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PMESH: A Parallel Mesh Generator

‘David D. Hardin

Lawrence Livermore National Laboratory

The Parallel Mesh Generation (PMESH) Project is a joint LDRD effort by A Division and
Engineering to develop a unique mesh generation system that can construct large calculational

meshes (of up to 109 elements) on massively parallel computers. Such a capability will remove a
critical roadblock to unleashing the power of massively parallel processors (MPPs) for physical
analysis. PMESH will support a variety of LLNL 3-D physics codes in the areas of
electromagnetics, structural mechanics, thermal analysis, and hydrodynamics. (U)

Introduction

The increased computational power provided by
MPPs will significantly enhance the physical modeling
of complex 3-D objects and systems. MPPs now
support numerical simulations with over 107 mesh
elements (or zones), with 108 to 109 elements becoming
possible in the forseeable future, Work is planned or
presently underway to port many of LLNL's physical .
modeling codes to MPPs. Unfortunately, the software to
generate and manipulate the large meshes needed for
these simulations does not exist, since state-of-the-art
mesh generation with workstation-based programs is on
the order of 10° to 106 elements. In many cases today’s
workstation would require several months to produce
108 elements, if one assumes it had sufficient memory
and disk storage, which it does not. Obtaining the full
benefit of MPPs will require increasing our mesh
generation capability by two or three orders of
magnitude; achieving this will require moving the mesh
generation process itself to the MPP.

The Parallel Mesh Generation (PMESH) Project is
a joint LDRD effort by A Division and Engineering’s
Computational Thrust Areas (Mechanics and
Electronics/Electromagnetics) to produce a mesh-
generation system which will satisfy their current and
future 3-D modeling needs. PMESH has been designed
from its inception to generate large meshes on MPPs
and to support a variety of LLNL 3-D physics codes,
including those in the areas of electromagnetics
(DSI3D, TSAR), structural mechanics (DYNA3D,
NIKE3D), hydrodynamics (FLAG, ALE3D, CALE3D),
and thermal analysis (TOPAZ). PMESH’s capabilities
are needed now, as versions of DSI3D and DYNA3D
already running on the Meiko. Indeed, DSI3D has
already run a 20 million zone problem with 128 Meiko
processors. Moreover, problem sizes for all our 3-D
codes will grow as MPPs increase in number of
processors, processor speed, and memory per processor.

Certain aspects of most current mesh generators are
worth noting. First, entering the geometry for a complex
problem is typically very tedious. Even if one has a

complete 3-D solid geometry description available in a
modern CAD system, typically much of that
information is lost during transfer to the mesh generator
because it accepts only the surfaces bounding the
various parts of the geometry. As a result, in the
generator the user must respecify the orientations and
interconnections of the surfaces to form 3-D parts. For
complex problems, this may involve hundreds or even
thousands of surfaces. Finding the surfaces in this
morass that define a particular part can be a tedious and
intimidating task.

A second shortcoming of many current generators
is their inability to handle the other kinds of information
needed as input by analysis codes: initial and boundary
conditions, material compositions, energy sources, and
various physics sentinels needed to select and define the
model to be run. It is impractical for the user to edita
file defining 108 elements to add this information. In
brief, the problem is that the mesh generator is just a
mesh generator, not a problem generator.

Ideally the user could annotate the geometry’s
edges, surfaces, and volumes with this information,
with all vertices, edges, faces, and volumes of the
generated elements automatically tagged by means of
information inherited from the geometry. In addition to
specifying this information at a higher level, the user
would benefit from doing this task just once, with every
subsequently generated mesh inheriting the necessary
data, regardless of whether it was a coarser or finer
mesh, a differently structured mesh, or a mesh for a
different analysis code. This capability would be
particularly useful in areas where different kinds of
analyses are routinely run on the same geometry, such
as acrodynamic and radar cross-section calculations of a
proposed aircraft design. - .

PMESH does a number of things differently in -
order to circumvent these difficulties. First, it
distributes the generation process appropriately between
the user’s workstation and the MPP. Interactive tasks
such as defining the geometry and annotating it with
boundary conditions and materials are performed on the
workstation. Computationally intensive tasks such as




the actual mesh generation are done on the MPP. The
core of PMESH is a full 3-D solid modeling kernel
which runs on both the workstation and on every node
of the MPP; this kernel allows the geometry to be
specified and manipulated independently of any mesh
definition. Also, there is no loss of information during
the transition from the geometry-definition phase to the
mesh-generation phase. As a result, multiple meshes
differing in both structure and refinement can be can
generated for various codes without the need for the
user to respecify the geometry or the mathematical
model.

~ PMESH is considered to be of critical importance
to the above-mentioned participating groups because
mesh generation is presently a major limiting factor in
simulating larger and more complex 3-D geomeltries.
When completed, PMESH will significantly enhance
LLNL's capabilities in physical simulation.

Previous Work

Commercial mesh generation codes typically run
on UNIX workstations and generate a maximum of
about 10° - 108 elements. Examples are Ansys, Aries,
AutoCAD, EMAS, GridPro, IDEA-S, PATRAN,
Pro/ENGINEER, and TrueGrid. Generating this many
elements can take hours or days even on relatively
powerful workstations. Cray Research (CRI) is
developing a meshing package based on a Lockheed
CAD package (ACAD) which has been used to generate
meshes with up to about 3x107 elements. However,
Cray's tool is limited to creating completely regular,
orthogonal, structured meshes for a specific electro-
magnetics algorithm. Problems with approximately 107
elements represent the upper bound on the size of
electrical problems one can solve on present-day Cray
supercomputers, and the maximum mechanics problem
size is probably less.

. ‘There are many non-commercial mesh generation
projects. The National Grid Project (NGP) at
Mississippi State University is a project funded by a-
consortium of industry and govemment organizations
which is developing a general-purpose meshing tool
which will meet the needs of the consortium members
(Thompson, 1992). LLNL is a member of the
consortium and will receive source code which may be
useful in this LDRD project. Sandia National
Laboratories has formed a CRADA with a number of
automobile and aerospace firms to develop mesh
generation capabilities for industry (Blacker et al.,
1991). The goal of the SNL CRADA is to develop a
tool (CUBIT) which will simplify the meshing process
for structural simulation, and the team will focus on the
use of paving and plastering techniques.

Smaller efforts are also underway. Shephard et al.
at RPI is doing a variety of work in the unstructured
mesh development arena for industrial applications,
including generation by the finite octree method
(Shephard and Georges, 1991).

Each of these projects is focusing on different
aspects of the mesh generation problem, but none is
considering the problem addressed here, namely,
generating the very large meshes that will be required to
utilize the next-generation MPPs. In particular, none of
the above was a parallel mesh generation effort when
PMESH began a year ago.

However, some work is underway in massively
parallel mesh generation. Researchers at JPL have
developed a technique by which a coarse mesh
generated on a scalar machine can be subdivided
uniformly on a MPP to produce a large mesh. Although

-this technique has merit for some applications, it

provides no support for local mesh refinement, and
geometry information that cannot be represented on the
coarse mesh is lost. v
Lohner et al. (1991) at George Washington
University used a mesh growing technique called the
advancing front method to generate 2-D unstructured

" triangular meshes on a MPP. He has previously used the

method to sequentially generate 3-D unstructured
tetrahedral meshes and has expressed the intent to
extend his MPP work to 3-D.

Weatherill (1992) at Swansea has done
unstructured 3-D tetrahedral meshes based on
Delaunay triangulations, and some of his software is
available to us as part of NGP. He has generated three
million element 2D triangular meshes and has begun
parallelizing his algorithms (Weatherill, 1993).

Within the last year both Shephard and CRI have
begun parallelizing their methods. A difficulty with all
the unstructured approaches is that most LLNL 3-D
analysis codes require or prefer non-tetrahedral meshes.
Meanwhile, CRI's method remains highly specialized.

Recently Chrisochoides (1994) at Syracuse has
discussed a parallelized method of generating block-
structured hexagonal meshes. It has only been
demonstrated for simple geometries subdivided into a
few sub-blocks and was motivated by the desire to
avoid the expense of computing an optimal mapping of
a sequentially generated mesh onto the distributed
memory on an MPP.

This last point is worth emphasizing to avoid
possible confusion. Much work has been done on the
problem of mapping a sequentially generated mesh onto
the distributed memory of an MPP for the solution of
PDEs. One well-known example is recursive spectral
bisection method (Simon, 1994). The central point of
the present work is that, for really large meshes, the
mesh itself must be generated in parallel, not mapped
later. - .

In summary, a large number of efforts are presently
underway in mesh generation. Many of them are
narrowly focused on particular types of meshes or do
not address large meshes. Also, it again should be
emphasized that the problem is not simply one of mesh
generation. For such large meshes, it is also necessary
1o solve the problems of annotating the mesh with
analysis code information and of visualizing the mesh.



Approach

‘The PMESH architecture includes a graphical user
interface (GUI), a powerful 3-D solid modeler, a
software “backplane” that integrates a number of
different meshing algorithms and provides
communication between the user’s workstation and the
MPP, and a modeling database that will be used to
guide the production of meshes for various physics
codes. We plan both to develop some new meshing
algorithms (e.g., mixed meshes of tetrahedra, triangular
prisms, pyramids, and hexahedra) and to integrate
“standard” meshing algorithms developed elsewhere,
e.g., the National Grid Project(NGP). As this is a fast
developing field, we shall monitor outside efforts that
may offer opportunities for coliaboration. ’

A central feature of PMESH is that it distributes
tasks appropriately between the workstation and the
MPP (see Fig. 1). Interactive work, such as defining
geometry, materials, boundary conditions, and meshing
constraints, is performed on the workstation. Floating
point and memory intensive work, such as generating
_ and verifying the mesh ,is done on the MPP.

Another key aspect of PMESH’s design is that it is
intended to serve many different physics codes. At least
the following analysis codes will be supported: DSI3D
(time-domain electromagnetics); DYNA3D/ NIKE3D
(structural analysis); TOPAZ (thermal analysis); and
FL.AG and ALE3D. It will accomplish this goal in part

" by allowing and encouraging the user to specify the
problem at a higher and more abstract level than is now
generally the case. .

All meshes will be derived from a geometry model
created on any of several commercial packages that will
be supported. We plan to support Pro/ENGINEER,
ACIS-based products such as AutoCAD, and the data
interchange standards IGES and PDES/STEP. The user
completes the physics model by annotating the
geometry, not the mesh, with data such as boundary
conditions and materials The annotated geometry
contains all information about the problem which is
necessary for whatever modeling the user is interested
in performing. (We assume that the annotated geometry

* is compact enough to manipulate on a workstation.)

To produce a block-structured mesh, the user must
subdivide the geometry into logically hexahedral
subregions. If necessary or desired, these regions may
be degenerate hexahedra. For instance, collapsing one
of the quad faces to a single point produces a pyramid.
The block structure is incorporated into the annotated
geometry abstraction.

Before sending the geometry to the MPP, we must
decide how to distribute among the processors the work
of generating the mesh from the geometry. In the case
of block-structured hexahedral meshes, the number of
nodes on each edge of a block is specified by the user.
Hence, the size of a block-structured mesh is known
before beginning to generate the mesh. Initially we will

simply assign an entire Block to a processor. At a face
or edge shared by two or more blocks, all processors
involved know the common geometry. Thus, in this

. approach, interprocessor communication is required.

only to ensure thadt all processors use the same global
node numbers for shared nodes. We solve this by a
simple algorithm that assigns “ownership” of a shared
node to a processor, which means it has the
responsibility of determining the node’s unique global
node number. The drawback to this simple scheme of
giving an entire block to a processor is that the
processors” work load may be badly out of balance if
there are too few blocks or if the number of zones in the
blocks varies significantly.

We may postpone improving this work distribution
algorithm until we have gained experience with
generating unstructured meshes. We expect these to be
much harder to statically load balance due to the
difficulty of a priori estimating the number of zones that
will be generated in the various parts of the geometry.

The annotated geometry, including processor work
assignment or load-balancing information, is sent to
every processor of the MPP to gencrate the mesh. The
zonal nodes, edges, faces, and volumes of the generated
mesh inherit the physics quantities from the underlying
geometry. Upon specifying a specific analysis code, this
information is translated to that code’s input format,
including the correct names and numerical encodings of
physics flags. )

We anticipate major changes in how users verify
the acceptability of a mesh. Inspecting 3-D meshes is
much more difficult than inspecting 2-D meshes. Hence
we believe it will be necessary for the user to '
mathematically specify acceptance criteria that can be
checked by the program itself. The quality of the mesh
(maximum aspect ratio, minimum and maximum
interior angles, etc.) and the fidelity of its representation
of the underlying geometry will be ascertained using
mesh verification tools which will also exist on the
MPP. Automatic verification will be very important for
these large meshes as it is totaﬂ; impractical for a
human to manually examine 10° 3-D zones.

‘We are just starting to study how to visualize these
large meshés. Any operation applied to the entire mesh
can only be done to the distributed mesh on the MPP. It
will be necessary to limit plots to a subset of the mesh
in order to have reasonable data transfer and plot times.
There is a spectrum of choices as to how to divide the
visualization work between the workstation and the +-
MPP. One extreme is to do everything on the MPP,
sending only a raster image to the workstation. The
other extreme is to extract a subset of the data itself and
send it to the workstation for rendering. Of course, the
optimal choice depends heavily on the type of plot, the
speed of the workstation’s graphics hardware, and the
speed of communication between the workstation and
the MPP. Even today, there are orders of magnitude
differences in these last two quantities between various
users’ equipment.
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Figure 1. Data flow in PMESH. An abstraction of the ‘geometry is constructed on the workstation, with all mesh

generation done on the MPP,

Progress

We have designed the overall system architecture
and its major components. We decided to base PMESH
on Spatial Technology’s ACIS® Geometric Modeler, a
3-D solid-geometry kernel system that is used in several
CAD products. At a cost of only $25,000 this system
gives PMESH a very powerful solids modeler that
would probably require 50 to 100 man-years of effort to

reproduce. Building PMESH around a solids modeler
gives it significant advantages over systems such as the
National Grid Project which have fewer geometric ‘
capabilities. Given that we wished to use C++ as the !
primary PMESH implementation language, an added
advantage of ACIS is that it is written in C++ and has a
C++ interface.

Initially we are generating only block-structured
hexahedral meshes. In this common approach (used in
INGRID and many commercial generators), the




geometry is decomposed into a collection of volumes
which are topologically equivalent to rectangular blocks
(hexahedra). Each block is then given a logically
rectangular mesh of I nodes by J nodes by X nodes.
Currently this is done with trilinear transfinite
interpolation (TFI), an algebraic method. PMESH
supports both uniform and non-uniform distributions of
mesh nodes along block edges. This is all the
information that a user needs to specify in order for the
TFI algorithm to mesh the surfaces and the interiors of
the blocks. (With TFI we have already meshed
DYNA3D and DSI3D test problems.)

‘The PMESH graphical user interface (GUI)
presently can display the geometry and any block-
structure created so far, it and permits the user to click
on an edge or surface in the geometry and tag that entity
with any of several attributes selected from a menu. The
GUI menu now supports specifying the number of
nodes to generate on an edge, the node distribution, and
several other quantities.

In addition, PMESH already contains algonthms to
simplify the user’s tasks and to avoid potential errors.
For example, the mesh is required to be consistent
where multiple blocks share edges or faces. To enforce
this constraint, PMESH walks through the block
structure and partitions the edges into sets of edges
which are logically constrained to have the same
number of nodes. Thus the user has merely to designate
the desired number of mesh nodes for one edge within
each set of equivalent edges.

At present, the user manually transfers the
annotated geometry to the MPP (via fip) and invokes
the “back-end” of the system. The back-end generates
the mesh from the annotated block-structured geometry
and runs on workstations as well as on the Meiko MPP.
Thus users who need only small meshes can generate
them on their own workstation without being forced
onto the MPP. In addition, users with large problems
can generate small trial meshes locally before moving
to the MPP.

In June 1994 PMESH generated a 100 million
(108) zone problem in 8.5 minutes with 64 Meiko
processors. This problem had 63 blocks, each with a
mesh of 117 x 117 x 117 nodes, resulting in 1.6 million
zones being generated on each processor. The
calculation of the nodal coordinates was not vectorized.
Also, there are some significant other inefficiencies that
should be removed. We estimate that fixing these
problems may allow this calculation to run in 4 minutes
or less. Also, at the time of this result, the Meiko system
software limited a user job to half the available
memory. Thus, it may be possible to generate nearly
800 million zones on the entire 256 processor machine.

Future Work

Because algebraic methods of mesh generation
may produce invalid meshes for some complex blocks,
the TFI method will be augmented by more robust but

slower block-structured methods based on solving
elliptic equations or variational principles. These
methods can be orders of magnitude slower than TFI,
and parallelizing them will have a much larger payoff

-than in the case of TFI.

In addition, we will extend the system to generate -
unstructured meshes, starting with tetrahedral meshes.
Unstructured mesh methods are expected to be more
difficult to parallelize; in particular, it may be nearly
impossible to choose an a priori distribution of the work
that balances the load on the processors. If so, dynamic
load balancing may ultimately be required. For codes
such as DSI3D and FLAG which support five-sided
elements, we will develop strategiés for generating
mixed meshes containing tetrahedra, pyramids,
triangular prisms, and hexahedra as a means of better
coping with complicated geometries.

How to do graphics on large data sets distributed
across an MPP, including deciding which tasks should
be done on the MPP and which on the workstation, is a
significant research problem in itself. Our initial
approach to mesh visualization will be to extract a
subset of the mesh data from the MPP and send it to the
workstation for rendering. This has the advantage that
many operations (zoom, pan, rotate, etc.) can be done
locally without returning to the MPP. Given the
continuing increase in workstation and communications
speeds, we feel this is a solution that is rapidly
becoming more attractive.

Another activity that we are just beginning is to
establish workstation-MPP communications that are
“transparent” to the user. Initially, we expect the -
workstation to “rexec” the back-end of the system on
the Meiko and establish TCP sockets over Ethemet
between the two machines for exchanging control data
from the workstatnon and visualization data from the
MPP.
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