
• DE93 002931

A SUGGESTION FOE SPECIFICATION OF THE NEUTRON
ENERGY SCALE IN XEASUREIENTS, ANALYSES AND EVALUATIONS

OF DIFFERENTIAL REACTION CROSS-SECTION DATA

DONALDL. SMITH

gngineering Physics Bivision, Argonne National Laboratory
9700 South Cass Avenue, Argonne, Illinois 60439, g.S.A.

ABSTRACT

Neutron energy distributions (spectra) in differential
neutron cross section measurements are represented
conventionally by giving the energies (not well defined)
and full widths at half maximum of the spectra. In most
modern experiments, it is possible for investigators to
provide a much more thorough representation of neutron
spectra. However, reporting such information would entail
more numerical detail than appears practical to document.
Therefore, it is suggested that such spectra be
represented in publications and files of experimental
data by providing the following four moments of each

distribution: mean value /energy), standard deviation
/resolution!, skewness kasymmetry_, and kurtosis_,sharpness) Implementation of such a standard for data
reporting would offer evaluators a much more comp!ete and
rational basis for comparing reported values and
performing evaluations than previously possible. Some
examples are provided to illustrate the concepts.

1. Introduction

Differential neutron measurements are performed in order to acquire
knowledge of the energy and/or angular dependence of important physical
parameters (e.g., cross sections). However, energy differential
measurements are never truly monoenergetic, and no measurement exercise
is ever complete due to limitations of time and technique. Thus, all
differential measurements - even those with very high resolution - are
somewhat inadequate and require profound assumptions about the physical
processes to reach conclusions about those fundamental quantities
involved. Also, basic information is lost or distorted by the effects of
finite resohxtion. Finally, interpretation of data from experiments can
be thwarted by arbitrary and/or inadequate specification of neutron
spectra involved in the measurements. The objectives of this paper are
to discuss these issues, make some suggestions for improvement in the
current ways of handling the problem, and provoke constructive thought.

2. Energy ScaleEffects

A differential measurement aims to provide a value q for a physical
quantity q, corresponding to parameters _, i.e., q = q(_). Examples
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are s = _(E) or y = dg(E,O)/dfl. Errors, biases or general confusion over
the definition of the energy scale for a measurement can impact severely
on the interpretation of such differential information. To understand
this, consider g(E) to be the "true" differential cross section. Let Em
be a measured, specified or assumed energy, while Eo is its true (but
unknown) equivalent value. Then, there is a systematic error, A_ =
¢(Eo)-q(Es), in our knowledge of _ near Eo due to energy scale
uncertainty. It can be significant for rapidly changing ¢.

3. Loss of Information

If ¢(E) is the true cross section, then its measurement will lead,
inevitably, to the result ¢'(E) = ; R(E,e)_(e)de, where / R(E,e)de = 1
for all E (in the discussions of this paper, integration extends from 0
to ®). The process of converting a to _' is irreversible, in a practical
sense, even 15 measurements of _' are made for many closely spaced
values of E, and R(E,e), the resolution function is well known. Ve must
accept as inevitable that information about _(E) is irretrievably lost
by the measurement process. However, interpretation of _' as
representative of g becomes more meaningful if we follow consistent
procedures for specifying R(E,e). In particular, the measured results
¢'(E) will then be free of biases and distortions so that physical
principles can be used with some reliability to infer the nature of q
from the measured values of g'. Figs. 1 and 2 show how the resolution
function distorts basic information. For example, it is seen that finite
resolution leads to cross sections that are too large ne_r threshold.
This can have a profound effect on C/E comparisons with integral data.
Nuclear model results are often preferable to real data near threshold
unless the measurements are of very high resolution.

4. Charactexization of Differential Neutron Spectra

Modern experimental methodology, aided by computer analysis, allows
for characterizing the neutron spectra from differential measurements
with considerable accuracy and detail*-S It is impractical to record
all this detail in computer data files for posterity, so a consistent
system for identifying and recording key spectru_l parameters is needed.
Contemporary practice generally offers ad hoc and inadequate
characterization, e.g., differential energy v peak neutron yield, and
resolution v full width at half maximum. It is suggested that
differential neutron spectra be treated as probability distributions and
that well defined low-order moments from statistics be used to
characterize these distributions for practical purposes. As an example,
consider Fig. 3 which is derived from printout of a data analysis code
used to determine neutron activation cross sections as measured against
a fission standard. The neutron energy spectrum shown corresponds to the
activation sample in this experiment.

5. Ioments of Localized Neutron Distributions

Let us assume that the shape of the neutron energy distribution is
defined by p(E) and that it is normalized, i.e., _; p(e)de = 1. For



convenience, the following change of notation is made: p(e)¢=_ R(E,_)
for a particular E. Neutron energy for a differential measurement can be
equated to the distribution mean value, E = ; ep(e)d_. The neutron
energy resolution can be associated with the distribution standard
deviation_,_ = [; (e-E)2p(e)d_]t'2. Note that in this context, _ ought
not be confused with a cross section. &s an example, consider the
distribution p(_)= exp[-(e-Z)_/(2_2)]/(2r_2)t'2, i.e., the normal or
Gaussian distribution with mean value E and standard deviation _. Then,
I_VBllz 2.35 _. Deviations of the spectrumrelati,.eto a Gaussian can be
examined by consideringtwo additional distributionmoments: skewness,
a3 = #_/aa, where #3 = _ (e-g)3p(e)de, and kurtosis_, a4 = #4/¢-q_-'-where
#4 = / (e-E)4p(e)de. The skewness is zero for a distribution which is
symmetric about the mean value, while it is negative for one with a tail
sloping to the left and positive for one sloping to the right. For a
Gaussian distribution, the kurtosis equals 3. If a4 < 3, the
distribution has drops off more rapidly to zero on the wings than a
Gaussian, while a4 > 3 signifies a distribution which drops off more
slowly than a Gaussian_. These four quantities embody the principle
features of a localized distribution function. Therefore, it is
suggested that a reasonable characterization of the spectrura associated
with a differential measurement can be recorded for posterity by
preserving B, a_ as and a4. This approach does not suggest a major new
commitment of effort or data storage space since all that is required is
a consistent determination of E and ¢, plus two additional parameters
beyond what is conventionally expected from an experimenter.

6. t Suggested Standard for Data Reporting and Filing

Consideration needs to be given to a means for implementing this
suggestion in the reporting of experimental data submitted for
publication in the literature or storage in archival files. The issue
should be debated but, for simplicity, let us assume energy differential
cross section data, such as a reaction cross section, are to be
presented. An experimenter could attend to detailed characterization of
all his measurement spectra and then calculate B, _, a3 and a4, as
defined earlier, for each data point. The experimenter would then report
for each experimental data point: ffmeas, E_ {r, (13 and a4, where Crmeas is
the measured differential cross section. These five values could be
introduced into computer files for each data point, along with any
descriptive information of a conventional nature, as available.

7. To Vhat Extent Can Ve be Successful in Reconstruct ing a
Differential Spectrum Given only Four Parameters?

It is clear that generally we could not do an outstanding job
because the conversion process, p(c) v E, e, a3 and a4, certainly
entails loss of information. In fact, it is not suggested here that
provision of four parameters is a substitute for knowledge of the
complete distribution. However, a user of reported data would be in a
far better position to evaluate the significance of the information if
he knew exactly how the energy scale were determined and how broad the
spectrum used was in terms of its standard deviation, which is well



v •

defined. Furthermore, he would benefit by knowing whether or not the
spectrum used was skewed and if it dropped to zero in thewings more
quickly or more slowly than a Gaussian. Nevertheless, it is interesting
to examine just what can be done with four parameters, and the following
discussion is offered in this spirit. The approach presented here is to
represent p(e) by a 4th-order polynomial expansion. There are a couple
of possibilities which come to mind. The first is to use a simple Taylor
_eries_ namely, p(e) = Zk=0,4 pk(E)(e-g)k, where pk(g) is the kth-order

eriva_ive of p at e = g. This approach is conceptually rigorous, but
no_ particularly l, seful because .the parameters, pk(g), are not easily
re a_ea co tne moments we have chosen to consider. The second approach
is to consider an empirical ~expansion which does directly involve
E, _t a3 add a,, namely, pie) ~ p(E){l + Zk:1,4 Ck[(e-E)k/(k!#k)]}.The
coe_licienzs,Ck, are defined as follows (with indicatedjustification):

ci : 0 (simplicityand it works for_ Gaussian),_2 = -I (it works for a
Gaussian), c3 = a3 (a reasonableguess), and c4 ~ 0.6a4 (it works for a
Gaussian).The resultsfor a Gaussian are shown in Fig. 4, where various
values of A = c4/a4 are considered. Vith this empirical expansion,
fairly good results were obtained for both a Gaussian and a spectrum
obtained from analysis of an actual neutron activation experimentS0 In
this measurement, for several spectra correspondingto the D(d,n)_e-3
source reaction, the empirical polynomial expansion provides a pretty
good shape representationof p(e) over the approximate energy range
E-I.5c < e < E+I.5c (e.g., see Fig. 5). Bowever, the spectra calculated
from the empirical expansion are found to be shifted to lower energies
relative to the true p(e), by an amount AE that is depe,dent very
roughly in linear fashion on a3 (see Fig. 6). Even though the agreement
is not very good for energy deviations e of more than 1.5_ to 2_ (see
Figs. 4 and 5), and one must account for the energy shift when the
spectrum is skewed,it is encouragingthat the approach does providethe
user with a much better understandingof the spectrumshape than deduced
from knowing only the mean energy and standarddeviation alone.

8. Summary

The approach suggested in this paper capitalizes on the ability
which experimentalistsnow possess to characterizedifferentialneutron
energy spectra quite reliably and in considerabledetail.Representation
of these spectra by four low-order distribution moments offers a
statistically rigorous way to define energy and resolution, and also
provides useful information on higher-order spectrum features, i.e.,
skewing and rapidity of the drop off to zero. Given these four
parameters,it is possible to reconstructspectral shapes in qualitative
fashion in the vicinity of the mean energy, provided that allowance is
made for a small shift in energy whLch roughlydepends linearly on as.
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