven frequency. This has been observed and provided a

stable operation path to reach the ideal wall β limit for DIII-D.4 This stabilization process

can be modeled by using MARS, a linear non-ideal MHD code which includes a non-uniform

plasma rotation Ω.

MARS solves the following set of equations

ρ(γ + inΩ)�v1 = −�∇p1 +�j1 × �B0 +�j0 ×�b1 − �∇ · �Π1 − ρ�U(�v1) (6)

(γ + inΩ)�b1 = �∇× (�v1 × �B0 − η�j1) + (�b1 · �∇Ω)R2�∇φ (7)

�j1 = �∇×�b1 (8)

(γ + inΩ)p1 = −(�v1 · �∇)p0 − Γp0
�∇ · �v1 (9)

(γ + inΩ)ρ1 = −(�v1 · �∇)ρ0 − ρ0
�∇ · �v1 (10)

In the above set of equations, ∂
∂t

= γ is the complex growth rate, and the toroidal

variation of the perturbed quantities is related by ∂
∂φ

= in to the toroidal mode number n.

The density equation Eq. (10) is decoupled from the rest. Therefore can be solved separately.

The viscous stress tensor �Π1 results from fluid approximations to the ion Landau damping.

A general model dispersion relation may be derived17 for the above set of equations,

(γ + inΩ)2K + (γ + inΩ)D + δWp +
δW b

vγτw + δW∞
v

γτw + 1
= 0 (11)

This equation is cubic in the growth rate γ and in general possesses three solution. The

first one of these has its origin coming from the unstable MHD mode, the external kink; the

second one has its origin from the flux diffusion through the resistive wall - it is a stable

mode in the absence of plasma or the external coils; the third one is the stable companion to

the first mode. In the limit of an ideally conducting external wall, the first mode is stabilzed

by the external wall. There is no instability. The second mode has its damping rate reduced

to zero. When the resisitivity of the conducting wall is taken into account, the unstable

kink couples with the flux diffusion to change the character of the external kink and the

flux diffusion to the unstable RWM and a different stable flux diffusion mode. With the

inclusion of plamsa dissiptaion D and the plasma rotation the coupling of these two modes

are modified again by the second term. This coupling leads to the stabilization of the RWM.

9



Throughout this process, the third mode is never quite heavily involved. The third mode is

eliminated by neglecting the kinetic energy term to obtain the following dispersion relation.

(γ + inΩ)D̃ + δWp +
δW b

vγτw + δW∞
v

γτw + 1
= 0 (12)

Topology of the stability phase space in the Ω−Cβ plane of the model dispersion relation

Eq. (11) is shown in Fig. 5. The weak dissipation limit, i.e., when D is small is shown on

the left. It is characterized by the negative slope of the stability boundary, i.e., plasma

with the smallest Cβ requires the largest rotation velocity for its stabilization. The strong

dissipation limit is shown in the center. It is characterized by that the maximum value

of Ω for stabilization occurs at a mid-range of Cβ value. The diagram is very similar to

that on the right, in this case the second order dispersion relation Eq. (12), i.e. neglecting

the kinetic energy, is solved. We observe that the strong dissipation limit is very similar

to neglecting the kinetic energy term. The structure of these topological shapes are also

obtained independently by Fitzpatrick.18

A. Damping Models for RMW

To complete the prescription of model for the MARS code, an explicit description for the

viscosity tensor needs to be specified. In the following, two distinct models are described.

The first one is the ion sound wave damping model first developed by Hammet and Perkins.19

�∇ · �Π = κ||
√
π|k||vthi

|ρ�v1 · b̂b̂ (13)

κ|| = 0.5 (14)

The second one is the kinetic damping model. This model was used before to study the

damping of the TAE modes by Bondeson and Chu.20 The kinetic damping model utilizes

the kinetic energy principle with ω∗ = 0, ωD = 0

∆WMHD = ∆Wp(�ξ,Γ = 0) + ∆Wk(�ξ) (15)

∆Wk =
∑
j

(∆WTj
+ ∆Wcj

) (16)

∆Wc =
∫

circ.
d�xd�v(− ∂f

∂E
)

ω

ω − (nq −m′)ωt

| < exp(iχ′
m)H > |2 (17)

∆Wt =
∫

trapped
d�xd�v(− ∂f

∂E
)

ω

ω + m′ωb

| < exp(iχ′
m)H > |2 (18)
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Fig. 5. Topology of the unstable phase space in the Ω-Cβ plane of the model dispersion relation. The weak
dissipation limit is shown on the left. It is characterized by the negative slope of the stability boundary,
i.e., plasma with the smallest Cβ requires the largest rotation velocity for stabilization. The strong
dissipation limit is shown in the center. It is characterized by the maximum value of Ω  for stabilization
occurs at the mid-range of Cβ value. The center diagram is very similar to that on the right, in which the
kinetic energy term is neglected.

H Q mL= + ⋅µ κv||
2
r
ξ    . (20)

In Eq. (15) (∆WMHD, ∆Wp, ∆Wk) is the (total, fluid contribution to, kinetic contribution
to) perturbed potential energy, Γ is the adiabatic index of the plasma. In Eq. (16), the kinetic
contribution to the potential energy ∆Wk is further decomposed into the contributions from
each species j due to the trapped particle ∆WTj

; and the circulating particles ∆Wc j
. Landau

damping results from the resonant denominators in Eqs. (17) and (18). H is the perturbed
energy of the particle, µ in its magnetic moment, QL is the perturbed magnetic field in the
Lagragian frame moving with the perturbed magnetic field line,   

rκ  is the field line curvature,
(ωb, ωt) are the (trapped particle bounce frequency, circulating particle transit frequency).
Note that although Eq. (15) is written in terms of the perturbed potential energy of the
plasma, it gives an equivalent radial force with the imaginary part giving rise to the damping
of the RWM. The more exact detailed explanation of this equivalent relationship between
the potential energy description and the fluid description is given in Eqs. (10-14) of Ref. 20.
The kinetic damping model was first used in the work of Ref. 21.

The MARS code has been used to study the effect of plasma rotation on the stability of
the RWM for the reference set of equilibria. Results utilizing either the kinetic damping
model and the ion sound wave damping model has been obtained. For simplicity, a uniform



plasma rotation profile is employed. The results are compared with the experimental

results22 from DIII-D. Shown in Fig. 6 is the comaparison of the stability boundary com-

puted using MARS with two different plasma dissipation models with the critical rotational

speed from the DIII−D RWM experiments. It is seen that the MARS curves from both

damping models show the characteristics of strong damping limit. This is more obvious for

the ion sound wave damping model. But we note that the kinetic damping model gives even

stronger damping. It is also observed that the results from MARS with the ion sound wave

damping model agrees with the experimental results qualitatively; whereas the computed

required rotation from the kinetic damping model is too low. However, we deem the present

comparison not conclusive in determining the proper damping model appropriate for the ex-

periment. More careful analysis is required. Several of the obvious sources of discrepancies

are: the deviation of the equilibria in the experiment from the reference set is non-negligible;

the rotation profiles are quite different; or the appropriate damping model is not used. In

the present attempt to compare the stability diagrams inferred from both the experimental

data and that from the modeling, due to the large range of discharge conditions involved,

only the most prominent dependencies on the stability diagrams have been taken into ac-

count.The Cβ values of experimental data are inferred from their equilibrium values of β

and self-inductances 3i, and not from the more tedious computation of ideal stability in-

ferred from individual reconstructed equilibria. While it is expected that this will invariably

introduce extra scatter into the stability diagram, even to cause plasma equilibria to range

above the ideal wall β limit, or require the plasma to possess a finite rotation below the no

wall β limit for RWM stabilization, we still deem this comparison the first necessary step

in understanding the landscape of the rotational stabilization of the RWM. The approach

is complementary to that of focussing attention on only a few shots with a detailed com-

parison. This is due to the inherent uncertainties in the experimental measurements and

equilibrium reconstruction. Results from present comparison are therefore not conclusive.

We note that it is possible that the detected RWM is in a nonlinear state in which the flux

surface deformation could be non-negligible. Then a large additional damping of the plasma

angular momentum could be described by the work of Shaing.23

The behavior of the normalized growth rate as a function of Cβ with different plasma

rotation, for different wall locations is shown in Fig. 7. Ion sound wave damping model and

uniform plasma rotation is utilized. Shown in the center are results computed using the

DIII-D vacuum vessel. It is seen that increasing plasma rotation, the RWM is gradually

stabilized. The stabilization occurs first at the lowest and highest range of Cβ values. When

Ω/ωA ≥ 2%, the RWM is stabilized over the whole range of Cβ. Results for vacuum vessel

one third farther away is shown on the right. It is seen that with the wall farther away, the

growth rates of RWM become larger with no plasma rotation, but require the least amount

of rotation to stabilize. Results with the wall one third closer is shown on the left. With

a closer wall, the value of γτw becomes smaller, yet the higher range of Cβ values becomes

more difficult to stabilize.
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Fig. 6. A broad ranged comparison of the stability boundary computed for a model set of
equilibria using MARS with two different plasma dissipation models with the
experimental results from DIII-D. The stability properties of the experimental equilibria
are inferred from their equilibrium properties rather than from detailed stability
calculation. This is expected to introduce scatter in the comparison. It is seen that the
results from MARS with the ion sound wave damping model agrees with the
experimental results qualitatively; whereas the requirement given by the kinetic damping
model is too low.
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Fig. 7. Shown in the center is the normalized growth rate as a function of Cβ for different plasma rotation.
It is seen that increasing plasma rotation gradually stabilizes the RWM. It is interesting to note that the
stabilization occurs first at the lowest and highest range of Cβ values. When Ω /ωA ≥ 2%, the RWM is
stabilized over the whole range of Cβ. With the wall farther away (the right panel), the growth rate of RWM
becomes larger with no flow, but requires less rotation to stabilize. However, with a closer wall (the left
panel), the value of γ τw  becomes smaller, yet the higher range of Cβ values becomes more difficult to
stabilize.
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IV. FEEDBACK STABILIZATION OF THE RWM IN A ROTATING PLASMA

To compare the MARS-F code and the NMA code in their ability to treat feedback, the

MARS-F code was first employed to study the feedback stabilization of the reference set of

equilbria in the limit of ideal plasma with no rotation.

Shown in Fig. 8 on the left is the Nyquist diagram for the poloidal and radial sensors

for the equilibrium with Cβ = 58% and its comparsion with the NMA code. It is seen that

using poloidal sensors stabilizes the RWM whereas using radial sensors does not. We notice

that the two approaches do not give exactly the same transfer functions. This could result

from the use of different approaches or the details of the implementation of the sensor and

feedback geometry. Shown on the right is the variation of γτw as a function of feedback gain

for equilibria with different Cβ values and using poloidal sensors. It is seen that the RWM

is stabilized over the whole range of Cβ values, in agreement with the results from the NMA

code. We note that in a separate work,24 it has also been verified that MARS observes the

same ideal stability boundary as DCON and the VACUUM code.

In summary, MARS-F and NMA agree on values of βNW
N and βIW

N . The two methods

agree on the effect of feedback over the range 0. ≤ Cβ ≤ 92% .

A natural consequence of the presence of the dissipation effect on the plasma with ro-

tation under the feedback action is its effect on the response of the plasma to an external

perturbation.25,26 The response to a static perturbation and the response to a dynamic

perturbation are related.27 These considerations predicted the existence of very low fre-

quency plasma resonances and are observed in the plasma very low frequency experiments

of Reimerdes et al.28

Next the effect of flow on feedback for this set of equilibria is analyzed. The results are

shown in the following two figures. In Fig. 9, we see that the normalized growth rates are

reduced by the synergistic effect of plasma rotation and feedback. Shown on the left is the

growth rate as a function of the feedback gain G for the equilibrium with Cβ = 38% using

different values of Ω/ωA. Shown on the right is the variation of γτw with respect to the

feedback gain using radial sensors. It is seen that increasing gain is the most effective below

G = 1 to 2, above which it becomes less effective. (Here feedback gain G is defined as the

ratio of the perturbation field detected at the sensor due to the feedback coil vs. the total

field detected at the sensor.)

Results in Fig. 10 show plasma rotation reduces the values of feedback gain required

for the stabilization of the RWM. The feedback gain is plotted as a function of Ω/ωA for

different Cβ values. It is seen that for both poloidal and radial sensors, the reduction in gain

is monotonic with the rotation speed. For radial sensors, feedback stabilization becomes

effective only after rotation has reduced the growth rate sufficiently.
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Cβ  = 58% and the comparison with the NMA code. It is seen that using poloidal sensors stabilizes the
RWM whereas using radial sensors does not. Shown on the right is the variation of γ τw  as a function of
feedback gain for equilibria with different Cβ values and using poloidal sensors. It is seen that the RWM is
stabilized over the whole range of Cβ values, in agreement with the results from the NMA code.

Feedback Gain Feedback Gain  

0.0 0.01.5 2.50.5 1.0 1.50.5

5

0

1.0 2.0

Poloidal Sensor Radial Sensor

3

γτw γτw

=0 =0
0.25%

0.75%

0.5%

1%

Increasing 
Rotation

Increasing 
Rotation

Sound Wave Damping

C-Coils

5

0

3
Ω/ωA Ω/ωA

Cβ = 38%

0.25%
0.75%

0.5%

1%

Cβ = 38%

Fig. 9. The normalized growth rates are reduced by the synergistic effect of plasma rotation and feedback.
Shown on the left is the growth rate as a function of the feedback gain for the equilibrium with Cβ = 38%
using different values of Ω /ωA. Shown on the right is the variation of γ τw  with respect to the feedback
gain using radial sensors. It is seen that increasing gain is the most effective below G = 1 to 2, above
which it becomes less effective.



17

0

Poloidal Sensor Radial Sensor

1

2 2

1

0

Fe
ed

ba
ck

 G
ai

n

Fe
ed

ba
ck

 G
ai

n80%

58%

58%

80%

92%

92%

38%

38%

23%

23%

8% 8%

Sound Wave Damping

C-Coils

Cβ

Cβ
 =

 =

0.0 1.0%0.5%
Ω/ωA Ω/ωA

0.0 1.0%0.5%

Fig. 10. Diagram showing plasma rotation reduces the values of feedback gain required for the stabilization
of the RWM. The feedback gain is plotted as a function of Ω/ωA for different Cβ  values. It is seen that for
both poloidal and radial sensors, the reduction in gain is monotonic with the rotation speed. For radial
sensors, feedback stabilization becomes effective only after rotation has reduced the growth rate sufficiently.



18



V. FEEDBACK AND ROTATION STABILIZATION OF THE RWM IN

ITER-SCENARIO IV

The ITER scenario IV is an advanced tokamak with the following basic design param-

eters: Ip = 9MA, R = 6.35m, a = 1.85m, κsep = 1.97, δsep = 0.58, βNdesign
= 2.57,

βNW
N = 2.45, and βIW

N = 3.65. In this scenario, without feedback or plasma rotation, the

resistive wall mode is unstable.

The feedback geometry is shown in Fig. 11 in which the designed plasma surface and

the designed non-uniform double wall, as well as the positions of the active and sensor coils

are shown. Dashed line indicates the plasma facing component (the blanket), modeled as a

complete thin wall. These are all included in the study.15

The effect of feedback on the stabilization of the RWM is shown in Fig. 12. Plotted

are the Nyquist diagrams of the transfer function for different plasma Cβ values. Poloidal

sensors are used. It is seen that a Cβ value up to 50% can be stabilized. More detailed study

indicates that even higher Cβ values may be stabilized by the judicious design of an optimal

controller. Shown in Fig. 13 is the Nyquist plot of the transfer function for three different

rotation speeds, with uniform rotation profile and the ion sound wave damping model units

κ‖ = 0.5. It is seen that plasma rotation further stabilizes the RWM.
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Fig. 11. The configuration used for the feedback study of the RWM in ITER. Shown are
the plasma surface, the designed non-uniform double wall, as well as the positions of the
active and sensor coils. Dashed line indicates the plasma facing component (the blanket),
modeled as a complete thin wall.

Cβ = 35%

47% 60%

73% –1 0
Re[P (jω)]

0.0

Im
[P

(jω
)]

x

0.6

–0.6

Fig. 12. Nyquist diagrams of the transfer function for different plasma pressure. Poloidal
sensors are used.

–1

0 ◊

Ω/ωA = 1.2% 0.8% 0.4%

Re[ P(jω)]

Cβ = 47% 

Im
[P

(jω
)]

–3

3 Sound
Wave Damping

0

Fig. 13. Nyquist plot of the transfer function for three different rotation speeds, with
uniform rotation profile and the ion sound wave damping model.



VI. CONCLUSION

RWM is expected to be present in future reactor designs based on the advanced tokamak

concept. At the present moment, both rotation and feedback stabilization have been demon-

strated to be effective in stabilizing the resistive wall mode. Although future reactors are

not expected to be rotating at a high rotation frequency, to properly evaluate the effect of

electromagnetic feedback and the effect of rotation on the future reactors, a comprehensive

model which encompasses both feedback and rotation is needed. The complete response of

an ideal plasma has been utilized to study the feedback stabilization of RWM in general

geometry. Poloidal sensors have been found to be superior than radial sensor and provides

stabilization of plasma up to 90% of the ideal wall β limit. This provides a pessimistic limit

to plasma with flow. Rotation, together with dissipation, has been predicted to be effective

in stabilizing the resistive wall mode. The effect of rotational stabilization of the plasma de-

pends on the dissipation model assumed. Broad qualitative features of the experiment have

been reproduced. Detailed quantitative tests of the validity of the damping models remain.

The stability phase space has been found to be in qualitative agreement with the marginial

stability value measured in the experiment. The MARS-F code has been ultilized to study

the effect of feedback with a rotating plasma. First, the MARS-F code has been bench-

marked in the ideal response limit without rotation against the ideal NMA code. MARS-F

is then utilized to study the requirement of feedback in a rotating plasma with dissipation.

Rotation reduces the feedback gain required for stabilization. The reduction is significant

when the plasma rotation appraoch the critical rotation speed. Finally, the proposed design

in ITER can be feedback stabilized up to Cβ = 50% above the no wall β limit.
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