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Chapter 1, Introduction

vement o industoial process applications sinee

i onatore and o indus temperaturg dependent. The

otial for the safe and efficient operation and
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rent industrial proee
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in many industrial applications, These harsh

al conditions, such as high-temperature, high-

pressure, corrosion, lox interference, amd high-energy

envitonmental  conditions,  conventional

apply, This situation has openad & new byl

1 opportunity for th v Lo grovide robust, high-performance, and

o temperature sensors capable of opery

o harsh ervironimends.

such harsh envie
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ttilizers, but also for
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ch is & way to generate
Hor, rather than
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controlied amounts of air or o 1 under high temperatures and pressures. Thisy
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that are pre

al and the operation condition

v the Rieh ot

it system relivs og g}mv]mm stitable

lemient from the corrosive environment of the pasifier. Long life

e

protec EE{‘}I‘E of the senso:
and stability of the femperature sensor is highly desired to ensure the continuous

ture and chemically

cormusive environment, rather Hmited

| facoustic pyrometers, are available. Current

ouples that utilize precious metals deift significantly and have a

v a few days because of its susceplbility 1o attack from alkali vapors

and transition ms seous or solid byproducts of the coal reaction, Slag butldup.

blem, fonming an tosulating layer on the

the thenmooouw

sion and changing the tempensture measurcments. In

npersture window on the

v o maintam the large pre Ferential, while allowing

«d by the product gases o the detector placed

syromsters in the

B

w-path opening for the

ks
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18 4 major problem.  Shifting of the re fra clory Himing,

feel or more, during heat-up and operation could also
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it by *s‘rsmmn‘arw the speed of sound along that
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or real-tme, reliabic monitoring of
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i sergte it e 5“&%31“&{13
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sapphire material

sl monitoring o temperatures Inside the coal gasificatio

e Fabry-Pérot interferometric ¢

Z!;

i

polarimetric  sapphire sensor and  broadband

A

point and chem

o]
o
=
ot
T
ookt

nous advantaees of optical sensors, such as immugity to




Chapter 1. lntroduction

e e

. mon-polluling 1o the enwviramment, e

loops, high tivity, huge bandwidih,
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ration and ete, The d d optical sensor can be potentially

applied in those harsh environments, where high temperature, hig gh radigtion CXposuNe

hoas incodd g

carch will be presented in Chapter 2. Chapter 3

tnformation on the emploved major optical materials for the

e and fully stabilized simgle erystal zircoms. Those

and extremely

o good solution
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stric sensor head, and

sor head and polarine
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Chapter 2. Background of the proposed research

15 the most sbundant nstural resource for industrial heating power production

3
3
&

Etm‘m Cog A generation of coal- based eneryy

vely elean elecivicity and other high-value

\perature i coal gasifiers requires a sensor

B
wly harsh environment posed by the high
ent in these systems. This proposed research 8 10

supported by NETL (National Energy Technology

This work 1s performed in collaboration with

a partner in the Wabash River Coal Gasification

2.1 Iudustry needs for this research

while proy “mmw

nment in the United States has responded
agies for the utilization of coal under the C

¢ has been the adoption of the use of coal

¢ clean elecinicity and other high-value
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heat from the coal fumace is used o boil water, ereating steam to drive a steam-turbing

controlled amounts of air

and prossures. & gasification-based power plant uses

s

: g pasilier o power a gas turbine. Hot exhaust

=d into a conventional steam turhine, producing a second

i,
ik
fros
]

unigue

denration of turhines offers ¢

d with conventional coal combustion.  Today's
n efficient (fuel-to-electricityl). Coal

ag efficiencies to 43-30% in the shortsterm and

cical advancements Besides high  thermal

efficien onsteated to be capahle of significant reduction

in CO,, NO entional coal buming power

plants. | ability to utitize & wide range of
these
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i
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all other power systems from a cost and g}aﬁﬂﬁﬂddw standpoint. But for
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and controlled pre ot

noniloring of tomperatures

S0 a

| flow patterns 1
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One of these chal rmvance for the coal gasification proves

wrement of the gasifier temperaiures, which s an important

g

foe e

perform ree

ation of an entrained flow slageing gasifier. The gasifier

erough for the ash in the fugl, such as coal, W

rature hich

fons

 through the bottom tap-hele. Load

re i the ga

sifier and downstreanm, and would

1 up the tap-hole and

COUS ar

out of the gasifier. Eventually the ¢
be shut down, antd the slag, oW in the

to be manually chipped out to b

r iy take weeks, vesulting in s le

Y o temperature

v lining. In addiion, more of the alkali

Ath the ash particles entrained in the gas

i the cooler sections of the gasifier or
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]

¢ will alse reduce the conversion efficiency of the

xidant, Coal is pround into slurry or

locity, T

e

with many pockets of gas

irculation zones. Temperature &

Y

xit of the burmners could be gbove 182

¢ at the

han 136 (240

horeas elose g o

he wall temperatore o

the mEl LRGN

¢ potential of gasification systems }:3&&*‘ an

o utilize a wide variety of feedsiock in addition to coals, such as

ation plants. The agt

biomuass, refuse, wood

nid would require operating the

ious feedstocks

S

“timie accurate and reliable monitor

Bt

tomperatures al vanous E-i}ﬁtgﬁ%a{m mag

Py o

entrained malten slag, high ter qzmmmrm and pressures

are very difficult to
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Various methods have hm::a nvestigated in the past [9-13]. Among these are op

acoustical pyrometers, and hig craturs thermocouples, In the non-contact optical
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ved twmﬁm‘ cert high temperature window on the gasifler wall 18

necessary o muiniain th al, while sllowing transmission of the

.

slaced cutside the gasifier,
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£

ng for the PYroniptens in the o
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Obstruction of ¢
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vence from the mdiation
rolatively cold reftactory walls, Acoustic

" sight by measurh

fiers. Noise o the plant

- burners, suot-blowers, ete., also interferes with
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o

o

lemperature me
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ev. Flow palterns inside the

nd performance of the

d by making operating adjustments. How

lable 1o date due to mutenal tss

also a problem, fonming an insulating layer on the

,
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buildup
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thermocouple, This
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{on-optical temperature measurement technigues review

o

‘lo measure temperature and in umt‘izw many

fomiperative me

temperature measurements are indivect, That is W say

Bie use of some type of calibrated transducer w

o

aturs value, Those transducers are the parts of

iy o lempey

that convert chunges in lemperature into other measurable

such  as  volumetric  sxpansion  (iguid-filled  thermome

lectromotive force (thermocouple),

sture detector, or RTD) radisted ene {radiation

a material that varies predictably and

R e “
oo SHE

and indireel temperature messusement has a different

ent of

«u

the temparat

other parame

infer the product temperaturs

Temperature may be measured using any physical system with an extrinsic property

" instrument:  Liguid-ineglass  thermometers,

yvenbiomd

digtion thenometers,
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uments have been in use for several deeades, and the

and traditional messurement inst

tv or drift, as well as possible systematic erroes, are well

ce with these teclniques, whict

1 high chunce of success. These

ipment in product ranges, product support and

As mature {ethnolopies, they are also

fo the increased ies as a spineoff from
wies have made laser sources

‘i "1

rentionad

‘5&1{&\ of the signals roecaived fon the

compulers intograted into the m sasursment squipment

&

he often complex prov associated with the move unusual se

chahles

‘e-« \i\\
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fagl time rosponse, gos lowmperature  messurernent,

sfiles, measursments in bostile environments,

¢ safety, where

{REleetao-r

t be affected by measurement units, optical

ﬁ‘ R ‘mm'*iii Rl

Hose conventtonal and traditional messwrsment nstrumenia

N temperature and chemically corrosive

ST angsEsuromont {&,‘{‘i’m e sl hoas

¢ are available each with their

gue camlidates for this harsh

ent, each oue utilizing

Measured

quantity
Thermal expension Length
[hermal expension Pressure
Electrical resistance Raesiatanee

Thermocouple Sechack co Voltage

Thermal radiation Radiant flux
Sound velocity Time

ik
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Tohinson noise Power

Tromeier Luminescence decay e

eh temperature theemocouple

s
s
T
ey
£
o
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=
ERos;

tres of nndike metals joined at one end, the hot

S

»;:imEs Junction, the open eireuit voltage s measured. This

beck voltage, depends on the

hot s ¢ oonld gu goand + Secheck
hot and the cold | junction and the Scebe

Kk EMF develops wher

temperature betwe

thermoelectric effect, German physicist LT, Seebeck discoversd the phenomenen in

tes the tempessiure of

lempeniture or surement circuitey compensates for cold junction temperature.

s iu the coal pas

e cerami

recious metals doft signifcantly

el

ted life of only a fow days. Slag buildup around the

am, forming an  insulating

thermocou s fiso A wwer on the thermocouple.
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s, Tguids and

gases have been used as the

e

. [3 g S I

of sound i 8 mat

erature sensor, For certain © casure the 'iiﬁﬁlélﬁii?ii?‘ii:tm:“iiiQf 8 Has

erted probes, due to the low thermal mass and low conductivity of gases and, at

crature sensor overcomes these problems. the

ulty with the technique is that the speed of sound is also strongly

along the patly, which s generally not cons

: composition of the

ity and will

e comb

R e i &

or problem arises from refraction of the sound wave font by

result

Lients in the chammber. These are often turbulent and mix the

me of feht dersrminations aifficult, Since the soung
How

¢oneasursments in

e

aroumd ﬁ]sﬁ measwroment

s
A
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n ftom the “hot® region bhecomes ‘i.tmmaz;rir; ty dithcult o

X

iy thermomery

o interesting clags of thermometric devices was deve) oped (o the e

S

v oof & pas, In this kind of sensor, 8 constant
ensor fip by a nirow
e system s desipned to

¢ capillary, so that for a given flow

1o the pas viscosity. Th

13

spared to that of the

o of lemperature.

wm

1y linear §

5 a pressure drop of 10 kPa

e capillary

o long use at

(ins-viscosity se

es are the need for a relatively

Ty farge wocertainy of ahout 1%
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1.3 Optical temperatare measurement technigue review

and state of pola

L

#

are used (o

significant advantages

= g

T e wn atie i

decay time monitoring,

Remuote pyromet

thermal madiation

Al maternt

s i which an optical signal is changed in sor

. ard rave-sarth Suovesc

ant heat) aud the

- have made lase

3

ue veproducibie

ure or sirain, An optical

sources and op

s bulk optics based sensors, a wide

probably

al fi

w wdx af

fbers have been developed (231 They offer s

such as small sensor size,

amount of thermal

i @g:r scal thermomelry are remote pyrometry {or
weters to messure optical path-length

ence and Quorescencs

radiation




Chapter 2. Background of the proposed research

rement of the ameant of thermal nudiaton

e

Ihe mea

g

B

ore be used as an indicgtor of s temperature, Instruments

s way are called radiation thermometers. The he

] is to measure some part of the thermal

- tempersture of the objeot using a

t has been d

Hemperature applications bovause the

ral radiatic reases by the fourth power as the tmerpature

ey
s
;—;

ser sensars convent the end of the

o and coating it with meta al,

n thermometer. Siee the i;hz:r can be very small

» garmie a8 that of the fiber dtsell, such probes can

sk

gih i a small optical ¢

wial expansion oo fficient and refractive

veral approaches have been tried for the




h of sapphire fber or silicon fiber muy be used,

 to be present, and giving extre
a and munima will occur over the

c-pounting techniques must be used to keep track a

a_

5

dher, Some of the most

th, such a8 gadolimum or suropium,

Eray

I The strong tempersture dependence of

e kA

s than 0.1 'C. although the wide

emperature range fort

ving thermometers,

¢ temperature measurement devices exploits the temperature

Another o

ey

s
o




ndence of lting {rom

Setrim o the incident laser heam

her, @l & shorlsr wavs Mwi

T

seattering”. The intensity of the

con the number of sufficiently energetic optical

e

phonons 1o the crystal, which is a strong Ranction of e mperature. The ratio of the anti-

ve indicator of wmperature.

Joped in this research

erent temperature-sensing schemes for single

he inberent advaniages of singl

myg lemperature {over 2000°CL Thess are

Fabey-Pérot interforometvie (BFPL sensor [30], ntensity-

sensor and broadband polarimetric dif

alis, the broadband polarimetric

chosen for further prototvpe
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mstrumnentation developnient
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Chapter 3. Properties of single crystal sapphire

In 3 coal gasifier

strially harsh eaviromments, tempersture-related

and

ng poi

«d in clovated temperature de e cryvstal

sapphire and o chosen due 1o their opti cal properties, hig gh

mechanical strength, temperature stability, wear resistance and chensical inertness,

L sensors,

hire tuhe is emiploved o protest senging

nt ftself s also made of single ¢

3.1 Single-crystal sapphire growth methods

- known as sapphire, is cumrently the

material of chotce for ind

S

2-36] 15 one

demanding envivonments. The hest exel

g heated above its melling

which sapphis

&

¢ element from comrosive

fe

| domes that must swevive i the muost




single crvstal sapphire

. Eﬂﬁ‘ 3. pﬁ}%}{fi’ilf“ﬁ of

1 a molvbdenum crucible contaiming a single-crvstal sapphire seed at

T

puint of

the bottom. The seed is mounted on a cold fnger that is cooled by helium gas

the furnace permits volatile impurities to escape prior o eryvsiy lization,

n al the sced by low werature and increasing the

coolant supply to the cold fin s, aller

st)‘@ .

€%
o
Yo
o

Teult and expensive o cut and p{}%hsx It

ek as growing the single-cry

Tl

fe o grow sapphire fn the shape of a hemisphere to

e )

required to ant ain the final dimensions,

o rovwth, called

o

st-shape process for sapphive is edge-defined, Hlm-fed

dipped o the top of a
of the capillary determines
inuous sapphine fhunent.

i, while a tubular capillary

tal qualit s good, it is not as good as that of H

iz prown much morne & ELW«EV and annealed in st prior to remoy n;; the

oy »-::

Lol
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- thermad optical

ttering o

pability over (b

O 8 Waye

to S.8mierons in the IR, The pe

fransasssion o

.1 shows the transmvission band for 8 window

s pdotied

‘ﬁ ¥
el
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sivie opticed avly {ordinasy disectien) sd 2-3uld-

al cleavage fhoss ave customarily designated ¢ n, tend &

soadesd o nd v allsmats sve ~

s hexagonal nner strocture, has fwo principal dielectnic

5. Such nmumiﬁ% are callad uma\m the mmu{;

called optical mm One method o :jmms - the

ertation of the electrie field (B) relative to the

ppnstant for B nommal to Ceaxis, this ciroumstance 1s calle

ciric constant E paralled o {anis,

s called negative unaxial

esignated as the c-axis in the

il H is also called the opticsl axis or the ordinary direction. The 2-fold

.

vimetry axis perpendicular o the 3-fold & alled the a-wds or the extrsordinary

Table 3.1 Parun

¥ welem-1}

543 Q00
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tie effects

aftecting the refractive index of

stimated {rom a devation of the Clausius-

s

s the mucroseopic polarizability, o

cinie constan, snd W

The first two ferms are the principal contributors in fone

sion coefficient @ results in a negabive thermo-optic

W oand 8 positive rizability with volume results in a positive

ent. I lonic mate vith & low melting point, thermal expansion
is high and the thermo-optic cocflicient is negative (typleal of alkali halides); when

thermal expansion s small (indicated by high melting point, ha vdness, wad high elastic

modult), the thermo-optic coeflcient {5 positive, dominated by the volume chanee in

of the b emperature oxides). Thermal expansion has no

polarizabil

Tarizability does. Al frequen
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V1 rises and doddT becomes more p

pprhiive, Bt exhibits di

allographic s, T the speed of propagation of lig h§ with respeel o

¢ the electron probability

15 termed Brefringence
aping between adjacently bonded atoms, and sinee

stal 18 a function of the

tons, the change in spacing between adj

Bt

along the a and ¢

ven temperature change, This

sl sapphive Ober will

. thermal, and chemical propertics

compared with s properties include extreme hardness, high

strength, good thermal charactert and chemival tnertness. On the Mols seale of
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and improve the lugh temperature strength,

strength o S&pp hire for eng
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53

doping and improvement of fabrication techniques [48-50].
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strong alkalis, or

¢ i applications where long, wsetul s s onitical.

in the presence of a w Idsa variety of reagents a

Sapphire’s che

s greater than 1000°C make it ideal for chemical b

temperatures

in hvdroflucric :

example, sthica becomes solubl

cxhibils no selubility in nwcluding hvdrofluonie acid, AL

e acid and ai m‘:.. acid} attack silica, but not

as a high melting point (2700°C) and a low thermal

cor, restricts it widespread use in cevanie industry,

onia will pnderso a8 phase transformation from the

The change in volume associated with this

irconia in many :?-'1fm§h anm 5 Impoes

Ju, into the mivconia structure i g

O, and ¥

d solution, which s a cobde form snd has no phase

reating and cooling. This solid solution material s termwed as
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en sensors and solid oxide fuel o

| structure, such as zirconia, are p ad over

noneuine orvst

Is to reduce optical scatier, As light passes from one randomly onented

in to another insl

)

a polyervstalline window containing noncubic er

woted and refle

rrain boundary, in cubic materials, the refractive index s
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cotion 2, and section 3 for suppurting
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wal stimulus such as temperature, pressure or strain and ole. An
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e techaiques which have been used to

. These are the Mach-Zehmdens
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¢ past to measure several
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Iques to provide different types of information

ahout atoms or molecules, like the electronie structure of Ge mclecules, or orientation of

the molecule.
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sed minthematically as following:

The inter

crment can be done i the toput Hehd s broadband bght, which will be
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4.2 Detecting Unit
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and broadband polarimetrie dif crential interforome stry (BPDI) sapphive sensor, such of

them has both sdvantages and disadvantages
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As a unigue signal processing methed, the seif-calibrated nterferometric

.

stully combines the advantages of both the

bar sensors in a single system. Through a proper

ation m;;uabiiii; - for the source power fluctuation

and the fiber logs changes.
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suive thit the spectral characteristic of the ﬂpisuﬁli

: too, but with a ditferent specteal width of

annels can thus be expressed by
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sontain mformation of ter nperature and input laser intensity /. By calenlate

en Lo and Lo o
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4.3. Algorithm for optical signal processing

lems, optical interferometry h

stof the conventional mono-wavelength in Omeic
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¢ coherent len

. e most commonly used
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al peak (4,1 can he acquired and stored in the

werment, when the roueh K, value for the poak has
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die both elecirical hardwarss and computer

sckbody radiation
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&.4.2 Temperature goguisition system

calibration work on the desigoed lemperature measurement  swstenmy, all

Ences ve, me, which s

serimnental resulis are relations between optical path diffe

e temperature values. A lemperature-acquiring subsystem 1
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- the two working pmmg}ém of aptical sensing elements and three detecting

n prev ious chapter, five different tempersture me

a8

logy can be constructed as shown iy the Figurs 3.1,

g meihods

oo g

Eep

EFPL A bl i g giy system
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Tl PRl el ioht system

e 5.1, Tomporaturs moasemy fernents and detecting unit
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¥

larimelric  differential

n, also called broadband po

crometry (BPDD was chosen as an optimal approuch for high temperature

sification syvstems for futther profolype  instrument

measursment o ooyl

development,

5.1 Sapphirve fber extrinsic Fabry-Pérot interferometric (EFPD) sensor

Spsten setap

e mnm uration of { wpphive-tiber-based exivinsic interferometic sensor

g

2. The light from the broadband source (LED) is coupled indo a

1B coupler is used in the system to injeet light into the optical fiber and

also direet the interference stenal from the sensor head to the detector, An anti-reflection

fo transmit light from (he silica fiber to the

silica-to-sapphire fiber ¢

| sensor head is formed by mserting the leadsin

cnd of the sapphive tube and inserting & shont

tal sapphive fGber i

¢ fiber into the athier end of 1he tube to act as the reflecting SKNMQZQHQS{}&I

sapphire fiber is highly polished, the other ¢

A that w

il interfere with the measwements. The light

rer 1s partly reflected 3 at the first sapphire-air

1 the air gap and s also partially reflected

o stanal g
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The sensor was placed into an electrical heated oven, the temaperature was increased from

The data were o (' as shown in Figure

sorded al steps of .

soen was suspected 1o be the unstable heatd
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834 Sysrem setup

'S is formed by the output mirror of H

As shown in Figure

e light, and a FBS as an analyzer: imensity

browster window, Le a

and 2, together wath cwrrent

periments was a Thermolyne box type front-loading
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crature  copability fumace. A Ko

uring beating In this maoner, no

IO neasurenwnt v
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d drilled through the front of the furmace such
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& unobstructed,  The




rerathre




Uhapter 5. Experimental resulis
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.32 Experimental resulis

The sepphire fat used In the setup was o disk, with thickness d=1.05mm. diameter
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@ = 28 tamm .

silcon photodiodes (fom UDT) The

 used to transform the current signal into a

impedance amplitier

ain of 10YV/A). Two multimeters were used to measure the

px‘amt:‘mul results are shown in }*mm 54
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heated From 790 °C to 1200 °C. Sinve the effect of the polarized Hght interference is
climinated, the optical intensity is perfodically changed by the ctalon effect when the disk

s for both channels as long

thickness changss. The multi-beam interfer

ten

ane of m lght interferonce. I the peak and

valley r of the s Imsmmi CULVES, Ehg interference fringes from etalon effect can be

observed casily, while in the other regions 1t is swamped by the polarization interference

3

sensing element thickness, the response of the polanimetric

d sapphire

cngor is a periodic function, ambiguities are generated between the measured vollages

‘Q

and the tempe s thickness of the sapphire sensing element to

ain values may fx one quarter of the sinusesdal response curve to the proposed

temperaiure measureme it T nge, thus the measured voltage values can be calibrated to

4 one-to one relation. Not only determining the temperature

uroment range coresponding to the part of response curve (squared sinuso idal

funetion), the thic on x&*i.;..@lm at oot the wv-lanm‘ tric sensor initiad working
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o1, by polishing a cerlain angle Betwesn two surfaces of the

e

or sliminated. As an allemative method, sines the

ion of temperature, new mathematical model wking

into account and precise calibration between voltage signal output and

eliminate the need for precise an gl polishing of the

e

oot into account, the large deviations between the

peaks and vallevs, , will be preatly reduced
This  means the sccursey of the

o the thermovouple. Another way to

3.3 Broadband polarimetric differential interferometry (BPDI) sapphire seasor.
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e 18 used for protection. And Figure 5.17 is

ther
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orrosive high temperature
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.
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e
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s, Inc), which is composed of a o

spectral components of the st measured by the CCD array and further signal
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i

. for higher temperature, say above 1400°C | the

hody radiation curve will | mtensity will not be goneral constant any more for
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5.4, Further experimental results on BEnt
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