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Abstract

The stochastic transport of MeV ions induced by low-n magnetic per-
turbations is studied, focussing chiefly on the stochastic mechanism opera-
tive for passing particles in low frequency perturbations. Beginning with a
single-harmonic form for the perturbing field, it is first shown numerically
and analytically that the stochastic threshold of energetic particles can be
much lower than that of tiv: magnetic field, contrary to earlier expecta-
tions, so that MHD perturbations could cause appreciable loss of energetic
ions without destroying the bulk confinement. The analytic theory is then
extended in a number of directions, to clarify the relation of the present
stochastic mechanism to instances already found, to allow for more complex
perturbations, and to consider the more general relationship between the
stochasticity of magnetic fields, and that of particles of differing energies
(and pitch angles) moving in those fields. It is shown that the stochastic
threshold is in general a nonmonotonic function of energy, whose form can
to some extent be tailored to achieve desired goals (e.g., burn control or ash
removal) by a judicious choice of the perturbation. Hlustrative perturbations
are exhibited which are stochastic for low but not for high—energy ions, for
high but not for low—energy ions, and for intermediate—energy ions, but not
for low or high energy. The second possibility is the behavior needed for
burn control; the third provides a possible mechanism for ash removal.

PACS #s: 51.104y, 52:25.Fi, 52.55.Fa
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I. Introduction

The confinement of fusion products and other energetic ions in toka-
maks is an issue of major importance for the success of fusion reactors.
Since the early ‘80 s it has been realized that internally induced, low-n mag-
netic perturbations such as fishbones!'? can substantially enhance the loss of
energetic particles, but the full picture of the possible mechanisms for such
loss is still developing. In contrast to the coherent, resonant loss induced by
fishbones, the present work is principally concerned with diffusive, ‘stochas-
tic’ loss induced by low-n perturbations. For some years it has been known
that trapped ions can be diffusively transported by low-frequency perturba-
tions** (w < 10 kHz), where the low w is balanced against the low values
of the toroidal precession frequency ¢ for trapped particles in the primary
resonance w =~ nfl¢. A zero—frequency special case of this is diffusive loss
due to TF ripple,® for which the ‘stochastic transport’ mechanism was first
studied. Recently, it has been found experimentally,®” numerically® and
analytically® that passing particles can be similarly transported by higher
frequency (w ~ 100 kHz) perturbations such as TAE modes, where the much
higher value of w balances against kv in the primary resonance w =~ kjv.
Because of the primary resonance conditions holding in the two cases, an
expectation has been that low frequency perturbations should be effective
for trapped particles, and high frequency for passing ones. However, con-
trary to this expectation, it has been shown'®1? that low-w MHD can also
induce stochastic transport in passing particles. The conclusion in Ref. 11
was that the stochastic threshold for MeV ions (3.5 MeV alphas and similar

charged fusion products) was about the same as or higher than that for the



magnetic field itself, so that one would expect no stochastic MeV ion loss if
the magnetic field were adequate to confine the bulk plasma. However, this
contrasts with the recent observations with alpha/triton detectors on TFTR
that, in the presence of low-frequency MHD, a triton flux phase-coherent
with the MHD is observed, enhancing the total flux over its quiescent level
by a factor of about 4.13

The present work contributes to this developing picture of stochastic
transport in three general ways. First (Sec. II), we revisit the passing-
particle, low-w mechanism, beginning with a simple model MHD perturba-
tion, having a single harmonic, with poloidal and toroidal mode numbers m
and n. We show numerically and analytically that the conclusion of Ref. 11
that the stochastic threshold for MeV ions is comparable with or higher
than the magnetic threshold is not generic, but that it is not difficult to find
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perturbations for which the opposite is true,!* reinstating this mechanism

as a possible explanation of the above-noted TFTR results.

Second (Sec. III), having developed an analytic understanding of numeri-
cal results manifesting this mechanism in the simplest single-harmonic case,-
the theory s generalized in a number of directions, unifying the theory for
the present mechanism with ones studied earlier, and permitting considera-
tion of the transport induced by more complicated magnetic perturbations.
In addition to making contact with the TAE-mode case, the theory’s gener-
alization to arbitrary w may also explain recent DIII-D observations!® that,
in the presence of intermediate frequency (w ~ 30 kHz) MHD activity, more
MeV ions are expelled than can be accounted for by trapped particles alone.

And third (Sec. IV), the extended transport theory opens the possibil-

ity of an energy-selective transport mechanism, which one might impose



intentionally, which could be useful for suppression of undesired transport
from internally-generated MHD, or for burn control and ash removal. From
earlier work, intuitions have developed for whether more energetic particles
should be transported more or less easily by a given perturbation spectrum.
On the one hand, more energetic particles perform more ‘orbit—-averaging’
over the structure of the perturbations inducing transport,!® which often
acts to reduce the transport induced by a perturbation of a given ampli-
tude. This theoretical expectation is supported by experimental observa-
tions of transport rates of energetic electrons!” and ions,!3 as well as by
numerical simulations.!® The conclusions of Ref. 11 are consistent with this
picture. On the other hand, an opposite intuition exists, that the larger
drifts of more energetic particles allow them to resonate with a larger range
of perturbations, or sidebands of the same perturbation, causing increased
transport, and lower stochastic thresholds, for more energetic particles. The
trapped-particle stochastic ripple mechanism already mentioned is one ex-
ample manifesting this tendency. Examples of both trends can be found in
the transport induced by both turbulent!” and ripple perturbations. The
extended theory developed here provides a picture which unifies these two
seemingly opposite trends, for transport due to low to moderate-n modes
(n ~ 1 —20), acting either individually, or in combination. The basic point
is that stochasticity is not a monotonic functica of erergy, but rather is
in general a nonmonotonic function which can have an appreciable amount
of structure, whose specifics depend in detail on the set of perturbations
present, in a manner which the extended theory makes explicit. Thus, it
may be possible to ‘design’ perturbations which will be below stochastic

threshold for both thermal particles and for alphas near their birth en-



ergy, but above threshold for alphas at intermediate energies where their
removal is desirable. An initial exploration of these possibilities is presented
in Sec. IV.

Finally, in Sec. V we give some summarizing discussion of the lessons
learned from the earlier sections, and indicate some issues raised by the

work for which further study seems desirable.

II. Single-Harmonic Perturbations

We begin by considering the motion of alphas in a single-harmonic
model of an MHD perturbation, first numerically, and then analytically.
The numerical results are generated by a guiding-center (gc) code in flux
coordinates, developed from earlier implementations of such codes.!®?° Fol-
lowing Ref. 2, we model the perturbing magnetic field éB = V x §A by
6A = aBoRy, with By the equilibrium magnetic field, Ro the major radius
at the magnetic axis, and &(x,t) a function of real-space position x and
time. The perturbing electric field §E = —c~16A is given directly from §A,
but is negligible for the low-frequency perturbations considered here. We
parametrize x by the flux coordinates (r,8,¢), with minor-radial variable
r ~ (24/Bo)'/?, having value a at the plasma boundary, and constant on a
flux surface, as is the toroidal flux ¥(r). In terms of ¢ and the poloidal flux

function x(r), Bo may be written
Byp=B;+B,=VyxVl+V(x Vx.

The safety factor is ¢(r) = dy/dx, which we model with the quadratic form
q(r) = o + (¢a = q0)(r/a)*.



A simple model of a single MHD mode is taking & to have a single helical

component,
é(r,0,¢) = a(r)siny, (1)

with amplitude a(r) and mode phase n = n{—m8+@nm. dnm is an arbitrary
mode phase, which may be given a time dependence ¢nm = @nmo — wt if
desired. However, the transit/bounce frequency € of an alpha (~ 1 MHz) is
much larger than w for the low—frequency of the modes of principal interest
here. Thus, @n, is taken as a constant for the numerical results of this
section, though for the analytic development we shall keep w arbitrary, with

an eye to the more general theory of Sec. III. We model a by

a(r) = @mz(r/rmz)"(a = r)/(a = Tmz)]?,

which peaks at rnz/a = m/(m + p) with value apmg, and yields radially
global modes, scaling as r™ for small r (cf. Fig. 1). p is chosen so that the
mode peaks in the vicinity of the mode rational surface ¢,;y = m/n. An
adequate simple choice is p = n for ¢o;m > 1, and p = 3n for qp,m = 1. This
single-helicity form provides a simplest model problem for understanding
the effects of low-n perturbations, and also captures much of the physics of
the multiple-helicity case, needed for a full description of both the coupled-
harmonic structure of a true toroidal eigenmode, as well as to study trans-
port due to multiple modes. The theory is generalized to cover these cases
in Sec. IIL
With this form for the perturbation, the radial perturbing field is given
by
0B, ~ —Byb(r)sinn, (2)
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with amplitude 5(r) ~ ma/(r/Ro). Thus, for example, for a (2,1)-mode,
at 7 = rpy = 2a/3, one may convert from amplitude amg t0 bz = b(rmz)
using bmz = 3amz/€s =~ 8.3amz, Where ¢, = a/ Ry is the inverse aspect ratio
at r = a, and in the final form we have used TFTR parameters a = 96 cm,
Ro = 262 cm.

A perturbation of the form (2) produces magnetic islands at the ¢ = ¢

surface of half-width?®
ram/R = (4qb/an’)1/2. (3)

In Fig. 2 are shown the poloidal projections of two characteristic orbits
for alphas at birth energy £ = Eg = 3.5 MeV using the TFTR parameters
just noted, along with ¢o = 1,9, = 4,B9 = 5T, and a ;fery large (2,1)
perturbation (a@mz = 10~3), in order to emphasize its effects. The radius r =
Tmz 15 indicé.ted by the inner dashed curve, the solid curve indicates r = a,
and the outer dashed curve shows the position of the limiter. Fig. 2a shows
a trapped particle, with pitch A = v;/v=.18 at launch point (r/Ro,0) =
(.15, ~m/2), and Fig. 2b shows a passing particle, having A = .46, with the
same launch point. For the trapped particle (trapping-state index 7 = 0),
one notes the wandering of the banana tip from bounce to bounce along the
vertical line R ~constant until its escape to the wall. As noted in Sec. I,
such transport for trapped particles is expected from earlier theories*® on
the effect of low-w perturbations.

Somewhat more surprising i3 the (co-going) passing orbit (7 = 1), which
is also strongly affected by the perturbation, spiralling out to the wall in on
the order of 10 transit periods for this amplitude of a,,z. The loss mechanism

is insensitive to the relative mode-particle phase (cf.Figs 2b,3a and b), and



to the particle pitch (cf.Figs. 2b, 3c, and 3d). Moreover, the radial motion
is not coherent in character, as occurs, for example, during trapped—-particle
expulsioﬁ by fishbones;> the bounce-averaged radius (‘banana center’) 7
does not vary in a regular sinusoidal fashion, and excursions in the bounce-
averaged value 7 of the particle’s phase in the mode are not bounded by 27,
as is the case for coherent, ‘superbanana’-type motion. (We shall use the
terms ‘bounce-period,’ ‘bounce-average,’ ‘superbanana,’ etc. here to apply
to both passing as well as trapped particles. Both trapping states may be
mathematically dealt with on the same footing, so it is convenient to use
terminology compatible with this.)

Instead, the loss is the new instance of stochastic transport first identified
in Ref. 10; in addition to the stochastic mechanisms for trapped particles

in low-w perturbaticns® and for passing particles in high-w ones,?

one sees
that an analogous mechanism also holds for passing particles in low-w per-
turbations. The mechanism is somewhat less intuitive from the reasoning
based on the prirﬁary resonance conditicn, as discussed in Sec. I, but, as for
the other two mechanigms, it is due to the overlap of multiple islands pro-
duced by a siagle perturbation, where successive islands satisfy the sequence
of resonance conditions w = n{¢ + Ry ~ kv + Iy, for | = 0, £1, £2, ...
[For 7 = 1, Q¢ = ) /R ~ ¢ is again the bounce-averaged time-rate of
change of ¢, and Iy = [—m is the bounce-harmonic of the resonance in ques-
tion.] This may be seen from the Poincare plots of Figs. 4a and b. Both are
puncture plots at the { = 0 surface using a éB generated by the (2,1) per-
turbation of Fig. 3, but for a,, = 1074, Fig. 4a is the puncture plot for the
magnetic field itself or, equivalently, for alphas with vanishingly small en-
ergy and A = 1, which simply follow field lines. Fig. 4b is the same plot, but



for alphas at £ = Ey/2, and again with A = 1. As expected, Fig. 4a shows
an m = 2 island around the ¢ = 2 surface. Comparing this with Fig. 4b, one
notes two principal differences arising when the drifts are turned on. First
is a shift of the m = 2 island toward the outboard side, which occurs simply
because of the outward shift of co-going orbits, and because resonance for
these occurs for gz = Q/Q¢, differing somewhat from ¢ = 2 due to the
particle drifts in a flux surface. Second, and of central importance here, is
the appearance of an additional ring of islands, of symmetry m = 3, occur-
ring around the gz = 3 surface. As a,;; increases from its value in Fig. 4
toward that in Figs. 2 and 3, the width of these two island rings increase
toward each other, until at an intermediate, threshold value «,; the islands
overlap, and the observed stochastic loss of the orbits ensues. At the same
time, one notes that the magnetic plot remains unstochastic, contrary to the
situation investigated in Ref. 11, whose magnetic map manifested multiple
islands. Which magnetic structure is actually more typical in the presence
of low-n MHD is unclear. While the usual theoretical expectation for a
toroidal eigenmode involves a superposition of poloidal harmonics m, exper-
imental observations indicate that eigenmodes are more nearly composed of

a single-m harmonic.?!

The stochastic transition for the alphas is illustrated by the sequence
of orbits in Fig. 3c and Fig. 5. The radial variation in time at an, =
.4 x 1073 (Fig. 5¢) has the regular sinusoidal character of a nonstochastic
‘superbanana’ orbit, and is confined after 1000 transits, while that for am, =
.6 x 10~3 (Fig. 5b) appears less regular, and escapes within 100 transits.
Thus, the stochastic ...reshold appears to lie around am,; = .5 x 1073, or,

since the chosen initial conditions do not allow the particle to reach r = rp,,



perhaps somewhat lower.

The appearance of this new set of islands may be understood as fol-
lows. Similar analyses for passing particles have been done independently
in Ref. 10 for w = 0, and in Ref. 9 in the higher-frequency TAE-mode
case. Here w is left arbitrary, as a first step in the extensions of the theory
discussed in Sec. III. The radial drift 7 of the particle’s bounce-averaged

radius 7 is given from Eq.(2) by
7 = —vb(r) cos . (4)

For phase variable z equal to any of r, v}, §, { or 7, one can express z in terms
of the bounce phase 6 as z(0) = Z(8) + 62(8), where 6z(8y) is a portion
oscillatory at the bounce frequency, with zero bounce-average, and Z is the
‘bounce—averaged’ portion. For z — 8,(, or 1, Z evolves linearly in time or
6y, while for 2 — r or v, Z is a.constant. For particles not too near the
trapped/passing boundary, 6z may be approximated as purely sinusoidal.

Thus, for both trapped and passing particles (r = 0 and 1), one has:

r ~ F+ricosby,

v = Tug+ Uy COS 0
0 =~ 10+ 0;sinby, (5)
¢ =~ (/) + (1 sin 6.

Inserting these into the cos 7 factor in Eq.(4), one has
cosn = 3 Ji(m) cos, (6)
{

where the J; = Ji(m ) are Bessel functions, iy = 7+ 16y = nl+ (I —-rm)dy +

®nm, and amplitude 7, = n(; — mé, is one half the change in mode phase
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during a bounce/transit time due to the oscillatory portion of the motion.
If one in addition assumes that mode amplitude b(r) changes little over the
scale of the particle banana width ry, one may write b(r) ~ b(F) + 6r9,b =
bo + by cos 0. Inserting this expression for b(r) and Eq.(6) into Eq.(4), and

gathering terms in 7, one obtains

.

]

= —Zv‘ cosmy, (M
1
with amplitudes v; given by

v = (rugbo + u1d1/2)Ji (8)
+((ruob1 + u160)(Ji-1 + J141) + (4101/4)(Ji-2 + Ji42).

It should be noted that expression (7) is quite general, while expression (8)
for v; is only approximate. Other limits one might want to consider, for
example, ry large compared to the mode width rather than small, present
no difficulty for the basic formalism (see, for example, Ref. 17).

The origin of the appearance of the additional m = 3 islands in Fig. 4b
may be seen from the { = —1 (I, = —3) sideband contribution in Eq.(7). The
[ = 1 sideband is also present, and would contribute at the ¢ = 1 surface.
For the present parameters, however, this surface lies near r = 0, where the
strength of the (2,1) perturbation has become negligible. In the limit of zero
energy, m — 0, and J; — éjo, with §;; the Kronecker delta. If (as is the
case for present parameters) u; and b, are also small, in this limit only the
| = 0 contribution, producing the driftless, magnetic island, survives. To
complete the analysis, we need the equation for the time-development of

the phases m;. This is given by
U=m=nQ+ L% -wx(n+ L/e(r))Q - w. (9)
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(The final form holds only for 7 = 1.) Taking only a single / contribution
in Eq.(7) along with Eq.(9), and expanding £; as usual about the resonant
surface q; where (; = 0, one obtains an expression for the island half-width

for the [** surface:
81/ R = (4u/Q))"? = (4boGi/nRq")!/. (10)

Again, the final form holds only for passing particles, for which Q] = 0,Q; ~
nQ¢(q'/q), and we have written v = uoboG|, with the ‘coupling coefficients’
G), normalized so that they are dimensionless, and approximately given by
Bessel functions J;. These are plotted in Fig. 6a versus 7, for three values
of pitch angle x = arccos A, x = 0.0,0.1, and 0.2, ranging from deeply
passing to only moderately passing particles. One notes the insensitivity of
the curves to x, consistent with the numerical observation made earlier.

The stochasticity threshold is given by the condition that adjacent island
widths overlap,

St +6n 2 T4 -1y . (11)

where r; = r(q), and 6r; is given in Eq.(10). Using the G| from Fig. 6a in
Eq.(10), in Fig. 6b we plot the island boundaries r; & ér; for the | = 0 and
-1 islands again versus 7y, for the same three values of x, and for am; =
.5x 1073, One sees that the sideband (3,1) island overlaps the primary (2,1)
island for 7, greater than about 6.5, corresponding to an energy E =~ .45E,.
Because the island width curves are rather flat at and above this energy, the
analytic overlap threshold for E = Ej is also around apmz = .4 -~ .5 X 1073,
agreeing with the numerically-inferred value from Fig. 5.

Qmz ~ .5X 1073, or bz =~ 4x 1073 is a large value for an MHD perturba-
tion. TAE modes on DIII-D and TFTR are observed?? to reach amplitudes

12



b of 1 to a few times 103, and comparable values have been observed for
fishbones on PDX.22 For low-w, low-n perturbations, the inferred interior
amplitudes observed are somewhat smaller, b ~ .4 — .5 x 10-3.2! Thus it
appears likely that the stochastic threshold bmy = by =~ 4 X 10~3 is some-
what larger than values realized experimentally. However, since by; is not too
much larger than values believed to be produced experimentally, a number of
points should be noted. First, as n increases, by falls off weakly, by ~ nl/2
(However, this trend should be offset by the fact that experimental fluctu-
ations also fall off with n.)’ The presence of multiple harmonics can also
act to reduce the required threshold, as implied by the extended theory of
Sec. III. Caution in the conclusion that experiments are below threshold
is also recommended by experimental measurements. As noted in Sec. I, it
has been observed on TFTR!? that the additional MHD-induced flux T,
believed to arise principally from counter-going passing tritons making their
way across the passing/trapped boundary and thereby exiting, is a factor
of about 3 times the quiescent ‘prompt’ flux I';, which derives principally
from particles born trapped, which are lost to the detector during their first
bounce period. Assunﬁng conservation of £ and magnetic moment u, the
maximum possible value I';'* of T, is the number of counter-going parti-
cles born per unit time which make their passing/trapped transition at the
minor radius rqy necessary to hit the TFTR triton/alpha detector. An es-
timate of the ratio I'1#/T yields** about 2.5 for a 1.8 MA case, roughly
the experimental value of 3, suggesting that, in the presence of MHD, pass-
ing particles from all minor radii interior to r4 make their way rapidly to
the passing/trapped boundary. Were passing particles only able to make

small, nonsecular radial superbanana excursions ér, due to the MHD, as
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one expects below threshold, I',/T's would be smaller by a factor of at least
drep/ra € 1.

III. Extended Theory

The agreement of the analytic and numerical results of the previous
section provides some confidence in applying the same analytic approach
to more complicated situations of interest. It is also desirable to put the
theory in a form where its connection to instances of stochastic transport
which have been studied earlier is clarified.

The generalization to arbitrary w has already been carried out in the
single-harmonic development in Sec. II. An important further extension
we wish to make on the theory of Sec. II is to allow for the presence of
multiple harmonics. Each harmonic component, which we designate with
harmonic label a, has its own values of (m, n),, and phase ¢,.

The stochastic mechanism of principal interest in this paper is forr =1
particles, with perturbed radial motion 7 = 4 given in Eq.(4), arising from
the parallel portion A = a@BoRo of the vector potential. In contrast, the
original case of tokamak stochastic transport studied® was for 7 = 0 par-
ticles, perturbed by radial ‘grad-B’ drifts g from TF coil ripple. In the
general case, one might also wish to include a further transport mechanism,
viz., the contribution g to 7 arising from electrostatic pefturbations. At
little extra formal cost, the treatment of all these mechanisms may be com-
bined.

Expression (1) for & or A is generalized in the obvious way, & =

S a @a(r)sinn,. Similarly, we write the magnetic ripple strength 6(x) =
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§B(x)/Bo as §(x) = ¥, 64(r)sinn,. (For simplicity, the relative phases of
the components of & and § are taken equal to 0.) For g, an analogous
expression may be used for the perturbing potential . For alphas, however,
this effect is negligible, and so will be dropped here. Then a single expres-
sion for , valid for béth 7 = 0 and 1 particles, including both the 4 and

grad-B mechanisms, and multiple harmonics, is
f = Fa+7= Z[—v”ba(r) + dBg) COS N, (12)
- Z Z[(Tuobo - i’B)aJla
lb a

o1 -
+-2-(Tuobx + u180)a(J1a-1 + Jia+1)] cos(naC + 105 + ¢4)
= - E 2 , cos(nal + b8y + H5).

Na |,

R

Here, I, = ly + 7m,, each of the Bessel functions has argument 7y, = n,(; -
mqb,, generalizing the earlier definition of 7, in the obvious way, and 95, =
qnapds /(M Qgr) is the amplitude of the grad-B drift due to component a.
2, is the particle gyrofrequency, and M its mass. In the third form given
(second and third lines), we have neglected terms of order u;b6,. Writing the
summation over @ — (mg, 7t4) in this form as 3= (;n, n,) Ve cos(naC+1s8+¢a),
in the final form, we gather the summation over m, into the definitions of
the overall harmonic amplitudes v;, and phases ¢, given by v} = v3 + v3
and tan(@¢y) = vsi/ver, Where vy = 3, V1, CO8Pq, and vy = 3. V1, Sin Pg.
If one assumes all harmonics have just a single n,, as is the case, for ex-
ample, for fully toroidal eigenmodes, the resultant final expression for 7 is
formally the same as the single-harmonic, single-mechanism expression (7).
As a result, Expression (10) for the island widths is still valid, as is stochas-

ticity criterion (11), with the simple replacement v; — v;,. With the sum
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over n, retained, Eq.(12)'is formally the same as that used by Stix?® and by
Rechester and Rosenbluth?® to study the driftless ‘magnetic braiding’ prob-
lem (though the perturbations envisioned there were higher-n), where the
summation 3, here replaces }_,, there, and reduces to it in the driftless

limit.6

A. Connection with Other Stochastic Mechanisms

With Eq.(12) in hand, we digress briefly from the low-w, 7 = 1 mecha-
nism on which this work mainly focusses, and consider the relationship of _
that mechanism to the other stochastic mechanisms already mentioned.

The relationship to the high-w, 7 = 1 case®? is straightforward. Assum-
ing ¥ = 74 and considering a single harmonic, Eq.(12) reduces to (7), and it
and (9) are valid for arbitrary w. Thus, from Eq.(9), as w is changed from 0,
the principal change is a shift in the positions (7 = 1) ~ (w/ - lp)/n of
the resonant surfaces from their O-frequency values —/,/n, with the island
widths é7; and resultant overlap condition varying only slowly with equilib-
rium parameters. Thus, a shift Aw = £, in w moves the resonant surfaces
radially across the spacing A1¢ = q1 — @141 = 1/n between two successive
rational surfaces. In the case of Fig. 4b, this would shift the primary (! = 0)
island from the ¢ = 2 to the ¢ = 3 surface, where the | = —1 island now
stands, and move an [ = 1 island of comparable width to the ¢ = 2 surface,
leaving the overlap condition across the ¢ = 2 and 3 surfaces about the
same. Since w ~ , for the TAE mode, one expects a shift of about this size
in the resonant surfaces, and accordingly small changes in the stochasticity

threshold.
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For frequency shifts somewhat larger than this, since the island widths
67 fall off as |!] increases, the wider, primary islands can be shifted out of
the range of ¢ in the plasma, and the stochastic mechanism can thereby be
eliminated. An analogous frequency—dependent ‘quenching’ of the trapped-
particle stochastic mechanism has also been found analytically* and corrob-
orated numerically.!®

One noteworthy singular feature of the w = 0 problem is that ¢;(w = 0)
is independent of particle quantities. Thus, while all particles have the same
set of ¢ for w = 0, for w # 0 the rational surfaces shift from the w = 0 posi-
‘tions at rates depending on the particle energy and pitch, via ;. This will
introduce a greater sensitivity of stochasticity to pitch A than that observed
above for the w = 0 case. This may make low-w perturbations preferable
in the context of the ash removal process to be discussed in Sec. I'V.

The relation of the 7 = 1 mechanism to that for 7 = 03 is not quite as
simple, because 7, is a more sensitive function of ¥ for 7 = 0 than for 7 = 1.
Specializing Eq.(12) to 7 = 0 and to the single-harmonic, ¥ = g case for
which the 7 = 0 problem has been studied, one has expression (7) (as for
T = 1), now with vy = -9gJ;.

For 7 = 1, m ~ —m#é; depends principally upon perpendicular drifts,
which change only weakly with #. Thus, for 7 = 1, J; remains about constant
as ¥ changes, the principal radial variation in the problem entering through
Q(F) in Eq.(9). This results in the resonant island width ér; given in Eq.(10).
Referring to this width for the moment as é;r, and to the radial spacing
between successive resonances as Ayr = Q,/Q} ~ 1/(nq’), overlap condition
(11) may be approximately written §;r 2 Ayr.

In contrast, for 7 = 0, changes in 7 produce large changes in the particle
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turning point 4, (a quantity determined by parallel motion), and thus in
(i ~ ¢by and 7y ~ qN¥8,. (Here,gN =qn-m = qu".) Now, when a
particle drifts radially a distance Aqr = 7/8,m ~ 7/(nq'8y), the change in
T is large enough to cause J; or v; to reverse sign. Thus, for Ar < Aqr,asis
typically the case for r = 0, each resonance does not produce a single island
of width A;r, but a series of ‘sub-islands,’ of width A,r, with separatrices
coming at the successive zcroes of the J; for that resonance. Stochasticity
then ensues when the nonresonant excursion 87 = vi4;/Qp induce 2 by the
neighboring harmonics is large enough to push a particle from one sub-island
to the next, i.e.f,r 2 Agr. Using the expressions just given for these widths,
along with the large-argument form Ji(2) ~ 1/\/7z and taking 6y/7 ~ 1
results in the stochasticity criterion of Ref. 5, up to a numerical factor.

A final stochastic mechanism previously studied, both in the absence,?5:26
and presence!® of particle drifts, is transport in the presence of multiple,
high-n harmonics. The same theory as in Ref. 16 also applies to the present
low to moderate-n case. Because for multiple n fhe gnm can fall in an inter-
lacing pattern, island overlap can occur at lower amplitudes than given by
(11) for the single-n problem. Numerical corroboration for this has recently
been given by Hsu and Sigmar for the TAE-problem:?” while by ~ 10~2 for

a single n ~ 1 eigenmode, for multiple n, b,; ~ 104 is found.

IV. Energy—Selective Transport

We now wish to investigate some of the possibilities raised by the cx-
tended theory of the previous section. Expression (12), along with the def-

initions of v;, and ¢y, make explicit the way in which multiple harmonics
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affect the island widths and consequent transport. One notes that both
positive and negative interference of one mode with another is possible at
each harmonic [y, and, through the Ji,(74)8, that this interference has an
energy dependence which is not monotonic, as the intuitions discussed in

Sec. I would suggest, but rather oscillatory.

In Figs.3 and 6b one sees the (2,1) mode inducing stochastic transport
supporting the second of the two intuitions noted in Sec. I; more energetic
particles become stochastic before less energetic particles (or magnetic field
lines). However, it is easy to construct examples in which the opposite
expectation is borne out. (Whether such perturbations are produced in the
plasma by external windings, or by control of the current profile, or by some
other means is beyond the scope of this paper. The intention here is only
to explore what kinds of transport effects might be obtained, assuming the
postulated perturbations can be produced.) In Fig. 7 is shown the effect
on the island structure of adding to the (2,1) mégnetic perturbation an
additional (3,1) magnetic perturbation, having am; = .125x10~3. The (2,1)
island width is not much changed. For the (3,1) island, however, the = -1
sideband contribution from the (2,1) perturbation, proportional to J_;, adds
to the primary (! = 0) contribution « Jp from the (3,1) perturbation, causing
in this case a cancellation of the (3,1) island at E/Eg ~ .5. Thus, the
‘stochasticity profile’ has been reversed from that in Fig. 6b; while the (2,1)
mode alone is below threshold for low—energy particles and stochastic for
high—energy ones, for this (2,1)+(3,1) superpositic;n energetic particles are
nonstochastic while low—energy particles and the magnetic field itself are
stochastic. It should also be noted that this result depends upon the relative
phase ¢3; — &21 between the perturbations. Were this phase shifted by =,
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J-1 would instead add to the Jo, making particles of all energies shown
stochastic.

For burn control, a stochasticity profile like that in Fig. 6 is desirable; one
would like to remove energetic particles, which if left would cause thermal
runaway, while not losing confinement of the bulk plasma. For ash removal,
still another profile is needed; one still wants to e below threshold for
the bulk, as well as for energetic alphas, but above threshold for alphas at
some intermediate energy, where they have spent most of their energy in
heating the plasma, but still have drift orbits making them distinguishable
from the thermal background. For this one needs to make more use of
the oscillatory character of the Bessel functions, and for that one needs a
somewhat larger 7,, and so larger (m, n). Fig. 8 illustrates this, plotting the
island boundaries for a (6, 3) perturbation, with amplitude a,; = .7x 1074,
Of bz = 1.7x 1073, gum is thus the same as before, but 7; can reach larger
values. For this (m,n), the first zero of Jy, corresponding to the first null of
the (6,3) island, falls approximately at £ = Ey, putting that energy below
threshold. And as E or 1, approach 0, one is again below threshold, because
one is near the zero of J4; of the sideband islands. At intermediate energies,
however, island overlap can occur, as one sees for the (6,3) and (7,3) islands,
where overlap occurs in the range [E2, Ey] ~ [.05, .4]Eo = [.175, 1.4]MeV.

A deficiency of the perturbation of Fig. 8 for purposes of ash removal
is that it is radially local; the overlap occurs only in the vicinity of the
rational surface ¢,m = 2. To extend this to a range of radii, one can apply
a superposition of harmonics a, each having a primary island at a sequence
of ¢.m extending bver the minor radius, with each adjacent pair producing

overlap patterns similar to that of Fig. 8. Again taking n = 3 and ¢, = 0 for
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all harmonics, with mg = 6 yielding a primary island at g, = 2, in Fig. 9 we
show an example of this. As in Fig. 8, the (m,n) = (6,3) harmonic makes
a contribution « Jo to the (-ls,n) = (6,3) primary island at the ¢ = 2
surface, and sideband contributions « J4; to the (7,3) and (5,3) islands, as
well as smaller contributions to higher-/ sidebands. If one would superpose
(7,3) or (5,3) harmonics, then each of these would contribute Jy's to the
(7,3) and (5,3) islands, destroying the desired feature captured in Fig. 8
that the sideband island widths become small as the energy does. Thus, we
superpose only every other n = 3 harmonic. Then, at the ¢ = 2 surface, one
has a superposition ..+ 43J/-2+De3Jo + Vs3J2+.. ~ Ug3J0, and at the ¢ = 5/3
sideband surface, one has‘ superposition .. + 943J-1 + Ug3J1 + ... In order
that these two sideband contributions not tend to cancel, we see that one
must choose successive harmonics to have alternating signs or, equivalently,
one may take the ¢,’s of successive harmonics to alternate between 0 and .
Thus, in Fig. 9 we have used amz(43) = —1.8 x 1074, apmz(63) = .5 x 1074,
and amz(83) = .35 X 1074, or byz(43) = —3.4 X 1073, b,,2(63) = 1.2 x 103,
and bmz(83) = 1.1 x 10~3. One notes that as r decreases, the value of by,
needed for overlap increases, because the lower shear at smaller r makes
the spacing between rational surfaces larger. Also, for the present choice of
perturbations, the maximum energy E; where overlap occurs becomes larger
for the islands deeper in, because 7, is decreasing. Thus, while F, ~ 4E,
for the overlap of the (6,3) island with the (7,3) or (5,3) islands, E; ~ .75E,
for the (5,3),(4,3) overlap. Thus, the perturbation represented in Fig. 9
would permit a broadening of the profile of still fairly energetic alphas from
the plasma center, but would not create a channel for alpha loss further out

until the alphas had slowed to energies more acceptable for ash removal. If
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desired, a more constant value of E; might be achieved by raising the chosen

m and n as Gy, is decreased.

V. Discussion

Summarizing, we have explored mechinisms of stochastic transport in
tokamaks, focussing principally on the transport of passing MeV ions by
low-frequency magnetic perturbations. It has been established numerically
that, contrary to earlier belief, MHD perturbations can induce loss of en-
ergetic ions without concomitant loss of confinement of the bulk plasma.
“An analytic theory has been developed explaining this, and clarifying the
connections among the stochastic mechanisms of earlier studies. The mech-
anism may explain observed MeV ion loss due to low—w modes in TFTR,
intermediate-w activity on DIII-D, and connects smoothly with the loss
mechanism for the higher-w TAE modes seen on both machines. The the-
ory also opens the possibility for creating beneficial effects, viz. burn control,
ash removal, and perhaps compensating undesired transport effects of un-
avoidable, internally-produced perturbations.

From the initial explorations of the previous section, one sees that one
has a good deal of flexibility in prescribing a perturbation yielding a desired
stochasticity profile. For ash removal, one notes that n cannot be too small,
or the first null of Jo will not be reached near the alpha birth energy Ejq.
It also cannot be so large that the J; go through several periods in going
from E = 0 to Ey, since in that rapidly oscillatory limit, the ranges of the
confined bands near £ = 0 and £ = Ey become too narrow, both to confine

thermal particles, and to confine alphas until they have provided sufficient
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heating. For TFTR parameters, n ~ 3 provided about the correct value.
Since m ~ —m#B; ~ nry/a, for larger machine size a, since banana width
™ remains about constant, one needs larger n to keep 7; in the proper
range of a few times unity. The amplitudes of the perturbations needed
are also quite large, which has the undesirable effect of losing too much of
the plasma volume for confinement of thermal particles. A more refined use
of multiple harmonics, which as has been noted can greatly diminish the
needed amplitude for stochasticity, may help to alleviate this difficulty.

It is likely that the stochasticity profiles shown here can be improved
upon by, for example, making the intermediate range over which overlap
occurs more localized in energy, and further below threshold at other ener-
gies. Given the same argument 7y, the set of J;’s form a complete set, so
one could in principal take a sum providing any shape island profiles §r/( E)
one wished. However, the situation is complica.téd by the fact that the m,'s
from successive harmonics are not the same, and also that the selection
of amplitudes 9y, to tailor ér;(E) for one ! fixes the form for the other I’s.
Nevertheless, one has an appreciable number of parameters which can be ad-
justed in attempting to provide a more optimal perturbation. Given some
desired optimal form, the technological task of producing such a perturba-
tion will clearly be quite challenging. However, comparable challenges, for
example the design of similarly sophisticated fields for transport optimiza-
tion in the stellarators Wendelstein-VII-AS and -VII-X, have proven readily

achievable.
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Figures

FIG. 1. Amplitudes a(r) for the model MHD perturbations, for (m,n) =(2,1),
(3,2) and (1,1) modes.

FIG. 2. Poloidal projection of (a) one trapped (A = .18) and (b) one passing
(A = .46) alpha orbit in TFTR, perturbed by a (2,1) mode with amz =
10723, dpm = —7/2,w = 0. : '

FIG. 3. Poloidal projection of several other passing orbits for the same per-
turbation and launch point as in Fig. 2. (a)A = .46, ¢nm = 0, (b)A =
46, dnm = /2, ()X = .6, Ppm = —=7/2, (d)A = =46, Py = —7/2.

FIG. 4. Poincare maps for {a) the magnetic field and (b) alphas with energy
E =3.5MeV,and A = 1, for a (2,1) mode with am, = 10~4.

FIG. 5. Sequence of orbits launched with same initial conditions as Fig. 3c
(r/Ro=.15,0= -7 /2,{ =0,A = .6,E = Eg,and (m,n) = (2,1), $pm =
-m/2), but with perturbation amplitudes am:/10~3 = (a)0.7, (b)0.6,
(c)0.4, and (e)0.1.

FIG. 6. (a) Plot of coupling coefficients G for | = 0 and -1 versus gy < E'/?,
for three values of pitch angle x = arccos A, x = 0.0,0.1, and 0.2. The
marks on each curve are separated by Ep/10. (b) island boundaries for
the [ = 0, -1 islands versus 1, using the G, of Fig. 6a in Eq.(10), for

amz = .5 % 1073,

FIG. 7. (a) profiles a4(r) of a superposition of the same (2,1) mode of Fig. 6,
along with an additional (3,1) perturbation with ams = .125 X 1073,
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(b)Island boundaries for the superposition, assuming zero relative phase

between the modes.

FIG. 8. Same plots as Fig. 7, but for a single (6,3) perturbation, with am,; =
.7 x 104, Island overlap occurs for intermediate energies, but not for
thermal energies or those near the alpha birth energy, as needed for ash

removal.

FIG. 9. Extension of the ash removal approach of Fig. 8 to make it ra-
dially global, by superposing a series of harmonic perturbations, with
(m,n, amz) = (4,3, -1.8x1074),(6,3,.5x 10~4), and (8,3, -.35x 1074).
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