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ABSTRACT

Hanford high-level liquid waste will be converted into a glass form for long-term storage. The glass
must meet certain constraints on its composition and properties in order to have desired properties for
processing (e.g., electrical conductivity, viscosity, and liquidus temperature) and acceptable durability
for long-term storage. The Optimal Waste Loading (OWL) models, based on rigorous mathematical
optimization techniques, have been developed to minimize the number of glass logs required and
determine glass-former compositions that will produce a glass meeting all relevant constraints. There
" is considerable uncertainty in many of the models and data relevant to the formulation of high-level
glass. In this paper, we discuss how we handle uncertainty in the glass property models and in the -
high-level waste composition to the vitrification process.

Glass property constraints used in optimization are inequalities that relate glass property models
obtained by regression analysis of experimental data to numerical limits on property values.
Therefore, these constraints are subject to uncertainty. The sampling distributions of the regression
models are used to describe the uncertainties associated with the constraints. The optimization then
accounts for these uncertainties by requiring the constraints to be satisfied within specified confidence ___
limits.

The uncertainty in waste composition is handled using stochastic optimization. Given means and
standard deviations of component masses in the high-level waste stream, distributions of possible
values for each component are generated. A series of optimization runs is performed; the distribution
of each waste component is sampled for each run. The resultant distribution of solutions is then
statlstlcally summarlzed

The ability of OWL models to handle these forms of uncertainty make them very useful tools in
designing and evaluating high-level waste glasses formulations.

INTRODUCTION

In immobilizing high-level liquid waste for long-term storage, it is advantageous to produce the
minimum volume of immobilized waste glass (for a given volume of waste), thus minimizing
vitrification and disposal costs. The Optimal Waste Loading (OWL) models, based on rigorous
mathematical optimization techniques, have been developed to determine the minimum number of
glass logs required to immobilize Hanford high-level liquid waste. This optimization varies the glass-
formers composition to maximize the waste loading (and minimize the glass volume), such that all
processing and product (durability) constraints on the glass are satisfied.

Because there is uncertainty in both the property model predictions and in the waste feed composition
for vitrification, the question naturally arises as to how the uncertainty affects the calculated waste
loading and resultant number of logs required. In this paper we describe our approaches for
addressing this question. We discuss techniques we are developing for addressing each of these
uncertainties separately. As these techniques mature, we will integrate these and other techniques to
handle all appropriate uncertainties. :




In this paper, we briefly describe the general constrained optimization problem, which is the basis for -
the OWL model. We then present an overview of the OWL model formulation, followed by a
discussion of the glass property models that are used in the constraints for optimization. We then
describe our techniques for handling property model and waste composition uncertamtles and present
some results for each. We end with some brief concluding comments.

THE GENERAL CONSTRAINED OPTIMIZATION PROBLEM

In the general constrained optimization problem, the objective is to find the multidimensional point x
that produces the maximum (or minimum) value of some function f and meets a set of criteria called
constraints. The problem would be stated as:

maximize f(x)
subject to h(x) =0
g8x) <0
where

f is the objective function which we want to maximize (or minimize). It is a single (scalar)
function of the unknown variables —

x is avector (x, x, ..., x,) of the variables over which we optimize

h is a vector function contammg the equality constraints (h,(x), hy(x),..., h(%) )

g is a vector function containing the inequality constraints (g,(x), g,(x),..., £,(%) )

Each equality and inequality constraint is also a function of the unknowns. In general, the objective
function and any or all constraints may be nonlinear. . -

GLASS FORMULATION OPTIMIZATION MODEL

In the simple glass formulation problem, frit (glass formers) is added to a single waste composition
and the mass fraction of waste in the glass (waste loading) is maximized such that all the constraints
are satisfied. The frit composition is varied as part of the optimization. The problem formulation is
shown in Figure 1 and briefly described below. More detailed information on the model can be found
in Hoza (1).

PLACE FIG. 1 HERE

The simple waste optimization problem can be generally stated as follows:

minimize number of glass logs required
or

maximize waste loading in the glass

subject to mass balance constraints

property model component bounds
solubility constraints
glass property constraints




The objective function and constraints will be discussed in the next two sections.

Objective Function

The goal is to minimize the number of glass logs necessary to immobilize a waste of the specified
composition. This can also be achieved by maximizing the waste loading (fraction of the glass that is
waste).

Constraints
There are four classes of constraints in the model.

The first, the mass balance constraints, are equalities which define the relationships involved in the
formation of glass from its components. These include an overall balance and component balances for
all components.

The second, the property model component bounds, limit the range of the composition (mass fraction)
values each component can have in the calculated glass composition. They reflect the composition
region over which the glass properties were experimentally determined, as part of the Composition
Variation Study (CVS) (2), and define a polyhedron in composition space that specifies the region

over which the glass property models are considered valid. Compositions outside these limits will not
necessarily produce unacceptable glasses. Rather, these compositions represent regions for which the
glass property models must be extrapolated. Promising glasses outside these limits would have to be
evaluated experimentally to determine their acceptability.

The third, the solubility constraints, limit the maximum value for the mass fraction of selected
components (Cr,0,, F, P,O,, SO,, and noble metals). They are intended to represent solubility limits
for the specified components. These limits cover component species not included among the species _
used in the glass property models. Eventually these solubility limits will be replaced with
thermodynamic calculations that predict insoluble species.

The fourth, the glass property constraints, utilize the glass property models developed in the CVS.
These are discussed in the next section.

GLASS PROPERTY MODELS

The glass property models are equations empirically fit to data, i.e., glass compositions and property
values (viscosity, electrical conductivity, and durability in this work). Liquidus temperature models
have also been developed but were not used in this work. The modeling approach and the calculation
of uncertainty are addressed in the balance of this section.

Modeling of Properties

The property models are empirically fit linear and nonlinear (in composition) models. The models
were developed as part of the Composition Variation Study (CVS) and are described in Hrma, Piepel,
et al. (2). The CVS has been performed in five phases (CVS-I and CVS-II Phases 1-4). The models
used in this work were based on data obtained through CVS-II, Phase 2.

The CVS used statistical mixture experiment design and optimal experimental design methods and




software to select the glass compositions tested throughout the CVS. The glass composition region
included is expected to contain glasses that might be made from various waste types expected to be
processed at Hanford.

The model of each property is of the form

10 10
In(PropertyValue)=y " bx,+ bxx (1)
i £ il I}

where b; and b;; are the coefficients of the first- and second-order terms, respectively; x; is the mass
fraction of component i; and 10 is the number of components considered in the study. The
components included in the models are SiO,, B,0O,, Na,0, Li,O, CaO, MgO, Fe,0,, Al,O;, ZrO,, and
Others, which accounts for all species other than the nine specifically included. For the linear property
models, all b; are zero.

The glass properties used in this work were viscosity, electrical conductivity, and durability (actually
rate of release of boron) by either the Product Consistency Test (PCT) or Materials Characterization
Center Test (MCC-1). The current version of OWL includes PCT Li and Na releases, and no longer
uses MCC-1 releases.

Calculation of Uncertainty ‘ —

Predictions made with a fitted property model are subject to uncertainty in the fitted model
coefficients. The uncertainty results from the random errors in property values introduced during
testing and measurement as well as minor lack-of-fit of the empirical model relative to the true
relationship.

The uncertainty in a predicted property value for a given glass composition is defined as
Uncert=M[x 78x]%> 2)
where
M = multiplier, which is usually the upper 95th percentile of a t-distribution [t,,(n-p)], where n

is the number of data points used to fit the model and p is the number of fitted parameters
(coefficients) in the model '

x = glass composition vector expanded in the form of the model
x' = transpose of glass composition vector expanded in the form of the model
S = covariance matrix of the estimated parameters (coefficients)

For linear (first-order) property models, x is the usual glass composition vector. For nonlinear models,
the vector is augmented by second-order terms. For example, if there are two second-order terms, X2
and x,X,, the usual composition vector (X,, ... ,X,,) becomes (X,, ... ,X;p» X,%, XX,).

OPTIMIZATION WITH GLASS PROPERTY MODEL UNCERTAINTY

The method used to account for glass property model uncertainty in the glass optimization and results
of optimization calculations with property model uncertainty are given in the next two sections.




Metho

This model accounts for uncertainty in the glass property constraints by using uncertainty to narrow
the feasible region determined by glass property models. This approach changes the form of the glass
property constraint to

10 10
In(MinVal)+Uncert<y  bx+y" 3 b
i

il i

x x <In(MaxVal)-Uncert (3)

gy

When Uncert = 0, this constraint is the same as for the model that does not account for property
model uncertainty. Figure 2 shows the effect on a ternary diagram (for a waste + frit + recycle
mixture. The idea is the same for a waste + frit system, but a ternary diagram better helps visualize
the concept). A single linear glass property constraint with upper and lower limits is shown on the
figure. The regions in the triangle with dark shading are infeasible (the constraint cannot be satisfied in
those regions). The unshaded region is feasible. The lightly shaded regions represent those
compositions that become infeasible when property model uncertainty is considered. Alternately, it
can be viewed as the shrinkage of the feasible region due to uncertainty. The shading around the glass
composition point represents the uncertainty in the glass composition resulting from uncertainty in the
waste composition. Methods for dealing with this uncertainty will be discussed in the section on waste
composition uncertainty. C—

PLACE FIG. 2 HERE

Results

The effect of property model uncertainty on maximum waste loading was examined for four Hanford _
double shell tank waste types. Table I summarizes the results of calculations that explore this effect
for two constraint sets.

PLACE TABLE 1 HERE (AT PAGE BREAK--FULL PAGE LANDSCAPE TABLE)

When the full constraint set is used (first and second rows in the Table I), there is no difference
between the waste loading with uncertainty and the waste loading without uncertainty in the glass
property models. This is not surprising. The uncertainty in the glass property constraints effectively
tightens the glass property constraints, but not enough to make a difference. The binding constraint
for each case is still the same as for the case without uncertainty, so the glass property constraints and
their uncertainties are irrelevant (for these cases; this will not always be the result).

When only the glass property constraints (viscosity, electrical conductivity, and durability) are used
(third and fourth rows in Table I), the following occurs:

- Waste loading is reduced. As expected, the uncertainty in the glass property constraints makes a
difference. The percent reduction in waste loading as a result of considering the uncertainty is on
the order of the uncertainty in the binding constraints.

- The uncertainty in the glass properties is much greater than it is for the full-constraint case.
Because the calculated uncertainty is a function of where the point is located in composition space,




this indicates that these points are in composition regions where less experimental data are
available and may even be outside the experimental region. Examination of the glass
compositions for these cases (which are not in the table) confirms this, Several of the component
compositions are outside the upper and lower limits on the ten components (because those limits
were dropped for these cases).

OPTIMIZATION WITH WASTE COMPOSITION UNCERTAINTY

The method used to account for waste composition uncertainty in the glass optimization and results of
optimization calculations with waste composition uncertainty are given in the next two sections.

Method

The basic approach taken to address the optimization in the presence of waste composition uncertainty
problem relies on the stochastic modeling method (3). Using this method, the strategy is to generate a
large number of possible waste compositions based on the composition error structures, and for each
of these, to generate a waste loading. The distribution of waste loadmgs can then be analyzed. The
main steps in this method, as applied to this problem, are:

» Develop probability distributions for the masses in the high-level vitrification feed of each of the
components followed in the OWL models, based on estimates of means and standard deviations.
For this work, all mass distributions were assumed to be normal (Gaussian). —

» Sample the above distributions and developing N waste composition input sets (mass fraction
basis). ‘Sampling the distributions provided masses for each of the species tracked. Latin
Hypercube Sampling (4) was used because it provides better coverage of the composition
distributions than simple random sampling with fewer samples. Given these masses and the total
mass of the waste, the mass fractions of all species were determined and normalized to 1.000.

* Run the N waste composition sets through the OWL glass formulation model to calculate the
optimal waste loadings for each waste composition set.

* Analyze the resulting distribution of waste loadings for the N input sets.

For this work, uncertainties in waste components were assumed to be statistically independent (i.e.,
uncorrelated). This is likely an unrealistic assumption, but knowledge of composition uncertainty
correlations was insufficient to account for them in this work. Future efforts will account for them
once they are adequately quantified.

Results

The method described above takes distributions in the masses of all relevant species, performs a series
of calculations, and produces a distribution of waste loadings. This section looks at how the waste
loading distribution is related to the input distributions, and what one can conclude from the output
distribution?

. The relationship between the output distribution and the input distribution depends on the constraints--
which constraint(s) is/are binding and whether the same constraint is binding for all cases or the
binding constraint changes for different runs. The following situations are possible; they are listed in
order of increasing complexity.

« The same single-component constraint is always binding.
» The same multiple-component constraint (e.g., durability) is always blndmg




» The binding constraint is different for different runs.
* No feasible solution is possible for some runs.

The waste selected for the sample calculation represents the least complicated situation. For this case,
the binding constraint was consistent over all generated waste composition sets. This binding
constraint was the upper limit on a single waste component (P,0;). As expected for this case, the
waste loading varied inversely with the mass fraction of P,O;. Because the upper bound on P,0, was
the binding constraint for optimization, higher concentration of P,O; causes a lower maximum waste
loading fraction (WLF).

What can one conclude for this single-component-limited case? If the generated waste component
mass distributions reflect reality, and if N is set appropriately high, then the sample input sets are
increasingly likely to cover the range of possible waste composition sets. Each WLF is the highest
WLF that will produce glass meeting the property constraints for an input waste composition set.
Therefore, the distribution of optimal WLFs represents the possible range of optimal WLFs given the
uncertainty defined for the input high-level waste stream. '

Figure 3 shows the distribution of the optimal WLF and the reverse cumulative distribution of the
optimal WLF, with cumulative probability increasing as WLF decreases. The cumulative distribution

can be interpreted as follows: for any WLF calculated by maximizing the WLF subject to constraints

as per OWL optimization, the cumulative distribution represents the probability that that WLF can be
achieved given the waste composition and its associated uncertainty and error structure. For example, .
if the WLF is 0.038, the probability of being able to achieve that WLF is 0.85.

PLACE FIG. 3 HERE

The above analysis was for the simplest case; the same single-component constraint is always binding.
How would the results change for binding multiple-component constraints or for changing binding
constraints? Subsequent work will have to examine this issue, but a cumulative distribution (as in
Figure 3) could still be developed and used as described above.

Issues

Because this was a preliminary look at the application of stochastic modeling, many assumptions were
made to simplify calculations. These assumptions, which are addressed below, will be revisited in
future work.

» Two independent (and inconsistent) determinations of the total mass are available, the sum of the
sampled masses and the measured mass (actually measured volume and density). Some technique
to reconcile the two is needed.

« The distributions for each component were assumed to be independent. This is unlikely to be true
for several reasons (e.g., relationships of components in frit, waste, and recycle; correlations in
analytical uncertainties; and imposed correlations among component mass fractions because they
must sum to one).

+ The simple case examined had the same binding constraint for all N samplings. This will not
generally be the case. Accounting for statistical dependence between components may also change
binding constraints.




CONCLUSIONS

The techniques presented here address the uncertainty in property models (which are used in
specifying constraints in the optimization model) and in waste feed composition. The latter technique
needs further development to address the issues identified. Combining the two techniques would allow
formulation of glasses in the presence of both types of uncertainty.
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Fig. 1. Simple Waste Optimization Problem

Fig. 2. Uncertainty in Glass Property Models and Waste Composition
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