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Abstract

A ,nap model has been developed for studying the nonlinear interaction of

alpha particles with the toroidal Alfv4n eigenmodes. The map is constructed by

assuming a linear interaction during a single poloidal transit, which allows the

study of the nonlinear interaction over many transits. By using this map, analytic

expressions are obtained for the particle nonlinear bounce frequency, and the wave

amplitude threshold for the onset of particle orbit stochasticity. The map model

can also facilitate self-consistent simulations which incorporate the time variation

of the waves•
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I. INTRODUCTION

This paper is motivated by the problem of alpha particle confinement in a tokamak

under thermonuclear conditions. We address the question of how the alpha particles are

affected by the shear Alfven waves which can be unstable due to the spatial gradient of the

alpha particle distribution. As a particular example, we consider the the excitation of the

toroidicity-induced Alfven eigenmodes (TAE) which has been the topic of interest in many

recent studies. 1-5

An essential question about alpha particle confinement is whether one can have the

wave saturate at a level below the threshold of global particle stochastic diffusion. If the

saturation level is below the threshold, then only a small portion of the alpha particles that

are in the resonance region has significant interactions with the wave, and these particles

remain in a limited region of phase space. Hence the instability is relatively benign, and

particle losses are small. On the other hand, if the saturation level exceeds the stochasticity

threshold, then the particles are no longer confined in a limited phase space region, and the

overall free energy of the particle distribution is available to drive the wave amplitude to even

higher levels, which in turn enhances particle losses. In this paper we basically concentrate

on the determination of the threshold for the onset of particle stochastic diffusion due to

overlapping of neighboring resonances. By comparing this threshold with the previously

found saturation amplitude for a single unstable mode, 6'r we formulate the conditions under

which the losses of alpha particles, due to the excitation of TAE mode, are guaranteed to be

very low. Much higher losses can be expected when the stochasticity threshold is exceeded.

In order to understand whether these enhanced losses are still acceptable for a reactor, one

needs a self-consistent simulation of the wave-particle interaction in the stochastic regime.

The approach developed in this paper may considerably simplify such simulations.

The stochasticity threshold can be determined by studying the test particle motion in

a given wave field. A similar approach has been used for studying the effects of ripples s'9
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and low-frequency perturbations, l° A procedure that allows for an analytic estimate, or

rapid numerical calculation, is the reduction of the particle motion to a two-dimensional

map. As the wave amplitudes are sufficiently small, for a single transit the response of alpha

particles can be calculated using linear theory with the linear structure of the TAE mode.

The nonlinear dynalnics of the alpha particles, the simplest form of which is the oscillation at

a nonlinear bounce frequency ,cb, is then simulated by following the map for many transits.

The reduction to a map is made possible by a number of preliminary simplifications

based on the physical nature of the problem. In our problem, we consider only the passing

particles in a large aspect ratio tokamak. Most of these particles are far enough from the

trappe,.,-passing boundary so that their unperturbed parallel and perpendicular velocities can

be treated as constant. We also use the fact that it is the toroidal angular momentum, rather

than the particle energy, that primarily changes during the alpha particle interaction with

TAE modes. Despite these simplifications, many important physical details are retained by

the map. For example, the structure of the resonant interaction for a given particle depends

on where the unperturbed orbit is located relative to the radial structure of the mode, and

on the ratio of the orbit width to the mode width. Of particular interest is the case when

the particle excursion (due to the guiding center drift) from the flux surface is comparable

or even larger than the radial width of the mode structure. For example, in the linear

theory 11that has been developed, which is closely related to the map model presented here,

it was shown that the instability drive is substantially reduced compared to what would be

extrapolated using the thin-orbit theory. Along with the changes in the growth'rate, new

resonances appear when the orbit is thick; these resonances being negligible for the thin orbit

case. It will also be shown that there is an important range of parameters where the alpha

particle response is insensi'tive to the finite Larmor radius (FLR) effects, even if the scale

length of the radial mode structure is comparabie or less than the Larmor radius. This fact



allows for an essential analytic simplification for describing the particle-wave interaction in

both the linear theory arid the mapping method.

With all these elements included, the structure of the map is still sufficiently tractable

that analytic estimates for cob and the stochasticity threshold can be made. Several numerical

tests presented in Sec. 4 illustrate the accuracy of the analytic estimates.

The mapping technique allows for efficient computer simulation of nonlinear alpha par-

ticle dynamics, by allowing the time step size to be a poloidal transit time. Using an

area-preserving map, we can follow a particle in low amplitude fields for a long time and

guarantee that the diffusion of a particle is not due to the inaccuracy of the approximate

equations.

The rest of the paper is organized as follows. In Sec. II we derive the map equations.

Then in Sec. III we use the map to obtain analytic expressions for the nonlinear bounce

frequency cot,, and the threshold amplitude for the onset of orbit stochasticity. In Sec. IV we

present some of the numerical results for the map. In Sec. V we discuss how to change the

wave amplitude self-consistently, and how to make a simulation code ba.sed on the mapping

technique. Finally in Sec. VI we summarize the results. Appendix A contains a detailed

derivation of a form factor which is used in Sec. II. It also includes the finite Larmor radius

correction neglected in the main text.

II. DERIVATION OF MAP

In our derivation we shall restrict ourselves to the low/_ limit, in which case both the

perturbed electric and the magnetic fields, b-E and b'B, have negligible parallel components.

This allows a perturbed field representation of the form

bE = -V8¢- lc)tb.411b , b'B = V × (b_iAii) - -b × V_AII, (1)C



with

Ot_hAii= -cb. V_¢, (2)

where b --: B/B is the direction of local equilibrium magnetic field. For a single mode with

frequency _,', we have 8Ajl = (c/ia,,)b. V8¢.

To describe the particle motion, we start with the phase-space Lagrangian

L =/'. Mv + (r) + ebaAil(r,t) Mv 2 + eh¢(r,t) (3)
C C

where e and M are the alpha particle charge and mass, respectively, and r and v are indepen-

dent variables. A(r) is a vector potential for the equilibrium magnetic field: V x A = B. We

model the tokamak in the large aspect ratio limit assuming the flux surfaces to be circular.

Then the equilibrium magnetic field is B = B0[1 --(r/Ro)c°sO]cUP + Bo(r)O, where r is the

flux surface radius, R o is the major radius of the magnetic axis, 0 is the poloidal angle,

and _ are the poloidal and toroidal unit vectors, and Bo(r ) = rBo/Roq(r), with q the safety

factor. Tile vector potential A can then be expressed in terms of the toroidal and poloidal

flux functions, g and _b, by

A = x(r)V0- ¢(r)V_, (4)

where

/ox -. B0 ¢ - B0 (5)

and dga/d_ = 1/q.

The unperturbed orbit of a particle is determined by three invariants: magnetic moment

Ia =_ Mvd/2B, energy E =_ My22, and the toroidal angular momentum P_o- RMv_o-

(e/c)_,, where R = Ro + rcos0. The corresponding unperturbed trajectory in the (r, 0)-

plane is implicitly determined by the relation

e

p_ -: --ga(r)4- Rv/2M(E - #B), (6)
C
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where the + signs correspond to moving parallel or anti-parallel to b, respectively. For

particles far from the trapping-passing boundary, which are )f primary interest in our in-

vestigation, t,11and uI can be treated as constant. Then Eq. (6) simplifies to (here and

after we neglect, in the unperturbed motion, the distinction between the particle and the

guiding-center)

r = _ + Ab cosO, (7)

where r_ is the average distance of a particle from the magnetic axis, defined by

e

p_, = --_(_) -t- RoV/2M(E - #Bo) , (8)c

and Ab, the particle orbit excursion from the flux surface r = _, is given by

Ab = (v_ + ½v[)q(f)
Vllf_ , (9)

with _ - eBo/Mc the alpha particle gyrofrequency. Although using expression (7) requires

the orbit excursion from the flux surface, Ab, to be small compared to the minor radius,

r, this excursion can still be larger than the characteristic width of TAE modes, which is

roughly of the order of r2/nqRo, with n the toroidal mode number. 12

The statement that variations in vii and vj. are negligible is also valid when a pertur-

bation is present. In order to justify this we first show that relative change in _ produced

by the TAE mode is much larger than that produced in the particle energy. The perturbed

quantities in a single TAE mode depend on time, t, and toroidal angle, qp, as exp i(n_o- w_).

.'ks t and _ enter the Lagrangian L only through this particular combination, then L is

invariant with respect to transformation

Cd

t _ t + r, _ _ qp+ -r. (10)n

Thus, although neither pC nor E is conserved in presence of perturbation, their following

combination is still invariant'

cO

E - -p_, = const. ( l I)
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-Flte change in the particle energy is then related to the change in/; by AE - (coe/nc)g,'Ai.

Thus we obtain the following estimate

Av co A_

v - co._ L_' (12)

where L_ is the alpha particle density scale length, and

_ nqpav
co'_- 2fL_

is the alpha particle diamagnetic frequency (p_ denotes the alpha particle gyroradius). It is

known from previous studies 'a that co < co._ is required for TAE modes to be unstable. To

simplify our analysis we shall assume e, stronger inequality co << co._, which is certainly well

satisfied for moderate values of rz. Thus we can neglect the relative change in particle energy

compared to the change in the mean radius.

To proceed with our derivation, it is convenient to make a change of variable

e

u = v + _cb6Aii.

Note that since &4li remains small in realistic situations, u will remain close to v for ali

time, so for all practical purposes we can ignore the difference between them. This simple

transformation removes the perturbation from the coefficient of/" in Eq. (3) and simplifies

the subsequent calculations"

L = Mu+ (r) ./,--_Mu -e_ 1-_.V g_bp(r,t)+c.c. (13)
C P _co

where p is a mode index. For each mode we have eliminated 6Ali in terms of (xband dropped

the term quadratic in 6¢. Note that the first term in L now contains only the unperturbed

fields, so we can perform the usual guiding-center transformation, and obtain the guiding-

center Lagrangian. 14 As the gyroradius is assumed to be small compared to the equilibrium



scale !_gth, we need only keep the gyroradius in the perturbed potential &bm. Therefore

the gyroaveraged Lagrangian becomes

e 1Mu_+#Bo(l_ r cos0 )
(14)

P

where X is the guiding-center position, # _- Mu_/2B o is the magnetic moment, and the

angular bracket stands for gyroaverage. It turns out that the finite Larmor radius (FLR)

is less important for moderate n values compared to the finite drift orbit effects, so for our

purpose we shall henceforth neglect in the main text the FLR corrections. A heuristic argu-

ment for neglecting the FLR effects has been given in Ref. 11. The appropriate modification

with FLR correction is given in Appendix A. FLR effects for the case of large mode numbers

have been studied in Ref. 15.

Now, substituting Eq. (4) into the guiding-center Lagrangian gives

L = poO+ p_(o - -_ #B o _0cos0 +e E 1-_.Vzw f_b, + c.c. , (15)
P

where

e Be _ex(rPo = -x(r)c + Mul'r'-B" - c )' (16)

and p_, now denotes the guiding-center toroidal angular momentum

e e

P'_ -- c_l'(r) + MuIIR = --_b(r)c + Mull(R° + rcosO). . (17)

To a very good approximation the toroidal motion of passing particles can be described by

p - ullt lR o + c2o. Using this, tile Lagrangian reduces to one for a single degree of freedom

L= poO- _U,,p + + co_O+ _E 1---. v _. + _._. .
Ro_' _ "_ ,_ _,.,.,

(ts)



The second term is the Hamiltonian for the reduced motion. Using Eq. (17) for p_ and

discarding ali terms that are independent of 8 and r, we obtain the "effective" Hamiltonian

etl[[

H(p°' O; t) = _cRo_'(r)-ceB°vdrc°s0+e E 1- .--r--.Vzw 6dpp+ c.c. , (19)
p

1

where r is a function of Po through Eq. (16), and ve - (u_ + 7u_)/f_Ro.

The equations of motion can then be obtained easily by

0H 0 = (20)
De = O0 ' Ope"

However, for the map model it is more convenient to use 0 as the independent variable

instead of t. In the Hamiltonian formulation it is very easy to make this conversion, by

noting that the action can be written in two ways:

/ ]S = dt[peO - H] = - dO H-_ - Po (21)

By comparison of the forms, we see that the new canonical variables are (H,t) and the new

Hamiltonian is Pe, The mean radius, e, is now defined as a function of H by

eull

H _=cR0_b(_). (22)

Expanding _b about _, we can solve Eq. (19) to obtain

pe( H, t; O) = c_(_) + B0_Abcos0--- 1-_.V _,+c.¢. , (23)
tO t Zt.d

where Ab - Vd/Wt is the orbit excursion length, w_ - ull/Roq(f ) is the poloidal transit

frequency. The unperturbed part of gq. (23) ,gives the unperturbed guiding center orbit (7).

The equations of motion in terms of (H,t) are now given by

dH Ope dt Ope
dO - Ot ' dO - OH" (24)

In the absence of perturbation we have, neglecting the variation of Ab,

d H = 0, t = --. (25)
0 0 _t

9



To treat the perturbed part we substitute Eq. (7) into

&by(r, O,_, t) _ _ ¢,_(,')e i("_'-m°-'_t), (26)

and Fourier expand in O, to obtain

5¢p = _ ¢,,, (f + Ab cos O)e_('_'°-m°-_'') 1' 2 _ "1" ,,-i[(m+e)O+cotl
= - _m,e_ , (27)

rr/, m,_

with & -- w-null/RO, b.V = ikll = iRo_(n-rn/q), and the Fourier amplitudes ¢_,t defined

by

foo2'_dO O)eieO"
Cm,e= --¢m(_ + Abcos (28)

71"

Now integrating dHdO along the unperturbed orbit for one transit between -Tr and Tr,

taking care so that t always increases, we obtain the change of H due to the perturbation

e _.e Q kllUll) sinTr_=+,,_ _-i_t_ (29)
--" Wm ,£¢_

HN+I -- HN I"_,1 1 i_ + c.c.,

where _} --- j + _/w t is the rate of phase change alonj, the unperturbed orbit. Notice that

as w - kllull - we_,,, we can simplify the above equation to

HN+I -- gw = sgn(ull )eg° E --iC°K(_N+l)e_iCot _ + c.c., (30)C _O
P

where

c sin

K = B0 (31)m,_ _'+_

I

and we have neglected terms that vanish at resonance (which occurs where _m+t - 0 or

• ',_--e).

The change of t can in principle be ca!culated by integrating dt/dO. Alternatively,

we determine the change in t by ensuring that (tN, HN) _ (tN+,,HN+,) is _ canonical
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4

transformation. Using the standard technique we introduce a mixed-variable generating

function F(tN, HN+I), such that

OF OF .'
...... ,

H u = OtN, tN+ 1 = OHN+ 1 (32)

The appropriate generating function is found to be

['(tx'HN+x) = txHN+l + sgn(u'l) e { 27rX(_N+l) - _ B-''9"°[li(_N+l)e-ic°'_ + c'c'] }cw (33)P

Substituting it into Eq. (32) we finally obtain the following implicit map

)+HN+ 1 = H N Jr- sgn(ull)--g--
P (34)

1 [ )]tN+ 1 -- tN + icot(qN+l) I 21r -- -_r2 (gN+t + c.c. ,

where rN+l -- r(HN+I), and qN+l -- q(rN+l)"

To apply Eqs. (34) to particular TAE modes one first has to find Crag by calculating

the integral (28) for a given mode structure. The integral can either be done numerically

or evaluated analytically when a simple representation for the mode structure is available.

To proceed analytically we will restrict ourselves to the case in which Cm,t is determined by

a single gap. In the vicinity of the gap location rm, where q(rm) = (m + ½)lh, the radial

structure of TAE modes has the following generic form 12

¢,,,(r) = _m/,, Am(r,_+ C_m(r'-rra)2 + A_rra) dr'i (35)

where Am is the "local mode width." From the linear theory of TAE modes 12 one finds

2
A m _ rm/msR o with s -- rq'/q. In addtion to the above local structure the mode also has a

global structure, with a scale length L m ,_ trums , neglected in Eq. (35). This simplification

requires the particle excursion from the flux surface to be much less than L,_, which sets

a limit on the maximum mode number that can be rigorously treated. Note that the map

model itself is more general than expression (35). We merely use Eq. (35) to illustrate
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tile ;at)abilities of the model. The result can then be improved by using the actual mode

structure determined numerically. Tile calculations of the Fourier amplitudes ¢,n.e for the

Inode structure (35) are given in Appendix A, where we find the result for g :fi 0 to be

(Pm

Cm.e = [gl [i(zlel - c.c.) + C_m(Zlel+ C.C.)], (36)

where z =_-(x + iy)+ [(x + iy) 2 - 1]1/2, x -- (_- rm)/Ab, y -- Am/Ab, and the branch of

the square root is chosen so that Izl < 1.

In the next section we simplify Eqs. (34) about the center of an isolated resonance, and

calculate the nonlinear bounce frequency w b and the stochasticity threshold. Then in Sec. 4

we shall discuss the numerical implementation of Eq. (34).

III. NONLINEAR BOUNCE FREQUENCY AND

RESONANCE OVERLAPPING CONDITION

Under the influence of a single finite amplitude wave, particles oscillate spatially. The

amplitude of oscillation is largest if the particle is in a resonance region (labeled by t0) where
I • ! I

_m+eo _ O, so that sin(Trg2m+e)/glm+ t ,_ zr6tto. This leads to a reduced map wherefrom ana-

lytic express',_ns for the separatrix width and the characteristic nonlinear bounce frequency

can be obtained straightforwardly. In the rest of this section we omit the subscript 0. The

validity of this procedure requires the width of resonance to be smaller than the distance

between the adjacent resonances. It is well known 16 that by equating the resonance width

to the distance between adjacent resonances, a good estimate for the onset of stochasticity

can be obtained.

!

The resonance condition _,_+e = 0 defines the radial position of an island

q(r.) r,_ + f 1 m + e ( wR _
- _ 1 + . (37)

r_, 1 - a_R null n n ull ]
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Expanding the map about the center of the island by letting rN = r. -t-_r N and t N =

2_:V/_t(r.) + r_\,, we obtain

27r &, c ,9_r

_,_., - _,v = I_,1_' Bor. [gCre'elsin(_rN - 3m,_) - ON'
(3S)Or2rr q'

_:_+_- _N= I_1q_rN+_:--ON'

where cern.t = ICCm,tIeizm,t, and wT etc. are evaluated at r.. These equations describe the

oscillation of particles trapped in the island. Combining Eqs. (38) gives the equation for a

nonlinear pendulum:

ON_- _ Bo_"le¢_,,Isin(_r - ¢_m,e), (39)

where s - rq'/q is the local magnetic shear. Without loss of generality we can put ¢_,,,,t= _'.

For a particle deeply trapped inside the island, sin(a)r) _ _or, so that we immediately see

that the number of steps, Ns, that is needed for a particle to return to its original position

(one bounce) is given by

--& w r2.B° Ige,n,, I . (40)

Denoting the trapping frequency by cob,we have

sc ] 1/2_b-=Nb-_co_= I'_1cor2B01e¢m,el• (41)

To obtain the separatrix width associated with Eq. (38), we construct, in a standard

manner, the first integral of Eq. (38). Dividing the first equation by the second v_eobtain "

_r= 4c le¢_,,Icos_ - c. (42)_sBo T

The sign of the constant C determines whether a particle is trapped by the wave or not.

The separatrix occurs when C= O, with the separatrix equation given by

z"_: + _._o0-=w-le¢"_l]cos \-_-2. (43)
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The maximum width of the separatrix is therefore

a_, =4 _ le¢_,,I - _ I_l (44)

We note that our derivation assumed Ar_Oln I_¢m,t]/Or < 1.

To investigate the resonance overlap we observe that the resonance condition (37) gives

the distance between neighboring resonances

1
(_.)t+,- ('.)__ --. (45)nq_

Therefore the resonance overlapping criterion At, __ (r.)t+ _ -- (r.) t yields the threshold

amplitude for the onset of particle orbit stochasticity

I_J (46)_ >-_-_q.

To get a feeling for this threshold in terms of physical quantities, we use Eq. (36) for a particle

that crosses the mode surface, and has the orbit width Ab much larger than the local mode

width A . For such a particles, [z i _1, which yields g¢m,_ _ 2_,_ _ (2rvA/mC)SB r. Thus

we obtain, with m _ nq and _o_ va/2qRo,

5B.__z._> r. 1 (47)
Bo - 64taRo qs"

For typical tokamak parameters, it gives the threshold _Br/B o .._ 1.5 x 10-3/m. This result

is in qualitative agreement with the earlier numerical integration results obtained by Sigmar

et al.1_

To conclude this section, we note that in arriving at the stochasticity threshold (47)

we used Eq. (45), which is valid only for a single pair of (n,m) (i.e., a single gap). In the

presence of many modes, the distance between resonances can be reduced (roughly by a

factor 1/N with N the number of modes), which results in a lower stochasticity threshold

(reported recently in Ref. 18). Tills situation will be illustrated by some of the numerical

results in the next section.
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IV. NUMERICAL RESULTS

In the numerical implementation of map (34) we choose Eq. (35) with _m = 0 for

the mode structure, and '_se expressions (31) and (36). We solve the first of Eqs. (34) for

/;N+I(PN, tN) by Newton's method, then evaluate tN+ l directly using the second equation.

The symplectic structure of the map ensures that particles can be followed accurately for

many poloidal transits without introducing nonphysical secular behavior arising from the

approximations in the equations.

The parameters that we choose are as follows:

aR'--_= 0.25, q(r) = 1 + 2 ' 2aa = 0.03, (48)

where a is the minor radius of the plasma column. In tile following figures we use q as the

radial variable, with q = 1 corresponding to r = 0 and q = 3 corresponding to r = a. The

wave amplitude is normalized as

6Br
mc (I)m_--. (49)

Am - rVABo Bo

Figures 1-3 are for the case of a single mode, with mode numbers n = 3, m = 6. They

are surface-of-section plots for seven particles, all having v = vii = vA, but are initially located

at different radii with q = 1.67, 1.83, 2.0, 2.17, 2.33, 2.5, 2.67, respectively. The vertical axis

is q(_), while the horizontal axis, the phase, is defined as &t mod 27r. Each orbit is mapped

for 2000 poloidal transits.

Figure 1 has the wave amplitude A m = 6.25 x 10-5 , which is equal to 1/4 of the

estimated stochasticity threshold as given by Eq. (47) in the previous section. The three

islands correspond to the principal (the middle one) and the two nearest sideband resonances.

"I'he thin stochastic layer around the principal resonance appears because the orbit is close

to the separatrix. We can also see that away from the resonances the orbits are perturbed

very little.
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Figure 2 has the wave amplitude A m = 1.25 × 10-;, which is 1/2 of the estimated

stochastic threshold. The principal and the lower sideband resonances have overlaped, and

the three orbits in tile overlapping region become indistinguishable.

Figure 3 has the wave amplitude Am = 2.5 × 10 -4, which is equal to the estimated

threshold value. The stochasticity has almost spreadout to the whole resonance region.

Note, however, that the stochastic region is still bounded by invariant curves, and that the

particle transport is thus confined.

For global particle transport to occur, one need either higher wave amplitudes (for

larger islands), or the presence of many modes (for closer islands). Figure 4 shows the radial

locations of resonances for different mode numbers, according to Eq. (37). Only the principal

resonance (indicated by solid lines) and two neighbouring sidebands (indicated by dashed

lines) are included. The numbers atop the solid lines are the m-values, while the n-values

are shown at the bottom. PLtthe right we stack all the resonances together to show their

tendency to form clusters. Within each cluster stochasticity can occur at very low wave

amplitudes. Notice that for these mode numbers there still exists a relatively wide radial

interval, labeled by A, which is without any resonances. This region may prevent a particle

in the inner region from being transported to the outside.

Figure 5 is the surface-of-section plot for two particles in presence of 12 modes, with

n = 3, m = 4-8 and n = 4, m = 5-11. All modes have the amplitude A,_ = 2.5 x 10-5 ,

which is 1/10 the estimated threshold value. One particle is initially located at q = 2.17,

which is above region A. This particle can clearly diffuse to the plasma edge. The other

particle is created at q = 1.62, which is below region A. We see that this particle is confined

due the the absence of resonances in region A. Both particles are mapped for 2000 poloidal

transits. For the inner pariicle to diffuse to the outside, it is necessary to have higher wave

amplitudes, or to have some modes whose resonances are inside region A. In Figure 7 we
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raise the wave amplitudes to A m = 5.55 × 10-5. In this case the inner particle can overcome

the barrier presented by region A, and diffuse to the plasma edge.

V. CHANGE OF PARTICLE ENERGY

The map model also allows for an efficient calculation of the energy transfered from a

particle to a wave as the former completes one turn. Within the guiding center approximation

we have

tN+l(AE)N -- --e dtv d .6E, (50)
Jt N

where v d = -v,l(/" sin 0 + 0 cosO) is the guiding center drift velocity, and 5E is the perturbed

electric field. Neglecting the relatively unimportant contribution from 6Es, we can then

carry out the integration along the unperturbed orbit, and obtain

(AE)N = - E e ,_i-_Vd sin 0 e-i[m°+_t(°)l + c,c.
v (51)

= sgn( H) +C
P

where K is given by Eq. (31). Notice the similarity between Eqs. (51) and (30). Aside from

a normalizing constant, the only significant difference is the factor w/_o. This factor can be

explained by noting that H is essentially equal to E - p_ull/Ro, the particle energy in the

rotating frame, and that p_ is related to E by Eq. (11). Since in computing the map we have

already found the value of K, it is straightforward to calculate AE. As the above expression

is a sum over modes, it is natural to interpret each term in the sum to be the energy gained

by the respective wave. Such a model is in the spirit of quasilinear theory.

A self-consistent simulation scheme utilizing the map may be constructed as following.

We first choose a time step T, which is long compared to the particle transit time but short

compared to the wave growth time. Each particle is then mapped for many turns until the

total time just exceeds T, and its energy change is accumulated. The particle energy at
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time T can then be found by an appropriate interpolation method. Next we use Eq. (51) to

calculate the energy transfered to each wave and thus update its amplitude self-consistently

according to

WE_+ 1 = (1 - 7dT)WEi + _ AE (52)

where 7d is damping rate of TAE mode due to the background plasma, and the sum means

accumalation of _SEfor the duration T and over all particles.

VI. CONCLUSIONS

In conclusion, we have developed a map model for describing the nonlinear interaction

between the alpha particles and toroidal Alfven waves, in particular the TAE modes. Using

this model we have obtained analytic expressions for the nonlinear bounce frequency and

the critical wave amplitude for the onset of particle orbit stochasticity, both are essential

quantities for assessing the alpha particle confinement in a fusion tokamak.

Using the stochasticity threshold obtained in Sec. 3 and the estimates for the saturation

level of a single TAE mode driven by alpha particles, we can now formulate the condition

under which the effect of the mode on alpha particle losses is expected to be insignificant.

This must be the case when the mode saturates below the stochastic threshold. The nonlinear

analysis presented in Refs. 6,7 shows that the value of cob at saturation is the largest of the two

quantities: the linear growth rate _/L and 7L[(U/")'d)(OO/TL)2]1/3, where 7d is the background

dissipation rate for the TAE mode, u is the 90° pitch angle scattering rate for the alpha

particles, and ¢0 is the mode frequency. By combining these estimates with Eq. (46) we

conclude that stochastic diffusion is negligible when

4n'-'-_> max TC; _L " (53)
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Note that this criterion is only good for rough scaling estimates whereas exact numerical

factors in it have to be found from numerical simulations, lt should also be noted that

violation of Eq. (53) does not necessarily lead to global stochasticity, lt may result in particle

diffusion within only the width of the banana orbit. Global diffusion requires either the

presence of many modes with different radial positions over the poloidal cross section, or the

mode numbers to be sufficiently high so that the mode would have substantial component, s

near different gaps being crossed by the particle orbit. The regime of global diffusion is of

course unfavorable for the confinement of the alpha particles. However, even this regime

tnay still be acceptable if one does not go too far beyond the instability threshold. To get a

better feeling about global diffusion one has to study the corresponding quasilinear problem

with the source of alpha particles and background damping mechanism for the TAE modes

taken into account.
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APPENDIX A. CALCULATION OF FORM FACTOR

In this appendix we present the detailed calculation of the Fourier coefficient ¢._,e, as

defined by

foo_'_dO 0)eie0 (A.1)
¢m,e---- --¢m(_ +/xb cos ,

71"

with the radial mode profile given ky Eq. (35). Clearly Cm,e = Cm,-e, so we shall consider

only the case g >_0. Differentiate both sides of Eq. (A.1) with respect to f we have

OCm,e_= fo2"dOrrOCmor(_+/xb c°sO)°it°
(A.2)

_._ f2,_ A + a._(_- rr. + A bcos 0) leo
=-- Jo dOrr (,_- rm+ zXbcos0)2+/x_ e .

V)efining

- rm ATr,

- zxb ' Y- -hT' (A.a)

we can rewrite Eq. (A.2) as

OCr.,_= _¢" f2,_ dOy + a.,(z + cos0)e.0.
(A4)

r (z + cos0)2 + y_

This integral can be evaluated by countour integration method. Let ( - ei°, then dO = d(/i(,

cosO = (( + (-1)/2. Substituting into the above equation we obtain

o_ _, __, [_+ iy+ _(¢+ )][_- iy+ _(¢+ _-_)1

= _--T i:, ¢_+ 2(_+ iy)¢+ _+ ¢_+2(_-: iru)¢+ 1

= _--T _:, (¢- G)(¢- ¢_)+ (¢- ¢_)(¢- G) "

For real y, the four poles are related to each other by (2 = 1/(1, _a = (i', (4 = i/(_', where

star denotes complex conjugate. For definiteness, let (1 = z, where

z - -(x + iy)+ V/(x + iy) 2 - 1, Iz I < 1, (A.6)
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so that q'l is inside the unit circle. Now deform the countour by shrinking it to the origin,

we pick tlp the pole contributions from two poles (_ and (a, yielding

O¢., e [ (am + i)z e ( (a_ + i)ze) "]Ox = 2(I)m ..-1 + " (A.7)Z_ Z--Z -1

On the other hand from gq. (A.6) we have

1
z + - = -2(x + iy). (A.8)

Z

Differentiate both sides with respect to x we obtain

I 2z
z - - = . (A.9)z Oz/Oz

Substituting it into Eq. (A.7) we obtain

Ox - -_x + (a_ + i)z'-l-_x . (A.10)

The right-hand side has become a differential. For g > 0 we have

Cm,e= _m [(c_m + i)z' + (a m -i)z"] + const. (A.11)g

The constant of integration can be shown to vanish by taking the limit Ix] + e_. Therefore

we have finally

gCm,_= -Ore Jam( zt + c.c.) + i(z t - c.c.)]. (A.12)

For reference, we also display result for g = 0'

Cm,o= -_m [(a,_ + i)In z + (c_m -i)lnz*] + const., (A.Z3)

although this result is not used in this paper.

Expression (A.12) becomes especially simple when A b is much larger than Am. In this

limiting case one can put _m = 0 and rewrite Eq. (A.12) in the form

t'¢m,e = 2(I)m [sin gOo - a m cos g.Oo], (A.14)
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where

r m --

cos0 0 - Ab (0 < 00 < zr). (A.15)

We now generalize this result to the case of finite Larmor radius p. This only requires

to be replaced by ff - psin a with subsequently averaging Eq. (A.14) over the gyrophase a.

Thus Eqs. (A.14) and (A.15) transform to

gCm,e= 2_ (sin gOo - c_,..cos e0p>, (A.16)

rm - e - p sin a

cos0p = Ab , (A.17)

where the angular bracket means gyroaveraging according to

fo 2'_da(f(a)) = _r-rf(a ). (1.18)

Assuming p to be much less than Ab and 00 not too close to 0 or 7rwe rewrite Eq. (A.17) as

p sin a

0° = 0° + A bsin 0o ' (A.19)

With this expression for 0o gyroaveraging gives

gCm,g -- 2_m [sin gOo -- a,_ cos g0o]Jo(gp/Ab sin 0o) , (A.20)

where Jo is the zeroth order Bessel function. Thus if gp/A b is less than 1, there is no essential

change in the function Cm,e.
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FIGURE CAPTIONS

1. Surface of section plot with seven orbits for the case of a single mode. The mode

amplitude is 1/4 of the estimated threshold value for the onset of orbit stochasticity. See

Sec. IV for details.

2. Similar to Fig. 1, except that the mode amplitude is 1/2 of the estimated threshold

value for the onset of orbit stochasticity.

:3. Similar to Figs. 1 and 2, except that the mode amplitude is equal to the estimated

threshold value for the onset of orbit stochasticity.

4. The radial locations of the resonances (principal plus two neighboring sidebands) for

rz = 1 to 4. Notice that the resonances tend to form clusters, and that in this case there is

a significant radial interval (region A) that is without resonances. This region may act as a

barrier to particle transport.

5. Surface of section plot for two particles in presence of twelve modes. The mode

amplitude is 1/10 of the estimated threshold value given in Sec. III. One particle is born

above region A and it can reach the plasma edge within 2000 poloidal transits. The other

particle is born below region A. Notice that this region limits the outward particle transport.

See Sec. IV for more details.

6. Surface of section plot for the inner particle of Fig. 5, but with higher wave ampli-

tudes. Notices that in this case the particle has overcome the transport barrier presented by

region A.
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