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Non-perturbative Renormalization Constants using Ward Identities*

Tanmoy Battacharyaa, Shailesh Chandrasekharanb, Rajan Guptaa, Weonjong Leea, Stephen Sharpec

‘MS B-285, Los Alamos National Lab, Los Alamos, New Mexico 87545, USA

bDepartment of Physics, Duke University, Durham, North Carolina 27705, USA

cPhysics Department, University of Washh@on, Seattle, Washington 98195, USA

We extend the application of vector and axial Ward identities to calculate b,4,bp and bT, coefficients that give
the mass dependence of the renormalization constants of the corresponding bilinear operators in the quenched
theory. The extension relies on using operators with non-degenerate quark masses. It allows a complete deter-
mination of the O(a) improvement coefficients for bilinears in the quenched approximation using Ward Identities
alone. Only the scale dependent normalization constants Z~ (or Z~) and ZT are undetermined. We present
resuks of a pilot numerical study using hadronic correlators.

To remove errors of O(a) from physical matrix
elements, one must improve both the action and
the operators [1]. The former requires the addi-
tion of the Sheikholeslami-Wohlert term [2],

Improvement of flavor off-diagonal bilinears re-
quires [3] both the addition of extra operators,

and the introduction of a mass dependence,

Here X = A, V, P, S, T, Z} are the renormal-
ization constants in the chiral limit, and mij ~
(mi + mj)/2 are the bare quark masses defined
using the axial Ward Identity (WI), Eq. (6). The

bare unimproved bilinears are A~) E q&fly5@~,
etc. The task is to determine the coefficients Csw,
2$ ‘s, Cx’s, and bx’s non-perturbatively.

Previous calculations have shown how 2$, Z]
and Z~/Z~ [4], csw, CA and bv [5–7], Cv [8],
CT [9], and bp — bA and bs [10] can be deter-
mined non-perturbatively using axial and vector

*This work was supported by the DoE Grand Challenges
award at the ACL at Los Alamos

WL We discuss here an extension that yields bA,
bp, and bT. The two remaining constants 2$
(or Z:) and 2$ are scale and scheme dependent,
and so cannot be determined using WI. Note that
our method does not extend directly to the un-
quenched theory, which requires additional im-
provement constants and a more complicated set
of conditions [11].

We begin by recalling the ALPHA method for
determining CSW and CA [6]. The haze WI mass

should be independent of t, up to corrections
of O(a2), since it is proportional to the average
renormalized quark mass

(7)

This is achieved by simultaneously tuning CSW
and cA . Our approach differs from the
Schrodinger functional method of Ref. [6] in that
we use standard 2-point correlation functions.
Consistency of these estimates are checked by
varying the initial state using J = P or A4 and
with different types of sources for the quark prop-
agators (Wuppertal smearing, Wall, point). In
the following we use the abbreviation m; = mii,
where VZii refers to two degenerate flavors.
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With csw fixed, Z} and bV are obtained using
charge conservation. We use the forward matrix
elements of (VI)4 between pseudoscalars,

1

Z)(I+ IWWL2)=
-&u(P@y5, T)(vI)y2)(i, W(’’)(o)). (8)

(-& P(’2)(i, T)J(”) (o))
with T > t >0 and J = P or A4. Notethat the
Cv term in VI does not contribute.

Next consider the generic axial WI

(&~$3) (g) J(3’)(Z)) = (d~~’)(y) Jo)

where 0 23 = @2)r@3), ~@3 = @l)-y517#3) , and

&J9 =
/[ 1

(m: + rnf)(PR)(’2) -~P(AR):2) (10)
v

This results from a chiral rotation on flavors 1,2
in the 4-volume V, with y ~ Y and z @ Y. By
enforcing these identities in the chiral limit one
can determine cv and @’ [3,8,9], as shown below.

Away from the chiral limit, operators P and 0
in the product ~v (rn~ + n$) (PR)(12) (z)0$3) (y)
need off-shell improvement. This requires the ad-
dition of a contact term, of unknown normaliza-
tion, having the same form as the RHS of (9) [9].
Our new observation is that the contact term is
proportional to ml +m2 and so can be removed by
extrapolating ml and m’ to zero. This leaves the
freedom to examine the dependence on m3, and
from this one can determine certain combinations
of the 6X. In the following, the extrapolation to
ml = mz = O is implicit’.

As a first application of this method we show
how to obtain bA, as well as cv, using the WI

Z~(l + b~am3/2)

‘1 - Z! . Z)(1 + bvam3/2)

~r(ds(”) (VI):3)(V, y4) N’)(o))=
XU((A)!3)(3v4) J(’’)(o))

(11)

21n practice, we keep the ~(ml + mz )(PR)[12)term in Eq.

(10) prior to extrapolation, since it improves the signal.

where J = P or A4. Eq.(11) is independent of
Cv at $ = O, and its ms dependence gives bA– bv.
The intercept provides a second determination of
Z~. Eq. (12) is used to determine cv.

Given cv, an alternate determination of bA– bv
is obtained from

(13)

This also yields Z]. The same information can
be obtained from the combinations

1

m=zi’
(14)

rrl—=3(1 + (bA – bv)am3/2) . (15)
r’ v

Similarly, we determine bp – bs and Z~/Z~ using

Z}(I + bpam3/2)

Zj . Z:(1 + bsam3/2)

~ie’~”J(&S(’2) S(23)(~,y4) J31)(0)) . ~16).
- ~Fe’~”~(P(’3) (J, YA)J(31)(0))

To get CT we use the WI with 0 = T~j

At F= O, (Tr)ij has no contribution from the cT
term, so the only cT dependence is on the LHS.

The previous method fails for bT since both
sides of (9) have the same dependence on bT if
ml=mz=O. The cure is to consider three
non-degenerate masses. The contact term re-
quired to improve the LHS of (9) is proportional
to ml + m2, while the relative dependence of the
two sides on bT is proportional to ml – mz. Thus
the two terms can be separated and bT deter-
mined. More details will be given in [11]. We
have not yet implemented this proposal.

Thus far we do not have a separate determina-
tion of bp or bs. This can be accomplished with
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the method of Ref. [10], which uses 2-point cor-
relation functions for non-degenerate masses. In
addition to using that method we present a vari-
ant which avoids the need to study quantities as
a function of the underlying hopping parameter
~. We first note that if we use Eq. (7) and enforce
(2ml)~ + (2m2)R = 2(m1 + m~)~, we find

bp–bA=–
hlz – 2[mH + ?7@]

a[mll – 7n22]2 “
(18)

We next make use of the vector two-point WI

where the source J is either J(21) = 5’(21) or
~zP(23) (2’, .Z4)P(31)(0) for O < t < .Z4.Enforc-
ing 2(m~ – m?) = (2m1)R – (2mz)~, we find

bs – bv _ Amlz – Rz[mll – mzz]

2– aRz [m~l – m~2]

+(bp – bA) , (19)

where RZ E Z~Zj/(Z~Z$). Since bA andbv are
already known, bp andbS are given by Eqs. (18)
and (19).

The above discussion shows that in principle
one can determine all the constants, except Z:
(or Z~) and 2$, in the quenched theory using
Ward identities. The results of an exploratory
study are summarized in Table 1. These were ob-
tained on 83 lattices of size 163 x 48 at /3 = 6.0.
Since the action is only tree-level tadpole im-
proved (csw = 1.4755), the results do not rep-
resent full O(a) improvement, but they indicate
the efficacy of the method. More details will ap-
pear in [11].

We draw two preliminary conclusions. First,
the determination of Cv has a large uncertainty,
which accounts for a substantial fraction of the

0, Z$/Z~, and CT. The Schrodingererrors in 2A
functional method used in Ref. [8] seems to deter-
mine the constants, in particular cA and cv, with
much smaller errors. Second, even though there
are channels in which the errors on the determi-
nation of b.4—bv andbp – bs are fairly small, we

Eq.# observable intercept
(6) CA –0.016(11)
(8) z; +0.746(1)
(8) bv +1.55(2)

(11) z; +0.752(7)
(11) bA – bv +0.34(21)
(12) +0.46(29)
(14) Zfi;;:)z +1.32(12)

(14) bA – bv +1.8(1.1)
(14) z; +0.78(2)

(15) 2;/2; +1.00(5)

(15) bA – bv +1.2(8)
(16) 2;2$/2; +0.96(1)
(16) bp – b,s –0.08(9)
(17) cT –0.14(7)
[10] 2;2:/2; +0.96(1)
[10] bA – bp + bSf2 +0.49(1)
(18) bp – bA +0.1(4)
(19) bs - bv - 2(bp - bA) +1.7(5)

Table 1
Constants extracted from the different WI.

find the magnitude of these differences are still
comparable to their error. This rough equality
between all the bx is consistent with perturba-
tive results [12].
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