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1. Introduction

The National Spherical Torus Experiment (NSTX) is a proof-of-principle experiment
designed to study the physics of the spherical torus (ST), i.e. low aspect-ratio toroidal,
plasmas. NSTX has produced plasmas with R/a ~ 0.85m/0.68m, A ~ 1.25, 1, < 1.4 MA, B,
=0.3-0.6T,k<2.7,0=<0.8, and with auxiliary heating of up to 6 MW of High Harmonic
Fast Waves, and 7 MW of 100 keV D° Neutral Beam Injection (NBI). The energy
confinement time in plasmas heated by NBI has exceeded 100 ms and a toroidal beta, 3 =
2u,<p>/By,’, where By, is the central vacuum toroidal magnetic field, up to 40% has been
achieved. The ability to control the plasma position and shape has been an integral part of
the success of NSTX. The rtEFIT - isoflux algorithm for real-time plasma control’,
originally developed at General Atomics for use on DIII-D, has been modified for control
of the plasma equilibrium in NSTX. This control algorithm provides a valuable tool to
control a variety of plasma shapes in NSTX. The rtEFIT code provides the shape of the
plasma boundary that is used as input to an isoflux control algorithm that generates voltage
requests to the power supplies. The plasma boundaries reconstructed in real-time compare
well to those reconstructed using the between-shots equilibrium reconstruction from
NSTX EFIT.> Examples of the utility of the rtEFIT - isoflux algorithm include: providing
plasmas with a well-controlled plasma to antenna separation for HHFW experiments, and
experiments with a double null plasma shape wherein a shot-to-shot scan of the separation
between the two separatrix flux surfaces at the outboard midplane (drsep) was
accomplished in several shots in a well-controlled manner. Recent efforts have reduced the
latency in the real-time data flow from the sensors to the power supplies from ~ 4 ms to
less than 1 ms and added a pair of voltage loops for use in the vertical control. Together,
these improved vertical position control and allowed control of plasmas nearer stability
boundaries.

2. Control System

The control system on NSTX is based on a Skybolt II 6U VME Multiprocessor system with
eight-333 Mhz G4 processors. The system acquires 11 measured coil currents, 65 magnetics
signals and 9 loop voltages (for estimating vessel eddy currents) at a 5 kHz rate. The data
provides the input to the control algorithms, including coil current feedback, plasma current
feedback, simple gap control, vertical position control and rtEFIT - isoflux. The plasma
control system (PCS)’ determines which of these algorithms is being and this allows
different categories, for example: toroidal field current, plasma current (I,)/ohmic



transformer current (I,,), and plasma shape. Different phases can be used for each
category, for example in the plasma shape category, the algorithm used to control the
poloidal field coil curents (Ipz) can be switched from a simple one using feedback on I at
start-up, to one using feedback on a simple gap and I,/ Ip4 for shaping, to one using rtEFIT -
isoflux control. The output of the algorithm in each phase is a new voltage request for each
coil. The system uses a lookup table to generate the firing angles that are transmitted to the
rectifiers via a digital link. Latency in the control system (the time from receiving a change
in an input signal to when the system makes a response) should be less than the time
response of the powers supplies in order to minimize the impact of the computer latency on
the overall control loops. Recent improvements in the software and hardware have reduced
the time from a change in input signals until the rectifiers receive a new command from
about 4 ms to about 0.75 ms. This compares favourably to the time for the 12 phase rectifiers
to respond to the commands and has allowed routine operation at higher elongation than was
possible before this improvement.

3. rtEFIT calculation

Use of real time equilibrium reconstruction (rtEFIT) in tokamak discharge control, a
technique first accomplished on the DIII-D tokamak, is
described in Ref. 1. rtEFIT is an approximate solution
to the Grad-Shafranov equilibrium relation that fits the
diagnostic measurements and provides the spatial
distribution of toroidal current and poloidal flux in a
time that is sufficient for discharge control. The
implementation of this technique on NSTX was
facilitated by the experience gained on DIII-D. The
fundamental approach is the same. On NSTX, the
vacuum vessel is modelled as 30 separate segments in
rfEFIT. Nine measured loop voltage signals are used to
estimate the currents in 10 of the vacuum vessel
segments’, which along with the 11 poloidal field coil
currents, are treated as known values rather than values
to be fit in the calculation. Figure 1 shows the poloidal
flux plots from EFIT and from rtEFIT using the same
diagnostic set during the flattop of an NSTX discharge.
This example is typical of the agreement between the

two calculations during the current flattop. The
positions of the X-points agree to a few mm in radius
and .01 m in height. EFIT finds the outer flux
boundary to be slightly larger than does rtEFIT, the
difference is approximately 0.01 m at the outer
midplane. The difference is due to the dissimilarity

Figure 1. Flux plots from EFIT
(gray) and rtEFIT(black)

analysis for the same time
during a discharge. between the computation grid size in rtEFIT (33 by 33)

and in EFIT (65 by 65) and the use of a different



current profile parameterization. When rtEFIT and EFIT are run with exactly the same data,
options and computation grid size they produce the same results. These small, but consistent,
differences using the smaller grid size in rtEFIT are acceptable for plasma control.

4. Control algorithms

During an NSTX discharge, plasma shape is controlled by the poloidal field coil currents in
phases that proceed from feedback on coil currents at the start of the shot, to feedback on a
simple gap, vertical position feedback and I/ I, to feedback on the flux boundary (rtEFIT -
isoflux control). Use of the first two phases is described in more detail in reference 4. For
rtEFIT - isoflux control, a target boundary shape such as one shown in Fig. 1 from an
equilibrium reconstruction of an NSTX plasma is used. The use of an existing discharge
shape as a target shape to which changes can be made helps to ensure that the desired shape

is achievable. In order
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accomplished consider
the location of the last
closed flux surface at
the outer midplane.
The control point for
this location is the
intersection of the

. o - 1 plasma boundary

B E— s SR e l+ig—  shape and the line
Figure 2. x versus |, for NSTX discharges, data is taken from segment number 1 at
the current flattop of the discharge. the outer midplane in

Fig. 1. The coil
current in PF5 is adjusted to make the flux at the control point equal to the flux at the
reference control point with a PID controller. PF3U (PF3L) is used to control the flux at the
intersection of the reference boundary and segment 3 (10). PF2U (PF2L) is used to control
the height of the upper (lower) X-point that is specified by the operator. The effect of
PF1AU and PF1AL on the nearby plasma boundary and on the location of the X-point is
dependent upon the plasma height and upon the plasma inductance in a manner that does not
lead to a simple control scheme and learning the best way to implement control of these coils
is in progress. The PF4 coils have not been used. PF1B has been useful for producing
lower single null plasmas and has yet to be used with rtEFIT - isoflux control. In order to
accomplish vertical control near the stability limit, it is important to have a signal that is fast
and has a derivative term that is less than the noise in the system. We found that the
difference in the voltage loop signals between the upper and lower passive plates provided a
better signal to noise ratio than either the derivative of the flux error in segments 3 and 10
from rt-EFIT or the derivative of the associated integrated flux loop signals and permitted
operation closer to the stability limit. The increased operating space is illustrated in Fig. 3,
which shows the limit in plasma elongation (x) vs 1. The increase in k is about half due to



the reduced latency mentioned earlier and half to the use of the loop voltage difference
signal.

5. Results

Control of the gap between the plasma and the RF antennas is important in order to maintain
adequate coupling between the antennas and the plasma. Figure 3 shows the gap at the outer
midplane during the flattop of a series of discharges during an RF heating experiment. The
gap was controlled to about 0.01 m despite large transients and changes in RF power. Each
shot shows a transient from 0.06 m to 0.03 m due to a mismatch in the outer gap request at
the beginning of rt-EFIT - isoflux control, which in turn was due to a mismatch between the

requested gap in the two phases.
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Figure 3. The top shows the outer gap at the midplane
concatenated from the current flattops (0.2 - 0.45 s) of
a series of RF heated discharges. The large variations

separatrix flux surfaces (the
factor 4 is to accommodate flux
expansion off the midplane)

in RF power from shot-to-shot are overlaid in the

lower plot while controlling the X-point

heights to remain the same.
Summary

The implementation of the rtEFIT - isoflux algorithm in the digital control system for NSTX
has led to improved ability to control the plasma shape. In particular, it has been essential
for good gap control for RF experiments, for control of drsep in H-mode studies, and for X-
point height control and x control in a variety of experiments.

* Work supported at PPPL under U.S. DOE Contract DE-AC02-76CH03073
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