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Let us start by asking what we mean by the potential between two nuclei
or heavy ions. It is not uniquely defined and failure to remember this has
sometimes led to confusion. The conventional cptical model potential U(r) for
two nuclei a+A is one which appears in a one-body Schr¥cinger equation,

r Hz 2 . .

Lf wm T U} x(r) = E x(r), n
and whose solution x(r), with the appropriate boundary conditions, describes
the elastic scattering of a+tA. One standard way of justifying Eq. (1) is to
expand the total wavefunction WG of the atA system in terms of the internal

eigenstates of the separate a and A systems,
M = { ) VO 2
¥ ISJ bag Vag Xy (0 (2)

where the coefficient xij(r) describe their relative motion. For elastic scat=-
tering we are interested in X0 and by projecting out this term (e.g., Ref. 1)
from the total Schrddinger eguation (H—Ea)Wa = ( we obtain an equation for L

which 1is of the form (1) with an effective potential \?:

s

3
q?w 1
= Ay
Voo + Z, ‘oo [E—H+ieJ ,Va'o' (3)
aq oo

where V is the true interaction between a and A, and the sum over o is over the
excited states of these two nuclei. {(Antisymmetrisation makes the equation a
little more complicated.) The first term is real and is simply the so-called
folded potential, The remainder arises from coupling te all the other states

and 1s complex, non-local, energy- and angular momentum-deperdent, In practice

we approximate thls'\7’hv a local, complex model potential, U(r), for example ‘:ﬁ
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of Woods-Saxon form.

The point 1s that, defined in this way, ihls potential f\j— (and by impli-
cation the equivalent model U) describes the relative motion ia that component
of the total wave function ¥ in which the two nucleil remain in thelr ground
states (Xoo in Eq. (2)). Strong absorption into other channels ma;}fests it-
self through Xon beceming very small when the nuclei overlap and W/ being
strongly absorbent there.

This 1s quite different from most of the potentials calculated for heavy-~
ion collislons. These calculations attempt to follow, to a greater or lesser
degree, the readjustments that the two ions must make as they begin to inter-
act. These readjustments include an increase in Iinternal kinetic energy2 due
to the Pauli principle as the two Fermi fluids overlap, a reduction in the in~-
ternzl potentlal energics as the densities overlap3 (saturating property of
nuclear forces), both of which lead to a repulsion at small distances, and
changes 1in shape.4 In other words, these calculations are not just concerned
with the Xoo component of Eq. (2) but include a wide range of excited states
(of the separated systems) also. The (real) potential obtained 1s not simply
related to Wf'or the U that appears in Eg. (1). In particular, although some
aspects of the coupling to other channels (other terms in the sum (2)) are
taken into account explicitly in these calculations, it is nov clear, to me at
least, how the loss of flux to these channels (the absorptive potential) is to
be handled. Consequently one must be careful in relating these calculated po-
tentials to optical potentials empirically determined from elastic scattering.

In addition, these calculaticns imply modifications of the kinetic energy
of relative motion as well as the potential energy. This was stressed by
Mosel (in a paper5 unfortunately published in a rather short-lived journal}.
Using as an example a collective model Hamiltonian, he pointed out that the
inertial parameters are not independent of the coordinates; i.e. the kinetic
energy term differs from that in Eq. (1). He showed that in this case the
Schrodinger equation could lLe rearranged into the form (1), but at the expense
of modifying the calculated potential and adding an L-dependent term. The
modifications vanish when the two nuclel are separatzd, but can be lmportant
in the overlap region.

We may expect that most of the non-locality of the pocential operator
can be converted to an equivalent local but energy-dependent potential. We

can also anticipate angular-momentum (and parity) dependence in the local



potential. The shape of the equivalent potential U(r) need not be Woeds—Saxon
in form. Heavy ions with their shorter wavelength will explore more localised
regions of the potential than do light lons (but see Ref. 6 however) and may
be sensitive to these shape differences. (Indeed, there are some indications7
that the square of a Woods~Saxcn form factor gives a better acccunt of

12C + 12C scattering than the Woods~Saxon itself.)

If the coupling between the entrance channel and one or a few exit
channels is strong, it may be that the non-locality and angular momentum
structure of the corresponding contributions to Wy'of Eq. (3) cannot easily be
represented by a simple local potential U(r). In that case it may be neces-
sary to take these channels into account explicltly (take two or more te¢rms in
the expansion (2) 1f the strong reactions are inelastic scattering) by solving
the corresponding set of coupled equations instead cf the single Eq. (1). Two
words of caution. Havirg the total non-elastic cross section comparable to or
larger than the elastic does not in itself invalidate the use of the optical
model; the non~elastic cross section may be composed of many contributions
whose overall effect can be represented by a simple local potential, Only if
some feature of each contribution 1s correlated in some way (such as may occur
if they are all peripheral, direct reactiuns) is there likely to be trouble.
Further, although having the non-elastic cross section for one particular
channel comparable to the elastic cross section often means trouble, even here
there 1s no 4 priori guarantee that a simple one—cﬁannel potential will no¢
suffice. Usually the best arguments for solving coupled equations are that
(i) the parameters can be more easily given a phvsical interpretation and (ii)

one wants a simultaneous, consistent fit to elastic and non~elastic data.
2. PHENOMENOLOGY AND THE DATA

I wish I could give you a coherent picture of the optical model analysis
of heavy-lon scattering, for example by quoting a global set of parameters,
but we just are not there yet. As is well known, there are tremendous ambi-
gulties associated with the potentials for the scattering of strongly absorbed
systems which, except for the lightest nuclel and the highest energies, are
only sensitive to the extreme tail of the potential. There 1is perhaps some
hope that the folding model for the real potential, discussed below, will help

here. 1 have not, as yet, seen any systematic behaviour of the preferred



parameters for the Imaginary potential, except as a function cf energy.

What do the data determine? Typically they tell uss_lo the strength of
the real and imaginary potentials at the strong absorption radius, r = Dl/2’
(= distance of closest approach for the Rutherford orbit which has the same L
as the partial wave for which TL = 1/2). ReU is usually around 1 MeV at this
point. The data also place some constraints on the slope of the potential in
this region; typically o ~ 0.6 fm if we represent RelU here by exp(-r/uj.
Usually this information can be enbodied adequately in a 4-parameter Woods-
Saxon (WS) potential and even this has one redundant parameter which needs to
be fixed somewhat arbitrarily.

When the scattering angular distribution has the characteristic form of
Rutherford, fellowed by Coulomb-nuclear interference oscillations about
Rutherford, rallowed by an exponential fall below Rutherford, it is very im~
portant to have complete and accurate data 1in the region of oscillation abeut
Rutherford. For example, this region is critical in determining the strength
of the imaginary potential near r = Dl/Z; the larger the amplitude of oscilla-

tion, the smaller the ImU ueeded.g’ll

Figure 1 shows this in the context of
using a &4~parameter WS potential with V fixed at 40 MeV and r.a adjusted for
optimum fit, (It is easy to miss thils kind of information uniess the data are
well defined in this region and unless they and the optical model analysis are
subjected to close scrutiny. In particular, the practice of plotting the
cross sections semi~logarithmically obscures the quite small differences in
this region; for this purpose, a linear plot is to be preferred.) The result
of this kind of analysis for a variety of systems is that ReU and ImU have
comparable magnitudes at the strong absorption radius (see Fig. 2), for bom-
barding energies around 10 MeV/rucleon. There are also indication512 that the
ImU/ReU ratio is strongly energy dependent for lower enargies. Figure 3 shows
results for 160 + Ni, data for which are available over a wide range of ener-
gies. Although the decrease in ImU as thc energy falls appears to be very
dramatic, the variation in the mean free path A near r = D1/2 1s uwot so great
because the local kinetic energy T (all rotationmal at thils point) is also de-
creasing; ]

AMr)yo 1.3 T(r)llz/lmU(r)

in fm it T and U are in MeV. Even at the highest energy, A~ 10 fm at

¥ = Dy
Figiure 3 also .shows that D1/2 does not vary much with energy, about



0 6 fm over this range, so that the elastic scattering only probes a limited
region in the surface. If we assume there is an underlying energy-independent
real potential, then the fits av dilfferent encrgles allow us to map oul. RelU as
a function of distance; this 1s shown in Fig. 4. The points scatter too much
to determine the slope precisely, but they arc consistent with exp(-r/a),

a v 0,65 fm. (The lines in Fig. 4 are folded potentials to be discussed
below.)

3. DEEP OR SHALLOW POTENTIALS?

A popular question about optical potentials for heavy-ion scattering is:
"Are they deep or shallow?”. Of course, the question is meaningless when the
data are only sensitive to the extreme tail of the potential. For eaample,

l60 + 208Pb at 192 MeV cannot distinguish be-

Fig. 5 shows that the data9 for
tween a potential which is 10 MeV deep and one which 1s 600 MeV deep provided
the extreme tails are similar. The potentlals are shown in Fig. 6; in this
case the available data do not probe the potential closer than about 11 fm.
It was suggested13 that, by analogy with analyses of alpha particle scat-
tering, data taken at sufficiently high energy and/or on lighter systems (and
out to sufficiently large scattering angles ~— boyond the nuclear rainbow
angle) would probe more deeply and distinguish between deep and shallow po-

tentlals.

160 + 2851 seemed a good system to try out these ldeas and there are now

data available from 33 to 215 MeV., Cramer, et al.l4 searched for an energy-
independent WS potential to fit all these data simultaneously. Their results
showed that to do this required a shaliow potential, called E18, with a real
depth of about 10 MeV. The fits are shown in Fig. 7. Tn this case, the
strong alsorption radius at 215 MeV is about 8.2 fm, but they were able to
show that the scattering at that cnergy was sensitive to variations in the po-
tential into about 5.522 1.0 (Ai/2 + A%/Z) fri where the real potential is
about -9.6 MeV.

I found this result challenging so I looked for an equally good fit using
a folded real potential (see below) which is about 530 MeV decp, plus a WS
imaginary potential. This could be done if the diffuscness of the imaginary
potential was allowed to increase linearly with energy (but still with one

less parameter than used by Cramer, et al.). Figure 7 shows that the data are



equally well fitted. However, the two potentials are not identical in the
surface regilon; by 5.5 fm, the folded potential is 51 MeV deep. Nelther are
the predicted cross sections identical; in particular, the WS potential E.18
predicts slightly larger oscillations about the Rutherford value at small
angles and concomitantly it predicts smaller absorption cross sections (10%
less at 38 MeV, 207%Z less at 215 MeV). Unfortunately, the data at the two
highest energies do not extend into these small angles.

What we conclude from this is that this particular set of data, extensive
though 1t may be, cannot distinguish between a shallow WS potential and a very
deep potential with a different shape in the surface.

Another system tor which there is much data is lzC + lZC, detailed
angular distrilbutions beilng available for various energiles up to 127 MeV.
Analysesl5 showed that while the shallow potentials introduced by the Yale
group gave adequate fits to new 70-127 MeV data16 for angles less than about
45°, no good fit to the larger angles was found with WS potentials. However,
the use of deep folded pvotentials resuited in a marked improvement (Fig. 8).
In this case the scattering 1s sensitive to the potential as close in as
3 = 0.66 (Ai/3 + A%/B) fm where Rel is well over 100 MeV deep, although the
strong absorption radius 1s about 7 fm. Again the folded potential has a
shape which cannot be ciosely matched by a WS form in this 3-7 fm region. On
the other hand, the folded potential is closer in shape to the sguare of the
WS form; this form can also be used to fit the data and such fits also result
in a deep potential.7 Conscquently we must conclude that, within the context

12 12

of these simple potential wells, the c + C data require a deeper poter.ial

than had been thought previously.

4, FOLDED POTENTIAL MODELS

The first term voo of the formal expression (3) for the optical potential
consists simply of the baslc nucleon-nucleon interactions between the two
nucleil folded into the density distribution p(r) of each nucicus. (Antisym-
metrisation introduces exchange tcims alse which we shall ignore for the
present.) We may hope that this term Voo by itself 1is a reasonable approxima-
tior for the extreme tail of the rzal potential because the other terms tend
to have shorter ranges. (A possible exception to this argument is that the

long-ranged Coulomb forces may distort the nuclear density distributions as
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the ions approach one another.) This is the basis of the folding modelsd for
the real potential. The imaginary potential is usualiy treated phenomenclogi-

cally (but see Ref. 18). The folding models appear in two guises:

4.1 Single-folding

This form has been used by many people; 1t takes an optical potential
UN(r) for the scattering of a nucleon from one nucleus and folds this into the
density distribution of the other nucleus. This I call the single folding
model.8 One may then choose the parameters of UN(r) empirically from fits to
nucleon-nucleus scattering. This procedure overestimates the heavy ion real
potential near the strong absorption radius by a factor of two or morc;8‘17
i.e, 1t will not fit observed elastic scattering. A potential of this form
was used by Brink and Rowleylg and their results, when exanined closely,
support my conclusion.s’l7 It will be interesting to learn the reason for
this failure of the single-fulding model, since the first term Voo of Eq. (3)
is not a bad approximation to the nucleon-nucleus potential 1tself. It is
possible that the Woods-Saxon shape taken for the nucleon-nucleus potential,
while quite adequate for nucleon scattering which 1s not sensitive to the tail
of the potential, is inadequate for use in the folding procedure for heavy
ions where the tail becomes more important., It might be interesting to repeat
some single folding calculations using a form like the (WOods—Saxon)2 with the

same surface thickness but a shorter tail,

4.2 Dlouble-folding

This dnvolves folding an effrctive nucleon-nucleon interaction v into the

density distribution of both target and projectile,

U(r) = [ d3r1 [ d3r2 0, (x e, (v ), (%)

-+ -> - ->
where r12 =r + r2 - rl. We now need v. The bare nucleon-nucleon interaction

is too strong to be used itself; we must use Brueckner or mvltiple-scattering
theory to replace it by a G~matrix or effective interaction. 1in principle v
is then complex, non-local, energy- and density-dependent, but in practice it

is simplified considerably. There are two main approaches to this which for

convenience I call the high-energy and low-energy approaches.
18,20

The high-energy approach has been used by Dover and Vary; in the

high~energy limit (impulse approximation) v would become the (compiex)



t-matrix for frece space nucleon-nucleon scattering., Then (large) corrections
are made approximately for the effects of the nuclear medium in which the two
interacting nucleons are embedded, namely Pauli principle, off-shell p:ropaga-
tion and the Ferml motion of the nucleons. In practice a simple ansatz is
adopted; v is assumed to be local and of Gaussian form and the strength esti-
mated in the way just indicated. The range of the Caussian is not well deter-
mined but has been chosen on ''reasonable" grounds to be 1 fm21 or 1.4 fm.l8
(The choice of range will have important effects on the strength required to
fit the data. 7The volume integral of v is not a good criterion; it does not
stay constant with changes in range as it does for nucleon scattering. The
elastic data may also impose an upper limit on the range whilci. 1s acceptable.
In addition, the relative strengths of different multipoles in inelastic scat-
teving depends upon thils range.2 )

The low-energy approach notes that most heavy~ion scattering data current-
ly available are for quite low energies (~5 to 10 MeV/nucleon) and assumes
chat the effective interaction is similar to the G-matrix for two nucleons
bound near the Fermi surface. This approach has been used with some success
for nucleon elastic and inelastic scattering. The two most recent attempts to
follow this program obtaln a local v. Onez3 consists of finding a sum of
three Yukawa terms which will reproduce the C-matrix elements in an oscillator
basis of either the Reid potential or those deduced from nucleon-nucleon scat-
tering by Elliott, et al, One Yukawa was chosen to be the OPEP, another to
have a range of 0.4 fm based upon recent QBEP's which simulate multiple-pion
exchange., The shortest range of 0.25 fm was chosen somewhat arbitrarily. The
OPEP is fixed but the strengths of the other two components were varied. This
procedure leads to odd-stacte interactions whose low momentum (Fourier) compo~
nents (aside from the OPEP contribution) are like those of a zerc-range force.
A true zero-range odd-state force would not contrit e because the exchange
terms (due to antisymmetrisation) would cancel the direct terms; on this basis
we 1nclude only the OPELP part of the odd-state interaction. Ilowever, the OPEP
does not contribute because of spin, isospin averaging if both N and Z are
even for either ion. This means the OPEP contribution f{rom the cdd-state
force is cancelled by the OPEP part of the even-state force. We are left with

the remainder of the even-state interaction which, for the fit to the Reid G~

matrix, 1s just
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v = {6315 “l‘r - 1961 -‘53_—-5;—' MeV. (5)°

2 . - .
The other recent work 4 was done for an application of the folding model
. to alpha particle scatteriag., Now G¢ = V¢, where ¢ and y are the uncorrelated
~and correlated two-nucleon wavefuncticns, respectively. Then a local po-

- tential equivalent to G 1s simply
v(r) = V(3 (r)/¢(r). (6)

' This was evaluated numerically for the Reid soft core potentilal and various
densities of nuclear matter. I have only made a few tentative calculations
with the v appropriate for 5% of normal nuclear demnsity, treating it in the
same way as above, i.e. only Including the non-OPEP part of the even-state
interaction. It gives folded potentials near the strong absorption radil very
close to (roughly 10% deeper than) those obtained from the interaction (5).
Adding the non-OPEP odd-state interaction from (6) only adds another 107 to
the depth in this tail region so that our cavalier treatment of this contri-~
buticn in deriving (5) does not seem likely to be the source of severe error.

In addition to uncertainties in the Interaction, there are also uncer-
tainties in our knowledge of the density distributions p{(r) to be used in the
convolution (4). Electron scattering tells us, in some cases, about the
charge distribution; the finite size of the proton has to be unfolded from
this in order to yield the distribution of proton centers. (The major effect
of the finite size is to make the charge distribution more diffuse than the
center distribution. The proton MSR is between 0.64 and 0.85 fmz. In ad-
dition, there should be corrections for the neutron charge and for exchange
currents.zs)

Further, electron scatteriug does not give accurate information on the
extreme tail of the density distribution (typically we need te know p out to
where it is less than 10_4 of the central density in order to ewvaluate (4)
accurately at the strong absorption radfus. This means going at least 10
times the surface diffuseness beyond the half-density radius If the WS form is
used)., In addition, we have no accurate information about neutron distribu-
tions; the current consensus seems to be that the neutron and proton distribu—
tions are similar for N=7 nuclel but that the neutrons in heavier nucleil

probably have RMS radii about 1/10 fm greater than do the protens. The best




approach perhaps is to use the independent particle model with parameters ad-
justed to give the best agreement with electron scattering (or Hartree-Fock
calculations if they give agreement). 1f, in addition, information from i
neutron and proton pick-up experiments is used, at least the contribution to :
the density from the last-filled major shell can be estimated quite accurate-
ly (this gives about 2/3 of the folded potential at the strong absorption
radius in the case of 160 + 208Pb). Use of the shell model implies cne should.
also apply a center-of-mase correction, but this appears to be small except
for the very lightest nuclei. Figure 9 indicates the importance of these
matters; the predicted potential at the strong absorption radius is plotted
agalnst the sum of the RMS density radiil for a variety of density ciwoices.

(As the scatter in the points indlcates, there is not an exact correlation
with the RMS radius, but it is a convenient indicator of the nuclear sizes.)
Here, except in one case, we assumed equal neutron and proten distributions.
The uncertainty in the results from electron scattering is indicated; it
corresponds to about * 20% uncertainty in the potential, about half of which
arises from uncertainty in the size of the proton itself!

Finally, we shculd remind ourselves that the expression (4) for the
folded potential ignores exchange of nucleons between the two nuclei due to
antisymmetrisation. Sinha's calculatiuns3 indicated a very small exchange ef~-
fect at the strong absorption radius but recent estim:LesZA for alpha scat-

tering give a 30% increase in the potential due to exchange. This needs to be

explored furtner for heavy ions.

w.3 Fits to data

When testing the folded potential models against experiment, one must de-
cide what to do about the imaginary, absorptive potential. The high—-energy
approach automatically generates a complex interaction. The applications
which have been madels’zo’21 have assumed for simpliciiy that the ranges of
the real and imaginary parts were the same. This seems to have worked satis-~
factorily, althoupgh in genersl one would expect different ranges. The low-
energy approach, being based upon bound state properties, does not immediately
give an imaginary part. So far it has been added phenomenologically, either
by multiplying the folded potential by a2 complex number or by adding an imagi-
nary WS term., There are cases where 1t is not sufficient to have the same

shape for the real and imaginary parts (160 + 2851 was one of these)



indicating that a different range (or a different dependency on the density)
is needed for the imaginary part of wv.

Applicaticns cf both high- and low-energy approaches have been very suc~
<:essfuj_7v9’18’20—22 (see also Figs. 5, 7, and 8) in fitting elastic data.
This 1s not too surprising in those cases where the scattering 1is sensitive
only to the value cf the potential at the strong absorption radius if the
strength of the interaction is treated as a completely free parame-
ter,8’9’20’2l although ihe model is still valuable in that there is only one
adjustable parameter rather than three, as in the WS potential. Of course,

the model may still have predictive power 1f the interaction strenpgth required

1s found to be mass- and energy-independent. (This appears to be the case for

. . . . 9,17
the Gaussian interaction which fits low-energyy nucleon—-nucleon scattering.”’
. 2 2 20,. 208 .
Data for systems ranging f{rom 1 c + 1 C to Ne + b have been fitted, all

needing approximately the same renormalisation factor for the interaction
strength of N &2 0.6.)

Heowever, renormalisation does not seem to be required for some inter-
actions. Tigure 10 shows some results18 using what I called the high-energy
approach in which, for the elastic scattering, all parameter values were es-
sentially pre-determined and only the deformation parameters of the densities
were adjusted for the inelastic (the deformation lengths obtained being in
good agreement with electromagnetic values).

The interaction (5) obtained in the low-energy approach also has had many
successes. Optimum fits to the data have been obtained with no more than
about # 10% renormalisation of its strength. (The uncevtainties discussed
above in the density distributions to be used can result in variations of this
order,) Figures 7 and 8 are examples. Figure 11 shows another, for 4OCa +
4OCa, in which the imiaginary potencial was assumed to be the same (folded)
shape as the real and its strength was the only parameter to be adjusted.
(Although the fit 1s impressive for a one-parameter model, the deviation from
the data at the forward angles 1s significant and must be studied iurther. A
four-parameter WS potential i1s able to fit this region.) As mentioned pre-
viosusly, the interaction (6) of Day, et al.24 has similar success.

The first signs of possible failure of this model occur when it is ap-
plied to heavy systems like 4OAr + 238U or 8aKr + 209B1. Empiricallyz6 the
data for these systems scem to indicate that the potential at the strong ab-

sorption radius remains around 1 MeV independent of the masses. Further this



critical radivs continues to occur when the nuclel are separated by a constant
distance (about 3 fm between the half-central-density points). The folding
nodel predicts the interacticn potential at this radius to increzse as the
systems get larger (Just as the proximity potuntialz7 increases proportional

to the geometric mean of the radii of the two nuclei). Consequently, the in-

84

teraction (5) for example predicts -ReU to be between 4 and 5 MeV for Kr +
ZOQBi instead of the 1.1 MeV deduced frem the data. 1t may be that the very
strong Coulomb forces acting between these systems invalidates the use of a
"frozen" or undistorted density in the folding calculation. It is also true
that the elastic data for these cases are nmuch more difficult to obtain and

consequently they are less certain.
5. INELASTIC SCATTERLNG

7 will not dweli upon the many successful applications of the standard
collective model prescription in which the optical potentdal itself is de-
formed and the non-spherical parts used to induce inelastlc scattering. I

, 28 . - 12
only mention one recent application to the scattering of C from the Nd

isotopes, ranging {rom "spherical™ to strongiy deformed. The spherical opti-
cal potential could preduce fite to the elastic scattering from the wmos:
strongly deformed isotope but at the expense of somewhat unphysical parameter
values which differed appreciatly frem those for the spherical isotope. How-
ever, the usce of coupled-channel calculations which take the deformation into
account explicitly removed this difficulty and a single optical petential was
found for all the isotupes.

Of particular intercst is the extension of the folding models to in-
elastic events. Thils may be done within the callective model, but deforming
the nuclear density instead of the potential and then folding in the effective
interaction. This has becn used successfully in the high-energy ap-

521

proach,’ one example belng Fig. 10, 1t has also been used with the Inter-

action (5), as shown for example in Fig. 12. 1In this case the renormalisation
factor N = 1.1 had been determlned by analysis of data at 142.5 MeV; Fig., 3
indicates we can expect a smaller absorptive strength at the lower 2nergy of
61.4 MeV and only this one paramecter was varied to produce the elastic fit

shown. This same complex Interactien (i.e. (1.1 + 0.6i) times interactien

(5)) was then folded into the deformed density of 6ON.L; the dcformation



parameter was determined from the known B(E2) value for this transition, and
it was assumed that neutrons and protons contributed in the ratio N/Z. The
predicted inelastic scattering is seen to be in gcod agreement with the
measurements.,

When the appropri. 2 electron scattering date ace avallable, the charge
transition density may be known in more detail (usually i1n some parameterised
form). Untclding the finite size cf the proton gives the proton transition
density; if ¥ = Z we may assume that the neutron transition density is simi- ;
lar for the strong Jjsoscalar transitions to low-lying excited states., This i
was done for the 12C excitation7 showm in Fig. 8, using the interaction (5). g

. .
It has also been applied successfully to excitation of the £ state in Si

by 160 ions.

In some cases there are available microscople (e.y. l-particle, l-hole
RPA) calculations of the transition densities. the proton parts of these may
be checked against electren scattering and measured B(EL) values. These have
Leen used22 for inelastic 12C scattering from 208Pb (see Fig. 13), not uc.ing
the more recent interaction (5) but using Gausslans normalised to fit the
elastic scattering. FEvidence was found that the inelastic scattering favoured
the choice of a range of about 1 fm, partly based upon the relative cross
sections for different multipoles aud partly upon tleir aagular distributions,

All the cases Just discu.sed were calculated using the DWBA. When the
coupling is strong, this may not be adequate {and higher-order f{eedback may
affect the elastic scattering also), and it becomes necessary to solve coupled

1

. . 7 2 .
equations., This has been explored to some extent for c + C using the

folding model.
6. FINAL REMARKS

I have put partlcular stress upon the folding model approach. This model
seems reasonable for the distant collislons which ave important for deter-
mining the elastic scattering, although even here we must recognise that theve
is a strong Coulomb fleld actiang. When the nuclei approach more closcly, the
folded potential loses its simple physical significance; certainly it should
not be identified closely with the potentials which determine fusion barriers,
etc,, although it should agree with them asymptotically. However, 1t is a

nice simple model which has had successes and it seems worth pursuing until we



see where Lt breaks down and what we can learn from that,

The success of this Interaction (5) as compared to the relative faillure
of previous attempts in this direction appears to be largely due to the
shorter range of this interacticn, resulting from a proper elimination of the
OPEP tail and recognition of the short ranges associated with multiple-pion
exchange.

The failure of the single-folding model is still not understood but may
be connected with deficiencies in the WS shape for nucleon-nucleus optical po-
tentials.

There are many aspects of elastic and inelastic scattering that T have

not toucned upon but -- ancther place, another timel
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FIGURE CATTIONS

Fig. 1. 1Illustrating the Importance of the forward angles f{or determining the

strength of the imaginary potential.ll

Fig. 2, Variation of XZ for fit to data as the imaglnary strengtia W is

varied.ll

"Fig. 3. Energy variation of imaginary strength from fitring data with a 4~
2
‘parameter WS potential.lh i

Fig., 4. Values of the real potential at the strong absorption radius, r =

Dl/°' (The lines correspond to folded potentials with various inter-
N 12

actions.™ )

Fig. 5. Effect on the scattering of leveling off (or putting to zero) the

real potential9 at 10 and 11 fm.

Tig, 6. The potential9 used for the curves shown in Fig., 5. The strong ab-~

sorption radius here is Dl/Z = 12.5 fm.

s 16 28 . . . -

Fig. 7. Folded potential it to 0 + " 'Si, using the interaction (5) re-
normaiised by N = 0.2. The WS potential E18 is due to Cramer, et al.l4

”
Fig. 8. Preliminary fit to 12C + l“C using the interaction (5) renormalised

by N=1.1. The data16 normalisation is also preliminary and may later change

by a few per cent.

Fig. © Variation of the folded potentlal at the strong absorption radius

= 10.4 fm) for LOCa + 325 with the sum of the BMS radli for the two

3
®y/2
density distributions. (The dashed line is drawn to guide the eye.)

4
Fig. 10. Folded potential fit18 to l‘N elastic and inelastic scattering from

light nuclei.

Fig. 11. A one-parameter folded potential fit to AOCa + AOCa data29 (s01id

curve), using the interaction f5) times (1.0 + 0.71). The dashed curve repre-
sents a 4-parameter WS potential fit.

Fig. 12. Fit to 200 + 09

teraction (5) times (1.1 + 0.6i).

Ni elastic and inelastic scattcringBO using the in-~




. . 22 12 208 R
Fig. 13. Comparison with data for inelastic C scattering from Pb. The
transition densities were obtalned from RPA calculations; the interacticn

was a Gaussian with range 1 fm normalised to the elastic scattering. Either

WS or folded imaginary potentials were used.
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