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Abstract. A method for calculating the electronic and structural properties of solids
using correlated wavefunctions together with quantum Monte Carlo techniques is
described. The approach retains the exact Coulomb interaction between the electrons and
employs a many-electron wavefunction of the Jastrow-Slater form. Several examples are
given to illustrate the utility of the method. Topics discussed include the cohesive
properties of bulk semiconductors, the magnetic-field-induced Wigner crystal in two
dimensions, and the magnetic structure of bcc hydrogen. Landau level mixing is shown to
be important in determining the transition between the fractional quantum Hall liquid and
the Wigner crystal. Information on electron correlations such as the pair correlation
functions which are not accessible to one-electron theories is also obtained.

1. Introduction

A major issue in calculating accurately the properties of solids from first principles is the
treatment of electron-electron interactions or electron correlation effects. With very few
exceptions [1-3], modern ab initio electronic structure calculations for solids treat this
problem using some sort of self-consistent field schemes such as the Hartree-Fock (I-IF)
or the local density functional (LDA) methods. These methods have been successfully
applied to study the properties of many materials, but they have also encountered
difficulties because of the approximate exchange-correlation functions used. In this paper,
we describe some recent advances in using correlated many-electron wavefunction
together with o,uantum Monte Carlo techniques to calculate materials properties. This
approach allows treatment of electron-electron interactions in condensed matter systems
going beyond self-consistent field schemes•

The present approach [1] employs a wavefunction of the Jastrow-Slater form and the
exact Coulomb interaction between valence electrons. We discuss several applications
briefly in this short review. For bulk semiconductors, calculations have been carried out for
the electronic and structural properties yielding results in excellent agreement with
experiment. The method has further been applied to compute quantities such as the
electron pair correlation functions and single-panicle orbital occupancy which are not

. accessible in standard self-consistent-field theories.
For the two-dimensional (2D) electron system, we applied the approach to investigate

the phenomenon of Wigner electron crystallization. Recent experimental evidence [4,5]
• indicate that this elusive crystal is perhaps finally observed in 2D electron and hole

systems at semiconductor heterojunctions in the fractional quantum Hall regime. The
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ground-stateenergyofa triangularWignercrystalhasbeencalculatedasa functionof
carrierdensity,carriermass,and appliedmagneticfield.The effectsof exchange,
correlations,andLandaulevel(LL)mixingarcinvestigated.Our resultsshow thatLL
mixingeffectssignificantlyalterthecriticalLL fillingfactor_cfortheliquid-solidtransition
in the regime of experimental parameters,

As a final example, we discuss the magnetic structure and equation of state of bcc solid
hydrogen. This is studied as a prototypical Mott system with the long-range Coulomb
interaction.

2. Correlated Wavefunction Variational Quantum Monte Carlo Approach

The use of correlated wavefunctions for many-electron systems dated back to the early
days of quantmn mechanics. The basic idea is to evaluate the ground-state properties of a
system using the exact Hamiltonian but with a variational many-electron wavefunction. In
the past, for condensed matter systems, various additional approximations had to be
introduced to make the evaluation of the wavefunction and various physical quantities
tractable. With the advance of Monte Carlo integration algorithms and modern computers,
it is now possible to perform calculations on various systems without these further
approximations.

In the present studies, the Hamiltonian is of the form

wherethelasttermistheexactCoulombinteractionbetweentheelectrons.Forvalence

electronproperties,thesecondtermwhichdescribestheinteractionwiththecoresmay be
accuratelyapproximatedby norm-conservingionicpseudopotentials[I].The many-
electronwavefunctionemployedisoftheformofan exponentialcorrelationfactor,the
Jastrowfactor,multiplyingaSlaterdeterminantofsingleparticles:

¥(rl,..._' N) - exp _ z(ri) - _. . u(rij) D(rl,...0r N) (2)
iffil lq

where N is the number of electrons in the system. A single particle term X and a two-
particle term u are retained in the Jastrow factor. The two-particle term correlates the
motion of the,particles so that two electrons may avoid each other dynamically, and the
one-particle term allows a relaxation of the charge density distribution in the presence of
the multiple-particle correlations. In the calculations, variational parameters enter into Z
and u. The exact form of these correlation terms will depend on the system under
consideratior). However, physical arguments may often be used to conwain their general
behaviors[I].Foraccuratesolid-stateproperties,simulationcellcontaininghundredsof
electronswithperiodicboundaryconditionsisrequired.Thus,itisnecessarytouse
MetropolisMonte Carlointegrationalgorithms[6]in evaluatingvariousphysical
quantities.

The correlatedwavefunctionVQMC methodhasshowntobe aviableapproachtothe
studiesofelectroncorrelationeffectsinsolids.Calculationshavebeencarril_doutforthe
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cohesive and structural properties and correlation functions in various systems [1,3,7,8].
A particularly interesting and important recent application of this approach, which is not
easilyfeasiblein otherab initioschemes,has been thestudyof the effectsof high
magneticfields[9].

3. Cohesive Properties mad Electron Correlations in Solids

A firstapplicationofthemethod describedinSec.2 tocrystalswas tothecovalentsolids.

The bindingenergyandstructuralpropertiesofcarbon-and silicon-basedcrystals[I]were
calculatedusingsimulationcellswithperiodicboundaryconditionscontainingup to216
electrons(or54 atoms).The Slaterdeterminantpartofthewavefunctionwas formedwith
single-particleorbitalsobtainedin a LDA calculationwith ab iniffonorrn-conscrving

pseudopotentials.A two-particletermoftheform u(rij)=A[I -exp(-rij/F)]/rijwas used
withA and F spin-dependentvariationalparameters.A single-particleterm withone
variation_parameterwhich permitsthevalencechargedensitydistributiontorelaxwas
alsoincluded.

FigureI shows the calculatedtotalenergyof siliconas a functionof lattice

constant.The theoreticalresultsarealsofittedtoa Murnaghan equationof state.A
calculatedequilibriumlatticeconstantof5.40± 0.04A anda bulkmodulusof108:i:10GPa
areobtained,inverygood agreementwiththeexperimentalvaluesof5.43J[and 99 GPa,
respectively.Similarlyaccurateresultsforthestructuralparametershavebeenobtained
fordiamond. The calculatedcohesiveenergiesof diamond, graphite,and siliconare
presentedinTableI. The correlatedwavefunctionresultsareinexcellentagreementwith
experiment[10].Ingeneral,Hartree-Fock(HF)calculationssignificantlyunderestimate
the cohesiveenergywhereastheLDA calculationstendto overestimatethecohesive
energy,typicallyby 15-20% ormore. Electroncorrelationeffects,thus,playa very

" ' I " ! 1 'l'
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Fig. 1. Calculated energy of silicon (dots)
togetherwitha fittotheMurnaghanequation
of state(line).
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Fig. 2. Pair-correlation function in Fig. 3. Occupation of states in diamond
diamond for (a) parallel spin and (b) below the Fermi level vs the single-mode-
opposite spin with one electron at the approximationenergy of the state.
bond center.

significant role in determining the crystal cohesive energy. For example, the valence
electron correlation energy is calculated to be 4.1 eV per atom in diamond but only 2.4 eV
for the isolated carbon atom. In general, the correlated wavefunction VQMC calculations
yield 90 - 95% of the correlationenergy as compared to experiment.

With the wavefunction given in Eq. (2), it is straightforwardto compute during the
Monte Carlo sampling various quantities such as the single-particle orbital occupation
number, the quasiparticle excitation energies within a Feynman single mode
approximation,and the electron pair correlation functions [7]. For example, the pair

correlation function gc_(rl, r2) may be evaluate through the relation

g(xl,x2)n(xl)n(x2)= N(N- I)J l_(rI= xI, r2=x2..-,orH)J2dr3...drN (3)

where n is the electron nt_mber density and spin indices are suppressed. Figure 2
illustrates the calculated pair correlation functions in diamond. Our results for g..a of
diamond and silicon show that, unlike the uniform electron gas case, g is indeed h_hly
anisotropic and is a sensitive two-pointfunction of rI andro. Both gti and gt_ arevery rich

a • _ r

in structure. For example, as seen in Fig. 2, the correlauon hole, hto(r)= gt_(r,,r) -1/2, fo

rI located at the bond center of diamond has a density distribution which is distinctly
related to the structure and covalent character of the material. It is negative near r 1, the
bond center, as expected, but ht_ is positive only in the nearby low density
antibonding/interstitial regions and not in the neighboring bond centers reflecting the
covalent natureof diamond. Since the pair correlation function is intimately related to the



exchange-correlation energy density, information such as those contained in Fig. 2 may be
used to gain microscopic understandingof electron correlations in solids.

The occupation number of a single-particle orbital Oiis the ith diagonal element of the
matrix

!

• n(i,j) = N _ ¢; (rl)R/(rla'2,...)_g*(r'l,r2,...)¢j(r' ' )drldrldr2... (4)

The matrix n(i, j) again may be calculated by Monte Carlo evaluation. The quasiholet ,
energies within the Feynman single-mode approximation [111 are given by ei = (xV{ci['H'ci
]lw)/n(i, i), where c_ and ci are the single-particle creation and annihilation operators for
the state _i, and [H, ciI is the commutator of the many-body H._amiltonian with the
annihilation operator. This approximation depends for its success on the renormalization
of the quasiparticle peak in the spectral distribution being negligible.

Some calculated single-particle orbital occupation numbers of the LDA orbitals (which
have been shown to be virtually identical to the quasiparticle wavefunction [13]) versus
corresponding quasihole energy fordiamond are shown in Fig. 3. Complete occupation of a
state would give an occupation number of 2. The results show the expected trend of lower
occupation as one goes nearer the Fermi level, but the trend is not monotonic. The
theoretical bandwidth is 25.4 :t:0.8 eV, in good agreement with the x-ray photoemission
spectroscopy measurement [12] of 24.2 "4-1 eV but somewhat larger than other
quasiparticle calculations [13].

4. Wigner Crystallization in the Fractional Quantum Hall Regime

In this section, we discuss the effects of exchange, correlations, and Landau level mixing
to the ground-state energy of a triangular electron crystal in a perpendicular magnetic field
[91. In 1934, Eugene Wigner pointed out that, in the jellium model, electrons will
crystallize at sufficiently low densities owing to the Coulomb repulsion which tends to
localize the electrons. This quantum phase transition as a function of density at T = 0 has
yet to be observed in three dimensions. However, there are several recent experiments
[4,5] indicating that in the fractional quantum Hall regime, because of the strong localizing
effect of the external applied magnetic field, Wigner crystallization is perhaps finally
observed in 2D electron and hole systems at semiconductor heterojunctions.

The 2D electron or hole gas in a strong magnetic field, realizable experimentally in a
MOSFET or a semiconductor heterojunction, exhibits a rich variety of phenomena [14].
By varying the carrier density, the carrier effective mass, and the strength of the external
magnetic field, a very intricate phase diagram is expected. Among the various possible
phases are the incompressible quantum Hall liquid phase and the Wigner crystal phase.
Although the experimental evidence for the Wigner crystal phase are still being
scrutinized, the observed re-entrant behavior to an insulating phase near Landau level
filling factor _ = 1/5 for n-type samples [4] and near _ = 1/3 for p-type samples [5] of
GaAs/AlOaAs junctions of comparable carrierdensities have been interpretedas evidence
for pinned Wigner crystals.

Exchange-correlation effects in 2D systems are fundamentally affected by the presence
of a strong perpendicular magnetic field. For example, at fractional filling factors, particles
can and prefer to correlate with each other to lower the interaction energy at no cost to the
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kinetic energy owing to the high degeneracy of the Landau levels. The presence of a
strong B field introduces a new length, the magnetic length given by the radius of the
Larmor orbit Jl]= l_c/eB, and a new energy, the cyclotron frequency ¢.oc= cB/m'c, into the
problem. Both quantities are independent of the carrier density. Crystallization is
expected when _Bis less than the inter-electron distance d, that is, in the regime of _ < 1.
Landau level mixing is expected to be important when the electron-electron interaction
energy Ecoul=e2/ed is comparable to or larger than the inter-LL spacing 1_Oc. There are,
therefore, three important materials parameters in determining the ground state: the
density n, the effective mass m*, and the applied B field. The system is characterizedby
two independent dimensionless quantifies which are the filling factor _ which is a function
of n and B and the electron gas parameter rs which is a function of n and m*. There have
been many studies on B-field induced Wigner crystals in 2D [14-18]. Most of these were
carried out, however, within the Hartree-Fock approximation. With few exceptions [18],
only the lowest Landau level is considered.

In our simulation, the usual periodic bound,x,-yconditions cannotbe directly applied for
electrons in a strong applied B field due to the aperiodic vector potential in the
Hamiltonian. For example, in the symmetric gauge A = (-yB/2,xB/2) for a uniform field.
The appropriate translational symmetry may be recovered by introducing the concept of
rational fields [19] andnoting that the physics of the system should be gauge invariant and
that a finite translation in the present case is equivalent to a gauge transformation. These
symmetry properties allow us to perform simulation with modified periodic boundary
conditions in a magnetic field.

Our trial wavefunctions for the Wigner crystal are still in the general Jastrow-Slater
form of an exponential correlation factor multiplying a function of the single-panicle
orbitals. The single-particleorbitals are chosen to be Gaussians localized about the lattice
sites"

_1 _ _ exp{-_- -_[x(RY+TY)-y(R_+TX)]} (5)- I'r) Rj-T)+
Here [3is a variationalparameterinvolving LL mixing and to be optimized. For [3= 1, Eq.
(5) corresponds to a wavefunction in the lowest LL localized on a lattice site Rj with the
properphase factorsresulting from the use of a symmetric gauge at the origin. (The T's in
Eq. (5) are translation vectors of the simulation cells associated with the periodic
boundary conditions used.) Ali calculations reportedare done for spin-aligned electrons
with a 100-electron simulationcell. Tests show that the resulting finite effects are smaller
than the statistical noise in the results.

We first summarizethe results from wavefunctions which aremade up of functions only
from the lowest Landau level with either exchange or correlations included and then
discuss next the effects of LL mixing. This first part of the discussion serves to make
contact with earlier work and to establish the validity of the correlated wavefunction
VQMC method. Ourexchange-only (or HF) results are obtained by using a wavefuncfion
which is just a Slaterdeterminant of the single-particle orbitals given above with [3-- 1.
The correlation-only results are calculated for distinguishable particles (again, with [3= 1
for the orbitals) with the Jastrow correlationfactor derived from the consideration of the
magnetophonons similarto the work of Lain and Girvin [16]. In the large field limit, this
Jastrow factor may be written as an analytic function of the complex variables which
describe the positionof the particles in 21). Hence, in both calculations, there is no mixing

l



inofhigherLL'sintotheground-statewavefunctionby construction,andthekineticenergy

perelectronistriviallygivenby _0_c/2.
The exchange-onlyand correlation-onlyresultswithno LL mixingarepresentedinFig.

4 by thecurveswiththetriangleand squaresymbols,respectively,l:)rcviously,themost
accurateenergiesforthe2D electronsystemina strongmagneticfieldintheexchange-

• onlyapproximationwerecalculatedfrom theviewpointofchargedensitywaves (CDW)
[15]ratherthantheexplicitWigner crystalwavefunctionused here. Our presentHF
resultsareextremelyclosetotheCDW results.Thus,littleisgainedby theexplicitself-
consistencyprocedureusedintheCDW approach.

Our correlation-onlyresultswithno LL mixingarethesame asthoseobtainedby Lam
and Girvin[16]who useda specialk-pointsamplingscheme incalculatingtheenergy
ratherthantheVQMC method. Inthisapproximation,theWigner crystalisconsideredas
distinguishableparticlescorrelatedby themagnetophonons.Thus,althoughitcontains
correlationeffects,exchangeinteractionisignored.As notedinRcf.16,at_)= I/2,the
correlation-onlyresultis,infact,higherinenergythantheHF resultduetotheratherlarge
exchangeinteractionatthisfillingfactor.However,a comparisonof theHartree,the
exchange-only,and thecorrelation-onlyenergiesinthelowestLL approximationshows
thatcorrelationeffectsdominateoverexchangeintherangeof_)_ I/3.The energiesfor

theLaughlinstatetakenfrom Ref.17 arcgivenby thedashedcurvewiththehexagon
symbolsinFig.4. Thus,withinthelowestLL approximation,thecross-overfrom the
liquidstatetothesolidstateis%)c'=I16.5asfoundby Lam and Girvin.
Now letusdiscussthe_iTcctsof Landau levelmixing.Our work ismotivatedby the

recentexperimentalwork on _e 2D holesystems[5]which indicatestheoccurrenceofa
Wignercrystalphasearoundx)= I/3.Thisearliertransitionfrom thatoftheelectroncase
isascribedtoa largerLL mixingdue totheheavierholemass inGaAs. Even forthe
electronsystems,theelectroninteractionenergyiscomparabletothecyclotronfrequency.
RelevantmeasureoftheimportanceofLL mixingistheratioEcoul_O)cffi_)rs/2.A higher
valuefortheratioindicatesa strongLL mixing.For typical2D electronsystemsrs~ 2,

butforthe2D holesysteminvestigated,rs- 13 - 25 dependingon theassumed hole
effectivemass [5,20].

AdmixtureofhigherLL orbitaltothegroundstateallowsa loweringoftheinteraction
energyattheexpenseofthekineticenergy.BecauseoftheCoulomb repulsionbetween
electronson neighboringsites,itisenergeticallyfavorabletohave (I)a chargedensity
distributionmore localizedthantheone givenby single-particleorbitalsinthelowest
Landauleveland(2)a nonanalyticcorrelationtermu intheJastrowfactorwhichoptimizes
thedynamicalshort-rangeavoidanceoftwo electrons.These arethedrivingmechanisms

forLandaulevelmixing.We putinthesetwoeffectsbyoptimizingtheenergywithrespect

totheparameter[_inEq.(5)andr_b.,Yaddingtothe,...magnetophononcorrelationfactora term
oftheformu(r)= A[I-exp(-"_r/F- 1/2r/F)]/'_rwhere r isthe distancebetweentwo
electrons.Bothdeviationof[3from I inthesingle-particleorbitalsand theadditionalterm
intheJastrowexponentcorrespondtoadmixtureofhigherLL'sintothewavefunction,and
one needs to evaluate both the kinetic and interaction energies. The changes in energy
and in the localization of the electrons due to LL mixing can be quite large in the range of _)
= 1/2 - 1/5 depending on the value of rs. For example, at _)- 1/3, with just an optimization
in the parameter 13,we find an increase in density at the lattice site by 8p(0)/p(0) -- 70%
and an lowering in energy by b'F.,/(E-1_O)c/2)-- - 4.4% at rs - 20 whereas at rs - 2 the same
two quantifies are 10% and - 0.8%, respectively. With the LL-mixing Jastrow factor, the
total energy is lowered even further.

I



The final results with full LL mixing and magnetophonon correlations for the case of rs
- 20 are given in Fig. 4 as the solid curve. The parameters used in the calculation
correspond roughly to those in the experiment on the 2D hole systems [5]. We see that
there is a dramatic lowering in energy by allowing LL mixing in the range of _) of
experimental interest. At rs- 20, LL mixing effects arc, in fact, larger than those of
inu'alevcl exchange-cen'elation effects. And as seen in Fig. 4, the Wigner crystal energy
curve lies entirely below the Laughlin wavefunction energies at rs -- 20 for the whole range
of _0considered. This is not an accurate comparison of the energy of the two phases
because the Laughlin wavefunction [17] dees not include higher LL's. There is, however,
a re.cent VQMC calculation [21] on the fractional quantum Hall liquid using a Laughlin-like
wavefunctionbutincludedLL mixing.The calculationswerecarriedouton a spherewitha
LL-mixingcorrelationterminthe]asu'owfactor.Theirresultsforthecaseofrs= 20 are
presentedinFig.4 by thecrosssymbols. As expected,LL mixingdoes notaffectthe
liquidphaseasmuch asthesolidphase. Comparisonofthetwo calculationsshows that
theliquid-solidtransitiionoccursnear_)= I/3.Thus,ourresultsgiveq)santitativesupport
totheobservationthat,becauseofLL mixingeffects,2D holesystemsatGaAs/AIGaAs
interfacecrystallizeata larger_ than2D electronsystemsatcomparabledensities.

Fig.4. CalculatedWigner electron Fig.5. Energyvs.densityforthree
crystalenergyE -_C0c/2usingox- magneticstructuresofbcchydrogen.The
changeonlywithnoLL mixing(A), dashedlineistheenergyofan isolated

correlationsonlywithnoLL mixing hydrogenatom.
([:]),correlationswithLI.,mixingfor
rs= 20 (---).The energyofthe
Laughlinliquid(Ref.17)isgivenby
the dashedcurve, and the energies for
theliquid with LL mixing(Ref.2 I)
aregivenby thecrosses.



5. Magnetic Structure of BCC Hydrogen

The present approach has also been applied to study the equation of state and magnetic
structure of bee solid hydrogen [8,22]. Various forms of the wavefunction have been used
to investigate the relative stability of the paramagnetic (PM) state, the antiferromagnetic
(AFM) state, and the ferromagnetic (FM) state as a function of the lattice constant. The
calculations were carried out at d_-tsities between Wigner-Seitz radius of rs = 1.0 to 3.0
a.u.

The results of the 54-atom simulation cell calculations [8] are presented in Fig. 5.
Most of the interesting features occur between rs = 2.0 and rs = 3.0. An earlier LDA study
[23] suggested that both the magnetic and metal-insulator transitions occur in this region.
Our results show that the fully FM phase is unbound at ali densities which is analogous to
the unbound hydrogen molecule in a spin-triplet electronic state. Among the magnetic
structures considered, the PM phase is the ground state for rs less than 2.2, and its energy
rises above the fully FM phase at rs = 2.7. Contrary to some previous work [23,24], we
did not find any indication of a stable partial-FM phase at the densities considered.

Our results show a transition from PM to ,_-'M phase at rs = 2.2. At this density the
system also undergoes a metal-insulator transi:_t,_'_ .',_ith an energy gap opening up in the
excitation spectrum. The present transition density of rs ---2.2 is significantly different from
previous LDA [23] or self-interaction corrected LDA [24] calculations. Also, as for other
materials, the cohesive energy is significantly overestimated in the LDA calculation. For
example, at rs = 3.0, the LDA calculations found that the AFM phase is bound by 15
mRy/atom while our VQMC results show that the binding is less than 1 toRy/atom.

6. Summary

We have described a correlated wavefunction variational quantum Monte Carlo method for
calculating the total energy and related properties of solids. Highly accurate cohesive and
structural properties, as well as quantities such as the electron pair correlation functions,
have been obtained for carbon- and silicon-based crystals. The energetics of the magnetic-
field-induced Wigner crystal in 2D in the fractional quantum Hall regime has also been
investigated. Landau level mixing effects are shown to be very important in the range of
density and magnetic field strength of experimental interest. The results provide an
explanation for the recent observation of a re-entrant insulating transition near _ = 1/3 for
2D hole systems at GaAs/AIGaAs interfaces. We also investigated the magnetic
structure and metal-insulator transition in bee hydrogen as a function of density. The
present approach is shown to be quite versatile and provides a viable new avenue for
computing the properties of and studying the electron-electron interactions in a variety of
solid-state systems.
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