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ABSTRACT

We present a preliminary analysis and design framework developed for the evaluation and
optimization of infkared, Imaging Spatial Heterodyne Spectrometer (SHS) electro-optic systems.
Commensurate with conventional interferometric spectrometers, SHS modeling requires an
integrated analysis environment for rigorous evaluation of system error propagation due to
detection process, detection noise, system motion, retrieval algorithm and calibration algorithm.
The analysis tools provide for optimization of critical system parameters and components
including: i) optical aperture, f-number, and spectral transmission, ii) SHS interferometer grating
and Littrow parameters, and iii) image plane requirements as well as cold shield, optical filtering,
and focal-plane dimensions, pixel dimensions and quantum efficiency, iv) SHS spatial and
temporal sampling parameters, and v) retrieval and calibration algorithm issues.

Keywords: Infrared Fourier Transform Spectroscopy, Spatially Modulated FTS

LO INTRODUCTION

The basic function of an infrared imaging Fourier Transform Spectrometer (FTS) is the
capture and generation, through optical collection and electro-optical conversion, of a
hyperspectral facsimile of the radiated and reflected infrared electromagnetic energy emanating
from an extended scene. The resulting PxQxN hyperspectral data cube consists of two (image)
spatial dimensions by N spectral dimensions. The PxQ spatial resolution of the data cube is
determined by the system optical transfer finction (OTF), while the spectral resolution is related
to the Fourier transformed intensity distribution induced by the path-differenced, two-beam
wavefront interference of the image. As will be discussed in this paper, the imaging Spatial
Heterodyne Spectrometerl>2 (SHS) employs a novel pushbroomed optical grating based concept
for the acquisition of the PxQxN data cube. What immediately follows, is a brief review of
wavefront interference as applied to transform spectrometers and a qualitative summary of basic
imaging FTS concepts leading up to the Spatial Heterodyne Spectrometer.

The interference of two mutually identical wavefronts, kl = kz, at the image plane is

schematically diagramed in Figure 1. As the focal plane array (FPA) pixels follow
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A) Wavefront Interference B) Interferogram - Intensity Distribution

C) Interferogram - Fringe Pattern// .\

Figure 1. A) Wavefiont interference of two identical beams at the image plane. B) Detected
interferogram intensity distribution fork= constant and kc = f 3, and C) fringe pattern. Of importance,
the wavenumber and intereferogram are related through the Fourier (Cosine) transform.

modulus-squared detection principles, the interference of the two fields results in an intensity4
modulation related to the wavefronts relative path difference, x, and wavenumber, k, through

O(X,k)a 1+ cos(2zkx) . [1]

By sweeping the relative wavefront path difference, x, through an appropriate range, an
interferogram in the form of a density distribution or fringe pattern may be generated and

sampled. Through superposition principles, the single wavenumber, k, of Equation 1 maybe
replaced by a weighted spectrum, S@), resulting in

O(x) w j~(k)(l + cos(27r k x))dk ,
k

[2]

with S(k) and interferogram @(x) uniquely related through the Fourier (cosine) transform,

Application of wavefront interference to imaging transform spectroscopy is demonstrated in
Figure 2. The basic Michelson5 imaging spectrometer consists of an optical filter, interferometer,
and a focal plane array. Shown in its simplest form (two mirrors and a beamsplitter), the
interiierometer splits the image into two beams, which are recombined at the image plane with a

relative path difference, &, introduced by the movable mirror. By sweeping the movable mirror

over a prescribed travel distance, lzlx, the interferogram at each image point is sequentially
sampled at the FPA. Inversion of the interferogram through Equation 2 retrieves the spectrum,
S@). The minimum number of required interferogram samples, N, is related to the smallest
expected ftinge spacing caused by the largest expected wavenumber through

[3]
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Figure 2. Basic Michelson imaging spectrometer. The intetierometer splits the image into two beams, which

are recombined at the image plane with relative path difference, & introduced by the movable mirror.

Sweeping the movable mirror over prescribed travel, fi, the intetierogram of each imaged point is
sequentially sampled at the FPA. Fourier transform of the interferogram retrieves the spectrum.
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Figure 3. Spatially modulated FTS. The Mach-Zcnder topology introduces a slight angular tilt in the

wavefronts at the image plane. Spatial modulation is accomplished through the linear path difference, ~,
introduced by the tilted or crossed wavcfronts. Unlike the Michelson imagcr, the scene must be scanned

(pushbroomcd) across the image plane for gxwration of fill intcrferogram.



with the spectral resolution, &, is determined by the total spatial displacement, M,

&x~ [4]
Ax”

Note that as the sample rate specified in Equation 3 precludes resolving spectral components
above kz, an optical filter, W@) in Figure 2, must band limit the incident spectrum to kz or below
to prevent spectral retrieval ambiguities resulting from undersampled interferograms.

Oi,j,n

The Michelson imaging spectrometer must
dwell in a stationary manner on scene (staring
imager) during the interferogram data collection
process, that is, over the period of time the mirror

is swept, izlx. An example of the intert?erogram
data cube set is illustrated in Figure 4. Each
interferogram sample element, @iJ,n,corresponds
to a one-to-one registration between FPA pixel
and scene sample. Retrieval of the scene
spectrum at spatial index i~”, Sij, is obtained

through Fourier transforming @iJ.

z

Figure 4. Intefierogram data cube with sample

element @ijfl. Spatial indices are i,j and the
intefierogram index is n.

An important benchmark of imaging transform spectrometers is the Etendue, ~ or optical
throughput. As the Michelson spectrometer is a staring imager, light is collected over the fill
field of view and the throughput is maximized. With Ad, the FPA pixel area, and y#, the effective
system F-number, the Michelson throughput is

[5]

A moving mirror is not the only method of inducing wavefront intetierence. Figure 3
schematically illustrates a (highly simplified) spatially modulated spectrometer with no moving
parts. Developed by R. F. Horton, the High Etendue Imaging Fourier Transform Spectrometer
(HEIFTS) implements a Mach-Zender topology to induce wavefront intetierence. The optical
configuration splits the incoming beam and recombines the wavefronts at the image plane with a

slight angular tilt. Spatial modulation is accomplished by way of the linear path difference, ~
introduced by the tilted or “crossed” wavefronts. Unlike the Michelson imaging spectrometer,
which operates in the staring mode, HEIFTS is a scanning imager. The scene must be scanned
across the image plane to generate the interferogram. When spatially re-indexed to account for
scanning, the resulting data cube is similar to that of the Michelson data cube defined in Figure 4.

Both the Michelson and HEIFTS effectively share identical optical throughputs and
interferogram sampling requirements. However, as the interferogram must be spatially sampled
by a given row of FPA pixels, current technological limits may impose practical constraint on the
number of pixel samples.
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Figure 5. Spatially modulated Imaging SHS. The Imaging SHS utilizes gratings instead of mirrors for

the formation of wavefront tilts. The dispersive nature of the gratings leads to a “spatial heterodyne”
phenomena whereby the transform cuts off at the Littrow wavenumber, k =kL,instead of the more

traditional k = Opermitting a significant savings in required spatial samples. The scene must be,scanned
(pushbroomed) across the image plane for generation of a fill interferogram.

Another approach to spatially modulated FTS, and the objective of this paper, is the infrared
Imaging Spatial Heterodyne Spectrometer (ISHS), jointly developed by B. Smith” 8 and J.
Harlander. Schematically depicted in Figure 5, the ISHS is similar in operation to HEIFTS with
the exception that gratings instead of mirrors introduce wavefront tilts. Of significance, the
dispersive nature of the gratings lead to a “spatial heterodyne” phenomena where the transform
cuts off at the Littrow wavenumber, k = kL, instead of the more traditional k = O wavenumber. As
will be shown, this can lead to significant savings in the number of required FPA pixels, The
following SHS summa~ follows from Harlander et al.

The basic spatial heterodyne spectrometer transform is given by

~(x) w ~S(k~l + cos(27r (4 tan(d, )(k -k,)x))]dk
k

[6]

where

Q,= Lhtrow angle,

kL = Littrow wavenumber [cm-’].



Equation 6 follows from the basic relations governing the generation of Fizeau frhges of
wavenumber dependent spatial frequency, which are given by the following grating equation

k(sin(8)+ sin(O - y))= ~, [7]

where

k - optical wavenumber [cm-l],

w = order of diffraction,

8= Littrow (grating) angle [rad],

I/d - grating groove density [cm-l],

y= angular inclination (relative to optical axis) of crossed wavefronts [rad].

The spatial frequency of the Fizeau fringes of the crossed wavefronts is quantified by

~=2ksin(Y), [8]

and for small y, is approximated as

~= 4tan(8)(k - kL), [9]

with kL the Littrow (y= O) wavenumber. Substitution of Equation 9 into the wavefront
interference relation given in Equation 2 results in the SHS equation of Equation 6

cD(x) m ~S(k~l + cos(27r (4 tan(/3L~k - kL )x))]dk
k

Like the Michelson and HEIFTS, the imaging SHS shares the high optical throughput of
Equation 5. However the spatial heterodyne phenomena of Equation 9, resulting from the
dispersive grating, places the transform cut-off at the Littrow wavenumber, k = kL, instead k = O,
permitting a reduction in required pixel samples for a given resolution and optical band

~J%-h
b-k’

[10]

Typically, the Littrow wavenumber, k = kL, is set at or just below the long wave cutoff k = k{

While the overall fidelity of the captured hyperspectral image is limited and hence determined
by both spatial and spectral phenomena, the analysis presented here will focus on SEESspectral
error propagation at the detection level. The reader is referred to the literature for performance
analysis of the systems spatial response9’*0. Sections 2-4 address spectrometer response, retrieval
noise, and detection noise. Section 5 considers calibration issues, while Section 6 defines basic
SHS design relations followed by an SHS design example based on a current experimental
laboratory prototype.
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Figure 6. Simplified FTS system depicting composite spectral source approximation and related optical
parameters.

2.0 SPECTROMETER RESPONSE

2.1. Detector Referenced Input Spectral Exitance* *

The FTS’S detector referenced input exitance may be approximated by two composite spectral
sources: i) radiant sources imaged through the spectrometer and contributing, via coherent
intetierence, to the interferogram signal, and ii) non-imaged radiant sources that incoherently
contribute to the intetierogram in the form of DC offset. Referring to Figure 6, the detector
referenced spectral exitance from all imaged radiant sources is given by

[
s,(k) = ; Cl. (L.(k)+Lbg(k))+ 1+f%p_,o) Ilk) [W/m2-cm-’], [11]

while non-imaged contributions, typical of radiant sources located after the interferometer, is

S,(k) =
[

%,, %, z(k) Q= -%,, Mf,(k) z -Q=

() ()

MB (k)
z To_;(k) + z . TO,(k)n#)~._*(k)~~(k) 1

X(k)
T’ 1wg(w’.w + ~ _

[W/m2-cm-’], [12]
where :

k = optical wavenumber [cm-l],
L.(k) = desired signal radiance [W/m2-sr-cm-1],

Lb~(k) = undesired (but unavoidable) background radiance [W/m2-sr-cm-*],

ikiop_l(k) = imaged optical exitance [W/m2-cm-1],
J40p_2(k)E non-imaged optical exitance after the interferometer [W/m2-cm-1],

ikffi(k) = field-stop exitance [W/m2-cm-1],

A4Jk) = cold-shield exitance [W/m2-cm-l];



Aperture and system solid angle [sr]:

o.==+,
4A

D.= system aperture diameter [m],

DO~,= aperture obstruction diameter [m],

x= effective system focal length [m];

Spectral transmission fhnction:

x(k)=T. ,(JC)T@C)TO_,(k)Tf(k)q._n(k),
T._l(k), T._2(k) = optical transmission tlmction,

~~(k) = grating eticiencY,

Tik) = optical filter transmission fimction,

qd_~(k) - normalized detection quantum efficiency finction:

‘d ‘k), where (~~ ) is averaged over the filter passband.~d_n (k)= —
(~) d

[13]

[14]

[15]

[16]

The optical transmission filter, Tfi), band-limits the sampled spectrum preventing or reducing
spectral aliasing. The signal and background spectral radiance’s, L,@) and L5~(k), should be
generated with high spectral resolution, i.e. HITRAN or MODTRAN depending on required
spectral resolution.

2.2. Interferogram Generation and Inversion’z

Substitution of sources S}@) and S2@) into Equation 6 results in the following image-plane
referenced interfierogram

{ }

~(x) = 3 ~{~[1+COS(27r(LI tan(O, )(k - k. )x)+ @(k,x))]dk +~~% dk [17]

[ph/m2-s],



where:

h = Plank’s constant [6.626 10-34J-s],

c = speed of light [2.998 108 m/s],

S (k,x): A firtctional dependency accounting for coherent detection effects including
fringe visibility “washout”, distortion, and spatial sampling.

~k,x) : A functional additive phase dependency accounting for wave dispersion and
systematic phase distortion.

In many cases, the fictional dependency, .3, is a multiplicative function, and the interferogram of
Equation 17 can be re-written as the sum of an offset plus interferogram:

1 ‘1(~) k X) COS(Z ~(4tin(OL )(k - k, )x) + (?(k, x)) dk [p~m2-s],@(x)=@. +=J —3( ,
~ k

[18]

with the offset

@o =+j+(s,(k)+%(k)bk [P~m2-sl [19]
k

Retrieval of the image spectrum L.@) and Lb~fi) follows from inversion of Equations 11 and 18

( )*w.> A40p_,(k)L=(k) + I%g(k) = ~ ~(k) [W/m2-sr-cm-’], [20]
0

and

S,(JC) = hc K4tan(0~ )~ k(@(x)- CDO)3’ (k, X) COS(2z(4tan(O~ )(k - k, )x)+ (?(k, x))dx
k

[W/m2-cm-’], [21]

where K = 4 or 2 for a single or double sided transform respectively, and it has been assumed
that the inverse, q-~ , exists.

2.3. Sampled SJ3S13’14

As an image plane FPA will spatially sample the intertlerogram, Equations 18-21 will have to
be discretized. For n = 0,/,2,3.. N-1 samples, Equations 18-21 result in:

~ N-1 s
@r, =@o+— x*3(k,n,x,,)cos(2 n(4tan(8,Xk,~ - k, )x,,)+ t?(k,n,x,t))i$k

hc ,,,.Ok,,,

[ph/m2-s], [22]



.

@o= + j+-#S,n, +S2,,,)&C [p~m’-sl,
m– nt

-(1 S,n Q.ys
L~n + Lbgn = — - —M

oP_ln

1

[W/m2-sr-cm-’],
‘. X. z

[23]

[24]

N-1

S,n = lzc K4tan(0~ )~k~ (0,,, - @O)& (k., Xm)COS(2z(4tan((3~ )(k~ - k, )x,. )+ @(krt, xm))~x
m.0

[W/m2-cm-’], [25]
where:

k. = k~ + ndk n = 0,1,2,3.. .N -1, with k~ = Littrow wavenumber [cm-l], [26]

X. = n~x – XO n = 0,1,2,3...N – 1, [27]

k ~w = k~ + i$k ~ (Nyquist wavenumber), [28]

and XOa spatial offset depending on single or double sided interferometer configurations.

To reconstmct the spectral wavenumber knyq,Whittaker-Shannon sampling theorem requires a
sample rate of at least 2knvQ.The sample rate of 2knyQis known as the Nyquist rate and the knyqthe
Nyquist wavenumber. My wavenurnbers below knyqwill be unambiguously

wavenumbers above k.yq are aliased. To prevent spectral aliasing, TJ (or ~)
attenuate spectral components at and beyond kn),q.

reconstructed w“hile

must sufficiently

A) Coherent Detection B) Intetierogram - Intensity Distribution
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20

50 lm 150 2m
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PC= Coherence Length [m]
P.= Exponential Coe!licient[]

Figure 7. A) Example of spatial coherence demonstrating fringe visibility loss or “washout” due to

coherence degradation for fi.mction parameters PO= ?4, p.= 1/3X .~~y, P. = 2. B) SHS interiirogram
intensity distribution and C) fringe pattern. As fringe contrast is prematurely lost into the background,

detection noise will increase.



2.4. Spatial Coherence

Degradations in spatial coherence can lead to interferogram fringe distortion and reduction in
fringe visibility resulting in reti-ieval error and increases in detection noise. The derivation of the
FTS coherent detection process follows from Poynting’s relation *s’lG’17which relates the induced

detector current, 1, to the detector’s quantum efficiency, q(x,y), and the spatial distribution of the
interilering electromagnetic fields, ~1 and ~2, respectively, over the FPA detection surface, S, as

depicted in Figure 7 through

I = kc&@ X H)” &, kC = COYtSta71t, [A]. [29]

Assuming the fields are tran~verse electromagnetic in nature, and of the form

[30]

results in the induced pixel current

The resulting pixel current, a superposition of the non-interfering plus a intet%ering wavefront
terms, is a result of field amplitude and path difference (phase) distributions, Izl(x,y) - z&y)l,
integrated over the pixel surface. As will be demonstrated in the following derivation,
irregularities in the microscopic and macroscopic field distributions can lead to fringe distortion
and loss of fringe visibility.

Equation 31 reduces to Equation 1 by sampling the fields at the pixel centers through the

substitution q(x,y) + qO“~x-x.) .~y-ye), resulting in the familiar relation

Furthermore, substitution of the SHS relation, z, – Zz = 4 tan(OJ@-k{jx, normalizing the fields,
and integration over spectrum, S@), leads to the SHS relation

@(x) a~~[1+COS(27r(4 tan(O. )(k - k, )x))dk].
k

The spatial coherence degradation of Equation 31 maybe approximated by spatially integrating

over the finite pixel pitch, AX,and the inclusion of the spatial coherence fimction @t,x)

@(x) + f~[l + p(~, x)slnc(4tan(0L )(k - k, )AX)COS(2z(4 tan(OL)(k - kl. )x)) ]dk. [32]
k



The spatial coherence fimction, @,x), maybe represented as the product of self and cross
coherence term, @,x) = p##p#,x), The self-coherence term models the microscopic intra-
pixel coherence degradation (reduction in ftinge intensity at zero-path difference) due to small-
scale quantum efficiency variations and optical field distortion over the detector sutiace. The
macroscopic cross-coherence term accounts for inter-pixel coherence degradation (reduction in
fringe visibility across the image plane) via large-scale field distortion including optical system
aberrations, alignment etc. While coherence effects are typically complex, a simple analytic model
illustrating fringe visibility loss is given by

1 !~a(k)
[33]

The model is based on Gaussian phase screens*8 with p. is the self coherence term, p= is the

spatial coherence length, and pe exponent. Figure 7 demonstrates fringe visibility loss or
“washout” due to coherence degradation for PO= 3A,p== 1/3 Ax.,,.Y, p. = 2. As ftinge contrast is
prematurely lost into the background, detection noise increases. Throughout the remainder of the

paper, the placeholder fimction, 5 @,x), defined in Equations 22,25 will assume the value

~(k, x) = p(k, x)sinc(4 tan(t?~ )(k - k~ )AX). [34]

3.0 DETECTION NOISE

3.1. Stationary Noise Process19’20’21

Analysis of noise propagation in the FTS spectrum begins with the examination of noise
induced variations of the intensity interferogram. From Equations 22 and 23, we define the
interferogram fluctuations oryrjnge contrast as

with the interferogram offsel or mean as

[36]

Note that for stationa~ noise, the interferogram mean converges to 00 for n large

The detection signal to noise

@,, = (q)+ 00 [ph/m2-s]. [37]

ratio referenced at the detector (SAY?.)will be estimated in this paper
by evaluating thefringe contrast to noise ratio

Q.”
SNRXn= —

0,” ‘
[38]



where, in terms of root-mean-square (rms) noise equivalent radiance,

o-x” = iVEl,o,fl= ~~ [ph/m2-s],
... -

and

[39]

JNEIP4 = Kd Af *

(qd)A~ n [pwm2-s],
[40]

u = detection noise factor,

Ad - detector element (pixel) area [m2],

zl~= noise equivalent bandwidth [Hz],

AV!?ld., - equivalent detector, amplifier and readout noise [ph/m2-S].

The NEZ~arof Equation 39 is the total detector, amplifier and readout noise, and is related to the

detector/amplifier/readout noise spectral density, nda. (defined in volts or amps per ~Hz), through

[41]

where kd., is a conversion constant (V or A to NEI) and j [Hz] the frequency variable. Equation
41 is valid for both white and colored (correlated) noise types.

Finally, the spectral signal to noise ratio, assuming Gaussian noise, of the retrieved spectrum,
SNR~, for then* spectral component will be defined as

S,n
SNRka = —,

‘k.

with ~&estimated through (see Appendix A)

[42]

JIO& = h K 4 tan(~~ ) 6X$ k~3-1 (k., x. )k~ COS(2z(4 tan(d~ ~kr, – kL)x~ )+ 8(k,L,x,. )~20jmdx
m=O

[W/m2-cm-’]. [43]

Equation 43 demonstrates then* spectral noise component is composed of the summed

contributions from all the interferogram noise terms, crX,modulated by the magnitude squared of
the inversion relation given in Equation 25.



3.1. Non-Stationary Noise Processes22’D

In the presence of non-stationary noise (varying mean and covariance), the estimation process
defined by Equation 35 is invalid because the interferogram mean becomes non-stationary

@),(n) - E[@~ (n)]* 00 [ph/m2-s]. [44]

The inversion relation, which is now expressed in terms of a mean that varies as a fhnction of
sample index, m, results in a corrupted spectral retrieval, SJ

S,n = hc K4tan(f9~ )~k~ (Om -@p (rn))X1(k~, Xm)COS(2m(4tan(d~ )(k~ - k, )xm )+ ~(k~ ,Xm))dX
ml)

[W/m2-cm”’]. [45]

The most common causes of a non-stationary mean are low-frequency drifts in the spatial and/or
temporal sampling process, i.e. a spatial row of channels or a single-channel time sampled
sequence. Higher frequency sources would include, for example, jitter and vibrations due to
platform motion.

A comparative summary of

. White Noise: The ‘ideal

he three most typical noise types include:

noise process with constant mean and covariance.

@# + @o [ph/m2-s]. [46]

. Systematic+ White Noise: A systematic linear trend in the interferogram mean with a slope

of is, over the temporal/spatial sample space n = 0,1,2,3, ... N-z

@P(n) --+ @O* En” [ph/m2-s]. [47]

Typical sources of systematic noise include i) a slow temperature drifl in the near field
blackbody or focal plane array (i.e. optics, filter, cold shield, detector dark current etc.), ii)
electronic detector, amplifier and readout offset drift, and iii) amplifier gain drift. Systematic
noise may be removed, to first order, by a two-point calibration where the system is calibrated
immediately before and after a measurement sequence (see 5.0 Calibration).

● Correlated I/f + White Noise: Noise sources introducing significant levels of correlated, low
frequency noise (effectively a nonlinear drift over the acquisition window) resulting in a poor
interferogram mean estimate and the probable corruption of the retrieved spectrum, S1.
Calibration is extremely difficult as the mean is a nonlinear fimction of sample n

@J,(n) + E[@H(n)] # 00 [ph/m2-s]. [48]



4.0 INTEGRATING PHOTOVOLTAIC CELL

Figure 8. Basic integrating photovoltaic FPA cell block diagram.

The simplified block diagram of a basic, integrating photovoltaic, focal plane array ce112432s>2d
(IPV FPA) is shown in Figure 8. IPV FPA’s are the most common form of infrared focal plane
array topologies, encompassing categories from the simple direct injection (DI) cell to the more
complex capacitive transimpedance amplifier (CTIA). Basically, the IYV stores injected detector
current as charge on a capacitive integrating node for later readout at a sample period T,. The
cell’s output is a voltage value determined by the stored charge, node capacitance, and any
additional cell gain. Referring to Figure 8, the IPV output signal and noise voltage relations are
evaluated as

‘n=J~ [v], [50]

where:

T== sample period (frame rate) [s],

rtil - integration period (Note: Gn,< T$) [s],
Cc= amplifier conversion gain [V/q],
Ad= detector element (pixel) area [m2],

Af= l\2T, noise equivalent bandwidth [Hz],

Id= detector dark current [A],
JP = q A. qd @ detector photocurrent [A],

~d = detection quantum efficiency,

w- detection noise factor (W = 2 for photovoltaic),

v... = amplifier/read output referred noise voltage [V/~Hz],
ifi_d- detection noise current:

Substitution of the relevant relations derived in Sections 2 and 3 into Equations 49-51 result in
the following sampled voltage expressions (n = 0,1,2,3, ... N-1):



Vn=Go~int(Zd+9 Ad (~d)@n) [V],

Vp(n) = E[vn(n)] [v],

V.*=V-n- Vg(n) [v],

[52]

[53]

[54]

S,n = k ‘4hn@L)‘-’k V 3-’(kn,xm)cos(2 z(4bn(OL~~n-J%)xm)+dk~xm))ax
~G. ‘intAd(Vd) 20 n “m

[w/m*-cm-’l> [55]

[56]

hc K 4 tan(tl~) ‘~
ok =

~GCrintA~(~~) 1
x ~ k~5-1 (k., Xm)kn COS(2z(4 tan(8L~kn – k~)xm )+ O(kn, Xm)~2crjm8x

~.o

[W/m2-cm-’], [57]

and signal to noise,

v
SNRXn = ~,

ox”

S,n
SNR~ = —.

n

ckn

[58]

5.0 CALIBRATION

The detection noise and resulting spectral retrieval fidelity are closely linked to the calibration
methodology. A brief summary of calibration in the presence of noise using the detection noise
framework defined in Section 2.o – 4.0 follows.

5.1. Calibration Source

Ideally, a set of known calibration sources, 1 = 1,2, .. l~m, of uniform temperature and
emissivity, are sequentially inserted at the FTS input generating a set of 1 = I, 2, .. l~w linearly
independent input/output relations with which to characterize or calibrate up to l~a system
unknowns. For a set of calibration sources, I = 1,2, .. lnfi, the detector

exitance, Equation 11, is modified with

[ 1S,,n+ Sa,,,n(s,,q)=: >Mm,n(6[>Tl)++~op_1,,zn

referenced input spectral

[W/m2-cm-1], [59]



where:

1= 1,2, .. 1-= the number of’calibrated sources,

T1= temperature of the l’hsource [T],

S1- emissivity of the ~hsource.

5.2. Minimum Source Set: Ideal Spectral Calibration

It follows from Equation 59 that the input/output relations of an idealized FTS calibration,
given 1 = 1,2, .. /mmcalibration sources, can be written as

f-l
sM,,= Sod(l?)+~kica,n(E,, ~ )Xn + -%40p_,n x“ [W/m2-cm-’],

x

with the known and unknown terms:

[60]

kmwns:

S~ - spectrometer output - total measured optical exitance [W/m2-cm-1],

A4C.I- optical exitance of the l’hcalibration source [W/m2-cm-1],

120, Llv = aperture and system solid angle [sr]:

unknowns:

SO ~n) - optical exitance at n=O due to radiation from source Sz and channel offset

(Note: ~n) - kronecker delta fi-mction) [W/m2-cm-*],

ikfofl_l- imaged optical exitance entering the interferometer [W/m2-cm-1],

X. ~ T.in ~~mL_zn Tfnq~_.mspectral transmission fi.mction.

Given the three unknowns, a minimum number of three calibrated sources are required, resulting
in the following set of input/output relations

!20Sm,“ = sod(n)+—
Q

~ fwdn(%T’)x.+ ‘~op.l. x.

s“,,“ = sod(n)+Q ;
‘Mcd# (S2,4)X. +3 MOP_I,Xn
n [61]

Sm,m= so d(n) +
Qz

%Icd (q>7;)xn +--%40p_,” Xn
z ,“ ?r

from which So A40~)_1,and x are to be estimated, As will be demonstrated next, the offset
component So can be estimated directly from the interferogratn, reducing the number of required
calibrated sources by one.



5.3. Estimating FTS Channel Gain and Offset

Each FTS channel, for a modern focal-plane array (FPA), consists of a detector “looking” into
a radiant background, an amplifier and a readout (the A/D conversion will be considered common
to all channels). In general, each channel differs slightly in gain and offset due to minute channel-
to-channel variations in detector, amplifier, readout and observed radiant background.
Furthermore, the variations can be static or spatialhemporal finctions. The spatialhemporal
dependence can be deterministic or random in nature, and if random, both stationary and non-
stationary processes can be present. The output voltage of the p, q channel of a PxQ FTS array is
given by Equation 52,

The gain of the p,q channel reduces to the term

Gain,, = 9 ‘.,4 ‘int,,g ‘d,. (~d,q) [v@~m2-S)],

and the offset voltage (for a stationa~ noise process)

[62]

[63]

[64]

With the offset estimated, the zero-mean voltage interferogram will be defined with

v. =Vp,q,n- Vpp,q[v]. [65]
P.q..

From Equation 55, the total measured exitance, Sm, is evaluated and the calibration input/output
relations of Equation 61 reduce to the following:

s
c1

=
wp.qfl

%4ca,,an(&,,7J&n + -=&lop ,,an Xp,q,n
7r

s =%4cdp4fl(&,,Qxp,q,n+
Qn ,

%.p.qm ~ =A4
OP-1P4X Xp%9.n

n

[66]

with A40P_fand x the remaining unknowns. Note that in general, the channel gain may be a

nonlinear iimction of irradiance, 0,

Gain p,~+ GainP,~(@) [V/(ph/m2-s)], [67]

and for the non-stationary noise of Section 3.1., Equation

V,,,,q+ V,,,,q(H) = E[vnpq(n)]

63 becomes sample dependent

[v]. 1681



In summary, for every channel p,q, a given calibration algorithm will be required to estimate
the gain/offset evaluating M.P_f and x as prescribed by Equations 63 through 66. A minimum of
two calibrated sources is suggested for channels linear in gain and offset, while three or more
sources may be required to calibrate channels with increasing degrees of nonlinearity.

6.0BASIC

6.1. Spatial Interferometer Parameters

SHS DESIGN

The fimdamentai SHS spatial interferometer equations, based on combined spectrometer and
dispersive grating relations, results in a set of nonlinear design relations that must be
simultaneously iterated for a self-consistent generation of interferometer design parameters. This
section summarizes basic design relations permitting the iteration and generation of first order
spatial interferometer design parameters and constraints. The first order design parameters
essentially provide a starting point for the SHS design through the system performance analysis
discussed in Sections 2.0 – 5.0 and optical design.

Spatial interferometer parameters:

kl – k2 = spectral range [cm-l],

tik - spectral resolution [cm-l],

N - number of interferogram samples (pixels),

clk - sample pitch, ~ < pixel pitch ZIX[cm],

W- grating width [cm],
d~ - grating groove density [grooves/cm],

6~ - Littrow angle [rad],

k~ - Littrow wavenumber [cm-l]

Referring to Figure 5 and the FTS and SHS equations defined in Equations 6-10, the design
parameters may be iterated through the following spatial interferometer design relations.

SHS spatial Interferometer desitm relations:

1. Maximum grating path difference:

x mm =~wcOs(eL) [cm] [69]

2. Spectral resolution:

($, =
1

2(4 tan(/3~ )X~aX)
[cm-’] [70]



3. Littrow wavenumber (require kL<kl ):

d,
k~ = [cm-’]

2sin@~ )

4. Number of samples (roundup to nearest integer);

N = 2[41V(/c2 - k~)sin(d~)]

5. Nyquist sample pitch (require c%<pixel-pi/ch A. ):

Csx=
1

[cm]
4 tan(t?L)dk N

6. Nyquist wavenumber (require knHkkl ):

[cm-l]

[71]

[72]

[73]

[74]

6.2. SHS System Analysis

Once the basic spatial interferometer design parameters have been identified, the system
analysis tools defined in Sections 2.0 – 5.0 maybe used to fiwther specifi and optimize additional
system parameters and design. Additional system parameters include aperture dimensions, f-
number, spectral transmission, cold-shield, optical filtering and focal-plane responsivity and
readouts, calibration issues, and data processing including retrieval algorithms.

6.3. Design Example

An SHS design example based on a current experimental laboratory prototype follows. The
desired target performance requirements are a spectral bandwidth of k, = 1053 cm-l to kz = 1176
cm-l at a resolution of di = 1 – 2 cm-l. Furthermore, as the experiment will utilize a commercially
available grating and FP~ the design is constrained to a groove density of 500 cm-i and a

256x256 by 30 ym pitch array. The iterated intetierometer and remaining system parameters are
summarized below.

Interferometer parameters:

kl , k2 = 1053 cm-i -1176 cm-*
N= 256,
W= 1.05 cm,
81.= 13.75 Deg.,

t% =1.33 cm-l,

tit =30 ~m,
d~ = 500 cm-],

kL = 1052 cm-], knyq= 1222 cm-l.
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Figure 9. Uncalibrated response: A) Interferograrn 9, B) Rctricvcd spectrum S1, C) Relative retrieval
error, and D) Spectral signal to noise ratio. A 10/0gain and offset non-uniformity was assumed.
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Figure 10, Calibrated response: A) Interferogram 0, B) Retrieved spectrum S1, C) Relative retrieval error, and
D) Spectral signal to noise ratio. Gain and offset non-uniformity are calibrated to 0.01 ‘X.



.

System parameters:

. 256x256, 30 ym HgCdTe focal plane array:

T,= 0.1, sample period (frame rate) [s],

rti = 0.500x10-3, integration period [s],
G== 0.34x1 04q-1, amplifier conversion gain [V/q],
Ad= (30x 104)2, detector element (pixel) area [m*],

~= 5, noise equivalent bandwidth [Hz],
ld = 0, IX107, detector dark current [A],

q~ = 0.75, detection quantum efficiency,
~ = 2, detection noise factor,

‘v._a=91.6x1 0-6, amplifier/read output referred noise voltage [V/~Hz].

. Optics:

Primary: Do= 0.302 m, ADob,= 0.35,
Effective F##:2.1
Pre-interferometer optics: To_l = 0.90
Post-intetierometer optics: To * = 0.90
Grating Efficiency: q~ = 0.80-

Filter: Ak = 1063 – 1164 cm-], Tf = 0.80

. Spectral sources:

Calibration plate: T.= 350 K, SC= 1.0

Pre-interferometer optics: ToP_l= 300 K, ~~P_/= 0.05

Post-interferometer optics: TOP_*= 300 K, eOP_z= 0.10

Field-Stop: T~,= 77 K, q-= 1.0

Cold-Shield: T== 77 K, SC,= 1.0

System simulations for both calibrated and uncalibrated response are shown in Figures 9 and
10 respectively. A 350 K calibration plate was assumed for a thermal source. Note the strong
dependency of the retrieval error given uncalibrated- vs.-calibrated channel gain and offset non-
uniformity (defined in Section 5.3.).



APPENDIX A: Estimating Transform Noise

. For the quantities Xni o-. (n = O,f,2, .. N-f), the fimction y =~{xo XI, x2, ... XN1)will have a
mean error estimated through Gaussian error propagation27

● Extending to FTS transform noise, the interferogram samples @(x#fcT~ (m = 0,1,2, .. N-1)

will transform into the spectral domain S(X# = f(~x#,kJ where (m,,n = O,i, 2, .. N-1) with a

mean error per spectral channel, ~k ,of

crkn =

. Substitution of Equation 25 yields

![ )~~f(kn) 202
m.o m(xm) ‘m“

JIok = Izc K 4 tan(O~ ) 6X ~ k. @ (k,,, Xm)k~ COS(2z(4 tan(d~ )(k,t – kL)x”,)+ (?(k~,x~ )]’a~mdx
m=o

[W/m2-cm-’].
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