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Let us start by asking what we mean by the potential between two nuclei

or heavy ions. It is not uniquely defined and failure to remember this has

sometimes led to confusion. The conventional optical model potential U(r) for

two nuclei a+A is one which appears in a one-body Schro'dinger equation,

r 2
U(r)| X(r) = E X(r), (1)

and whose solution x(x), with the appropriate boundary conditions, describes

the elastic scattering of a+A. One standard way of justifying Eq. (1) is to

expand the total wavefunction '1' of the a+A system in terms of the internal

eigenstates of the separate a and A systems,

= I •ai (2)

where the coefficient v..(r) describe their relative motion.

tering we are interested in y^
oo

For elastic scat-

and by projecting out this terra (e.g., Ref. 1)

from the total Schrodinger equation (H-E ) 0 we obtain an equation for

which is of the form (1) with an effective potential
OO

= V
oo

I -Uv [—-—I
, oa E-H+ie

aa *• ' aa

, V a 'o ' (3)

where V is the true interaction between a and A, and the sum over o is over the

excited states oE these two nuclei. (Antisyirar.etrisation makes the equation a

little more complicated.) The first term is real and is simply the so-called

folded potential. The remainder arises from coupling to all the other states

and is complex, non-local, energy- and angular momentum-deperdent. In practice

we approximate this V bv a local, complex model potential, U(r), for example
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of Woods-Saxon form.

The point is that, defined in this way, ;.his potential y (and by impli-

cation the equivalent model U) describes the relative motion in that component

of the total wave function 1' in which the two nuclei remain in their ground

states (x in Eq. (2)). Strong absorption into other channels manifests it-
0 0 «9-

self through X becoming very small when the nuclei overlap and y being

strongly absorbent there.

This is quite different from most of the potentials calculated for heavy-

ion collisions. These calculations attempt to follow, to a greater or lesser

degree, the readjustments that the two ions must make as they begin to inter-
2

act. These readjustments include an increase in internal kinetic energy due

to the Pauli principle as the two Fermi fluids overlap, a reduction in the in-

ternal potential energies as the densities overlap (saturating property of

nuclear forces), both of which lead to a repulsion at small distances, and

changes in shape. In other words, these calculations are not just concerned
with the X component of Eq. (2) but include a wide range of excited states

00

(of the separated systems) also. The (reaM potential obtained is not simply

rc-lated to ]/ or the U that appears in Eq. (1). In particular, although some

aspects of the coupling to other channels (other terms in the sum (2)) are

taken into account explicitly in these calculations, it is nou clear, to me at

least, how the loss of flux to these channels (the absorptive potential) is to

be handled. Consequently one must be careful in relating these calculated po-

tentials to optical potentials empirically determined from elastic scattering.

In addition, these calculations imply modifications of the kinetic energy

of relative motion as well as the potential energy. This was stressed by

Mosel (in a paper unfortunately published in a rather short-lived journal).

Using as an example a collective model Hamiltonian, he pointed out that the

inertial parameters are not independent of the coordinates; i.e. the kinetic

energy term differs from that in Eq. (1). He showed that in this case the

Schrodinger equation could be rearranged into the form (1), but at the expense

of modifying the calculated potential and adding an L-dependent term. The

modifications vanish when the two nuclei are separated, but can be Important

in the overlap region.

We m.iy expect that most of the non-locality of the poccnti.il operator

can be converted to an equivalent local but energy-dependent potential. We

can also anticipate angular-momentum (and parity) dependence in the local



potential. The shape of the equivalent potential U(r) need not be Woods-Saxon

in form. Heavy ions with their shorter wavelength will explore more localised

regions of the potential than do light ions (but see Ref. 6 however) and may

be sensitive to these shape differences. (Indeed, there are some indications

that the square of a Woods-Saxon form factor gives a better account of
12 12

C + C scattering than the Woods-Saxon itself.)

If the coupling between the entrance channel and one or a few exit

channels is strong, it may be that the non-locality and angular momentum

structure of the corresponding contributions to y" of Eq. (3) cannot easily be

represented by a simple local potential U(r). In that case it may be neces-

sary to take these channels into account explicitly (take two or more torms in

the expansion (2) if the strong reactions are inelastic scattering) by solving

the corresponding set of coupled equations instead cf the single Eq. (1). Two

words of caution. Having the total non-elastic cross section comparable to or

larger than the elastic does not in itself invalidate the vise of the optical

model; the non-elastic cross section may be composed of many contributions

whose overall effect can be represented by a simple local potential. Only if

some feature of each contribution is correlated in some way (such as may occur

if they are all peripheral, direct reactions) is there likely to be trouble.

Further, although having the non-elastic cross section for one particular

channel comparable to the elastic cross section often means trouble, even here

there is no a priori guarantee that a simple one-channel potential will not

suffice. Usually the best arguments for solving coupled equations are that

(i) the parameters can be more easily given a physical interpretation and (il)

one wants a simultaneous, consistent fit to elastic and non-elastic data.

2. PHENOMENOLOGY AND THE DATA

1 wir.h I could give you a coherent picture of the optical model analysis

of heavy-ion scattering, for example by quoting a global set of parameters,

but we just are not there yet. As is well known, there are tremendous ambi-

guities associated with the potentials for the scattering of strongly absorbed

systems which, except for the lightest nuclei and the highest energies, are

only sensitive to the extreme tail of the potential* There is perhaps some

hope that the folding model for the real potential, discussed below, will help

here. I have not, as yet, seen any systematic behaviour of the preferred



parameters for the imaginary potential, except as a function cf energy.
o_i n

What do the data determine? Typically they tell us the strength of

the real and imaginary potentials at Khe strong absorption radius, r = D .„,

(••= distance of closest approach for the Rutherford orbit which has the same L

as the partial wave for which T = 1/2). ReU is usually around 1 Me.V at this

point. The data also place some constraints on the slope of the potential in

this region; typically o 'v 0.6 fr.i if we represent ReU here by exp(-rv'a).

Usually this information can be embodied adequately in a 4-parameter Woods-

Saxon (t\rS) potential and even this lias one redundant parameter which needs to

be fixed somewhat arbitrarily.

When the scattering angular distribution has the characteristic form of

Rutherford, followed by Coulomb-nuclear interference oscillations about

Rutherford, followed by an exponential fall below Rutherford, it is very im-

portant to have complete and accurate data in the region of oscillation about

Rutherford. For example, this region is critical in determining the strength

of the imaginary potential near r = D1 ,„; the larger the amplitude of oscilla-
9 11

tion, the smaller the Imll needed. ' Figure 1 shows this in the context of

using a ^--parameter WS potential with V fixed at 40 HeV and r , a adjusted for

optimum fit. (It is easy to iriss this kind of information unless the data are

well defined in this region and unless they and the optical model analysis are

subjected to close scrutiny. In particular, the practice of plotting the

cross sections semi-logarithmically obscures the quite small differences in

this region; for this purpose, a linear plot is to be preferred.) The result

of this kind of analysis for a variety of systems is that ReU and ImU have

comparable magnitudes at the strong absorption radius (see Fig. 2), for bom-
12

barding energies around .10 MeV/nucleon. There are also indications that the

ImU/ReU ratio is strongly energy dependent for lower energies. Figure 3 shows

results for 0 + Ni, data for which are available over a wide range of ener-

gies. Although the decrease in ImU as the energy falls appears to be very

dramatic, the variation in the mean free path A near r = D. /r) is not so great

because the local kinetic energy T (all rotational at this point) is also de-

creasing;

A(r)jJS 1.3 T(r)x/ /lmU(r)

in fm it T and U are in HeV. F.ven at the highest energy, A ~ 10 fm at

1/2*
Figure 3 also .shows that D.. ,„ does not vary much with energy, about

r = Dl/2-



0 6 fm over this range, so that the elastic scattering only probes a limited

region in the surface. If we assume there is an underlying energy-independent

real potential, then the fits az different energies allow us to map oul. ReU as

a function of distance; this is shown in Fig. 4. The points scatter too much

to determine the slope precisely, but they are consistent with exp(-r/a),

a 'V/ 0.65 fm. (The lines in Fig. 4 are folded potentials to be discussed

below.)

3. DEEP OR SHALLOW POTENTIALS?

A popular question about optical potentials for heavy-ion scattering is:

"Are they deep or shallow?". Of course, the question is meaningless when the

data are only sensitive to the extreme tail of the potential. For example,

Fig. 5 shows that the data for 0 + Pb at 192 MeV cannot distinguish be-

tween a potential which is 10 MeV deep and ona which is 600 MeV deep provided

the extreme, tails are similar. The potentials are shown in Fig. 6; in this

case the available data do not probe the potential closer than about 11 fin.
13

It was suggested that, by analogy with analyses of alpha particle scat-

tering, data taken at sufficiently high energy and/or on lighter systems (and

out to sufficiently large scattering angles — beyond the. nuclear rainbow

angle) would probe more deeply and distinguish between deep and shallow po-

tentials.

0 + Si seemed a good system to try out these ideas and there are now
14

data available from 33 to 215 MeV. Cramer, et al. searched for an energy-

independent WS potential to fit all these data simultaneously. Their results

showed that to do this required a shallow potential, called E18, with a real

depth of about 10 MeV. The fitd are shown in Fig. 7. In this case, the

strong absorption radius at 215 MeV is about 8.2 fm, but they were able to

show that the scattering at that energy was sensitive to variations in the po-
1/2 ]/2

tential into about 5.5*2 1.0 (A + A_' ) fir. where the real potential is

about -9.6 MeV.

I found this result challenging so I looked for an equally good fit using

a folded real potential (see below) which is about 530 MeV deep, plus a WS

imaginary potential. This could be done if the diffuscness of the imaginary

potential was allowed to increase linearly with energy (but still with one

less parameter than used by Cramer, et al.). Figure 7 shows that the data are



equally well fitted. However, the two potentials are not identical in the

surface region; by 5.5 fra, the folded potential is 51 MeV deep. Neither are

the predicted cross sections identical; in particular, the WS potential E.18

predicts slightly larger oscillations about the Rutherford value at small

angles and concomitantly it predicts smaller absorption cross sections (10%

less at 38 MeV, 207. less at 215 MeV). Unfortunately, the data at the two

highest energies do not extend into these small angles.

What we conclude from this is that this particular set of data, extensive

though it may be, cannot distinguish between a shallow WS potential and a very

deep potential with a different shape in the surface.
12 12

Another system lor which there is much data is C + (., detailed

angular distributions being available for variour. energies up to 127 MeV.

Analyses showed that while the shallow potentials introduced by the Yale

group gave adequate fits to new 70-127 MeV data for angles less than about

45°, no good fit to the larger angles was found with WS potentials. However,

the use of deep folded potentials resulted in a marked improvement (Fig. 8).

In this case the scattering is sensitive to the potential as close in as

3 = 0.66 (A?"'3 + A*'3) fm where Rell is well over 100 MeV deep, although the

strong absorption radius is about 7 fin. Again the folded potential has a

shape which cannot be closely matched by a WS form in this 3-7 fm region. On

the other hand, the folded potential is closer in shape to the square of the

WS form; this form can also be used to fit the data and such fits also result

in a deep potential. Consequently we must conclude that, within the context
12 12

of these simple potential wells, the C + C data require a deeper poter.ial

than had been thought previously.

4. FOLDED POTENTIAL MODELS

The first term V of the formal expression (3) for the optical potential
oo

consists simply of the basic nucleon-nucleon interactions between the two

nuclei folded into the density distribution p(r) of each nucleus. (Antisym-

metrisation introduces exchange tcims also which we shall ignore for the

present.) We may hope that this term V by itself is a reasonable approxima-

tion for the extreme tail of the rsal potential because the other terms tend

to have shorter ranges. (A possible exception to this argument is that the

long-ranged Coulomb forces may distort the nuclear density distributions as



the ions approach one another.) This is the basis of the folding models for

the real potential. The imaginary potential is usually treated phenomenologi-

caily (but see Ref. 18). The folding models appear in two guises:

4.1 Single-folding

This form has been used by many people; it takes an optical potential

U (r) for the scattering cf a nucleon f>-om one nucleus and folds this into the

density distribution of the other nucleus. This I call the single folding

model. One may then choose the parameters of U (r) empirically from fits to

nucleon-nucleus scattering. This procedure overestimates the hea\'y ion real
ft 1 7

potential near the strong absorption radius by a factor of two or more; *

i.e. it will not fit observed elastic scattering. A potential of this form
19

was used by Brink and Rowley and their results, when examined closely,
8 17

support my conclusion. ' It will be interesting to learn the reason for

this failure of the single-folding model, since the first term V of Eq. (3)

is not a bad approximation to the nucleon-nucleus potential itself. It is

possible that the Woods-Saxon shape taken for the nucleon-nucleus potential,

while quite adequate for nucleon scattering which is not sensitive to the tail

of the potential, is inadequate for use in the folding procedure for heavy

ions where the tail becomes more important. It might be interesting to repeat
2

some single folding calculations using a form like the (Woods-Saxon) with the

same surface thickness but a shorter tail.

4.2 Ltoub.le-folding

This involves folding an effective nucleon-nuclcon interaction v into the

density distribution of both target and projectile,

U(r) = f
where r1 „ = r + r_ - l' . We now need v. The bare nucleon-nucleon interaction

is too strong to be used itself; we must use Brue'zkner or mi'ltiple-scattering

theory to replace it by a G-matrix or effective interaction. In principle v

is then complex, non-local, energy- and density-dependent, but in practice it

is simplified considerably. There are two main approaches to this which for

convenience I call the high-energy and low-energy approached.
it) p r\

The high-energy approach has been used by Dover and Vary; ' in the

high-energy limit (impulse approximation) v would become the (complex)



t-matrix for free space tiucloon-nuclcon scattering. Then (large) corrections

are made approximately for the effects of the nuclear medium in which the two

interacting nucleons are embedded, namely Pauli principle, off-shell propaga-

tion and the Fermi motion of the nucleons. In practice a simple ansatz is

adopted; v is assumed to be local and of Gaussian form and the strength esti-

mated in the way just indicated. The range of the Gaussian is not well deter-
21 18

mined but has been chosen on "reasonable" grounds to be 1 fm or 1.4 fin.

(The choice of range will have important effects on the strength required to

fit the data. The volume integral of v is not a good criterion; it does not

stay constant with changes in range as it does for nucleon scattering. The
9

elastic data may also impose an upper limit on the range whici> is acceptable.
In addition, the relative strengths of different multipoles in inelastic scat-

22
te-ring depends upon this range. )

The low-energy approach notes that most heavy-ion scattering data current-

ly available are for quite low energies (-*-5 to 10 MeV/nucleon) and assumes

chat the effective interaction is similar to the G-matrix for two nucleons

bound near the Fermi surface. This approach has been used with some success

for nuc.leon elastic and inelastic scattering. The two most recent attempts to
23

follow this program obtain a local v. One consists of finding a sum of

three Yukawa terms which will reproduce the G-matrix elements in an oscillator

basis of either the Reid potential or those deduced from nucleon-nucleon scat-

tering by Elliott, et al. One Yukawa was chosen to be the OPEP, another to

have a range of 0.4 fm based upon recent OBEP's which simulate raultiple-pion

exchange. The shortest range of 0.25 fm was chosen somewhat arbitrarily. The

OPEP is fixed but the strengths of the other two components were varied. This

procedure leads to odd-state interactions whose low momentum (Fourier) compo-

nents (aside from the OPEP contribution) are like those of a zero-range force.

A true zero-range odd-state force would not contr^ n because the exchange

terms (due to antisymmetrisatlon) would cancel the direct terms; on this basis

we include only the OPEP part of the odd-state interaction. However, the OPEP

does not contribute because of spin, isospin averaging if both K and Z are

even for either ion. This means the OPEP contribution from the edd-state

force is cancelled by the OPEP part of the even-state force. We are left with

the remainder of the even-state interaction which, for the fit to the Reid G-

matrix, is just



-4r -2.5r~j
6315 ^7— - 1961 V T T - I MeV. (5)V =
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The other recent work was done for an application of the folding model

. to alpha particle scatteriag. Now G<j> = Vtjj, where if and i> are the uncorrelated

. and correlated two-nucleon wavefunctions, respectively. Then a local po-

• tential equivalent to G Is simply

v(r) = V(r)*<r)/<Hr). (6)

This was evaluated numerically for the Reid soft core potential and various

densities of nuclear matter. I have only made a few tentative calculations

with the v appropriate for 5% of normal nuclear density, treating it in the

same way as above, i.e. only including the non-OI'EP part of the even-state

interaction. It gives folded potentials near the strong absorption radii very

close to (roughly 10% deeper than) those obtained from the interaction v'5).

Adding the non-OPEP odd-state interaction from (6) only adds another 10Z to

the depth in this tail region so that our cavalier treatment of this contri-

bution in deriving (5) does not seem likely to be the source of severe error.

In addition to uncertainties in the interaction, there are also uncer-

tainties in our knowledge of the density distributions p(r) to be used in the

convolution (4). Electron scattering tells us, in some cases, about the

charge distribution; the finite size of the proton has to be unfolded from

this in order to yield the distribution of proton centers. (The major effect

of the finite size is to make the charge distribution more diffuse than the

center distribution. The proton MSR is between 0.64 and 0.85 fm". In ad-

dition, there should be corrections for the neutron charge and for exchange

25
currents. )

Further, electron scattering does not give accurate information on the

extreme tail of the density distribution (typically we need to know p out to
-4

where it is less than 10 of the central density in order to evaluate (4)

accurately at the strong absorption radius. This means going at least 10

times the surface diffuseness beyond the half-density radius if the WS form is

used). In addition, we have n£ accurate information about neutron distribu-

tions; the current consensus seems to be thar the neutron and proton distribu-

tions are similar for N=Z nuclei but that the neutrons in heavier nuclei

probably have RMS radii about 1/10 fm greater than do the protons. The best



approach perhaps it; to use the independent particle model with parameters ad-

justed to give the best agreement with electron scattering (or Hartree-Fock

calculations if they give agreement). If, in addition, information from >

neutron and proton pick-up experiments is used, at least the contribution to

the density from the last-filled major shell can be estimated quite iccurate-

ly (this gives about 2/3 of the folded potential at the strong absorption

radius in the case of 0 + Pb). Use of the shell model implies one should

also apply a center-of-mass correction, but this appears to be small except

for the very lightest nuclei. Figure 9 indicates the importance of these

matters; the predicted potential at the strong absorption radius is plotted

against the sum of the RMS density radii for a variety of density choices.

(As the scatter in the points indicates, there is not an exact correlation

with the RMS radius, but it is a convenient indicator of the nuclear sizes.)

Here, except in one case, we assumed equal neutron and proton distributions.

The uncertainty in the results from electron scattering is indicated; it

corresponds to about ± 20% uncertainty in the potential, about half of which

arises from uncertainty in Lhe si:'.e of the proton itself!

Finally, ve should remind ourselves that the expression (4) for the

folded potential ignores exchange of nucleons between the two nuclei due to

antisymmetrisation. Sinhn's calculations indicated a very small exchange ef-
24

feet at the strong absorption radius but recent estimates for alpha scat-

tering give a 30% increase in the potential due to exchange. This needs to be

explored furtner for heavy ions.

•i. i Fits to data

When testing the folded potential models against experiment, one must de-

cide what to do about the imaginary, absorptive potential. The high-energy

approach automatically generates a complex interaction. The applications
18 20 21

which have been made ' '" have assumed for simplicity that the ranges of

the real and imaginary parts were the same. This seems to have worked satis-

factorily, although in gencr.'l one would expect different ranges. The. low-

energy approach, being based upon bound state properties, does not immediately

give an imaginary part. So far it has been added phenomcnologtcally, either

by multiplying the folded potential by a complex number or by adding an imagi-

nary VS term. There are oases where it is not sufficient to have the same

shape for the real and imaginary parts ( 0 + Si was one of these)



indicating that a different range (or a different dependency on the density)

is needed for the imaginary part of v.

Applications of both high- and low-energy approaches have been very suc-
7-9 J S iQ—TZ

cessfui '" '~ " (see also Figs. 5, 7, and 8) in fitting elastic data.

This is not too surprising in those cases where the scattering is sensitive

only to the value of the potential at the strong absorption radius if the

strength of the interaction is treated as a completely free parame-
8 9 20 21

ter, ' ' ' although Lhe model is still valuable in that there is only one

adjustable parameter rather than three, as in the WS potential. Of course, ;

the model may still have predictive power if the interaction strength required

is found to be mass- and energy-independent. (This appears to be the case for
9 17

the Gaussian interaction which fits low-energy nucleon-nucleon scattering. '
j9 12 20 208

Data for systems ranging froin "C + C to Ke + Pb have been fitted, all

needing approximately the same renormalisation factor for the interaction

strength of N -Si 0.6.)

However, renormalisation does not seem to be required for some inter-
18

actions. Figure 10 shows some results using what I called the high-nnergy

approach in which, for the elastic scattering, all parameter values were es-

sentially pre-determined and only the deformation parameters of the densities

were adjusted for the inelastic (the deformation lengths obtained being in

good agreement with electromagnetic values).

The interaction (5) obtained in the low-energy approach also has had many

successes. Optimum fits to the data have been obtained with no more than

about t 10% renormalisation of its strength. (The uncertainties discussed

above in the density distributions to be used can result in variations of this

order.) Figures 7 and 8 are examples. Figure 11 shows another, for Ca +
40

Ca, in which the imaginary potential was assumed to be the same (folded)

shape as the real and its strength was the only parameter to be adjusted.

(Although the fit is impressive for a one-parameter model, the. deviation from

the data at the forward angles is significant and must he studied iurtber. A
four-parameter WS potential is able to fit this region.) As mentioned pre-

24
viously, the interaction (6) of Day, et al. has similar success.

The first signs of possible failure of this model occur when it is ap-
14 J ,., 40. , 238.. 34,, , 209n, .. , , ,,26 .

plied to neavy systems like Ar + U or Kr + Bl. I-.mpirlcally the

data for these systems seem to indicate that the potential at the strong ab-

sorption radius remains around 1 MeV independent of the masses. Further this



criLical radius continues Lo occur when tl.i> nuclei are separated by a constant

distance (about 3 in between the half-central-density [joints). The folding

model predicts the interaction potential at this radius to increase as the
27

systems get larger (just as the proximity potential increases propertior.al

to the geometric moan of the radii of the two nuclei). Consequently, the in-

to r;

209,

8'i

ternetion (5) for example predicts -Rell to be between A and 5 MeV for Kr +

Bi instead of the 1.1 MeV deduced from the data. It nay be that the very

strong Coulomb forces acting between these systems invalidates the use of a

"frozen" or undistorted density in the folding calculation. It is also true

that the elastic data for these cases are much n.ore difficult to obtain and

consequently they are less certain.

5. INELASTIC SCATTERING

J. will not dwell upon the many successful applicatior.s of the standard

collective model prescription in which the optical potential itself is de-

formed and the non-spherical parts used to induce inelastic scattering. I
28 12

only montion one recent application" to the scattering of "C from the Nd

isotopes, ranging from "spherical" to strongly derorned. The spherical opti-

cal potential could produce fits to the elastic scattering from the mos:.

strongly deformed isotope but at the expense of somewhat unphysical parameter

values which differed appreciably from those for the spherical isotope. How-

ever, the use of coupled-channel calculations which take the deformation into

account explicitly removed this difficulty and a single optical potential was

found for all the isotopes.

Of particular interest is the extension of tiie folding models to in-

elastic events. This may be done within the collective model, but deforming

the nuclear density instead of the potential and then folding in the effective

interaction. This has been used successfully in the high-energy np-
18 2]

proach,' ' ' one example being Fig. 10. It has also been used with the inter-

action (5), as shown for oxanple in Fig. 12. In this case the renormalisation

factor N = 1.1 had been determined by analysis of data at 142.5 MeV; Fig. 3

indicates we can expect: a smaller absorptive strength at the lower energy of

61.A McV and only this one parameter was varied to produce the elastic fit

shown. This same conwlex interaction (i.e. (1.1 + O.bi) times interaction

(5)) was then folded into the deformed density of Nl; the deformation



parameter was determined from the knov.ii 15(K2) value tor this transition, and

it was assumed that neutrons and protons contributed in the ratio K/Z. The

predicted inelastic, scattering is seen to be in gcod agreement with the

measurements.

When the appropri^ a electron scattering data are available, the charge

transition density may be known in n:ore detail (usually in some parameterised

form). Unielding the finite size of the proton gives the proton transition

density; if N = Z we may assume that the neutron transition density is simi-

lar for the strong isoscalar transitions to low-lying excited states. This
12 7 •

was done for the C excitation shown in Fig. 8, using the interaction (5). i
i o Q

It has also been applied successfully to excitation of the 2 state in Si i

by 1 60 ions. j

In some cases there are available microscopic (e.g. l-p;.rticle, 1-hole

RPA) calculations of the transition densities, The proton parts of these may

be checked against electron scattering and measured B(HL'i values. These have
22 1? 208

baen used " for inelastic ~C scattering from Pb (see Fig. 13), not u^lng

the more recent interaction (5) but using Gaussians normalised to fit the

elastic scattering. F.vidence was found that the inelastic scattering favoured

the choice of a range of about 1 fm, partly based upon the relative cross

sections for different rv.ilt.ipol.es and partly upon tl.'.ir angular distributions.

All the cases just discussed were calculated using the DWBA. When the

coupling is strong, this may not be adequate (and higher-order feedback may

affect the elastic scattering also), and it becomes necessary to soive coupled

equations. Th:

folding model.

equations. This has been explored to some extent for '"C -f- C using the

6. FINAL REMARKS

I liave put particular stress upon the folding model approach. This model

seems reasonable for the distant collisions which are important for deter-

mining the elastic scattering, although even here we must recognise that thet'e

is a strong Coulomb field acting. When the nuclei approach more closely, the

folded potential loses its simple physical significance; certainly it should

not be identified closely with the potentials which determine fusion barriers,

etc., although it should agree with them asymptotically. However, it is a

nice sinple model which has had successes and it seems worth pursuing until we



r.;ee where Lt breaks down and what we can learn from that.

The success of this interaction (5) as compared to the relative failure

of previous attempts in this direction appears to be largely due to the

shorter range of this Interactlcn, resulting from a proper elimination of the

OPEP tail and recognition of the short ranges associated with nmltiple-pion

exchange.

The failure of the single-folding model is still nor. understood but may

be connected with deficiencies in the WS shape for nucleon-nucleus optical po-

tentials.

There are many aspects of elastic and inelastic scattering that I have

not touched upon but — another place, another time;
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FIGURE CAPTIONS

Fig. 1. Illustrating the importance of the forward angles for determining the

strength of the imaginary potential. •

2
Fig. 2. Variation of X for fit to data as the imaginary strength W is

, , 11
varied.

Fig. 3. Energy variation of imaginary strength from fitting data with a 4-
1?

parameter WS potential.

Fig. 4. Values of the real potential at the strong absorption radius, r =

C. ,0. (The lines correspond to folded potentials with various inter-
12

actions. )

Fig. 5. Effect on the scattering of leveling off (or putting to zero) the
9

real potential at 10 and 11 fm.

g

Fig. 6. The potential u-sed for the curves shown in Fig. 5. The strong ab-

sorption radius here is D , - 12.5 fm.

Fig. 7. Folded potential fit to 0 + Si, using the interaction (5) re-
14

normalised by N = O.>. The WS potential E18 is due to Cramer, et al.

12 12
Fig. 8. Preliminary fit to C + C using the interaction (5) renormalised

by N = 1.1. The data normalisation is also preliminary and may later change

by a few per cent.

Fig. 9. Variation of the folded potential at the strong absorption radius

0* . = 10.4 fm) for 4°Ca + 32S with the sura of the RMS radii for the two

density distributions. (The dashed line is drawn to ^uide the eye.)

Fig. 10. Folc

light nuclei.

Fig. 10. Folded potential fit to *N elastic and inelastic scattering from

40 40 29
Fig. 11. A one-parameter folded potential fit to Ca + Ca data (solid

curve), using the interaction '5) times (1.0 + 0.71). The dashed curve repre-

sents a 4-parameter WS potential fit.

Fig. 12. Fit to ,0 + Ni elastic and inelastic scattering using the in-

teraction (5) times (1.1 + 0.6i).



9 9 7 7 yflfi

Fig. 13. Comparison with data" for inelastic C scattering from Pb. The

transition densities vere obtained from RPA calculations; the interaction

was a Gaussian with range 1 fm normalised to the elastic scattering. Either

WS or folded imaginary potentials were used.
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