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PREFACE

THE interface between mathematics and biology has long
been a rich area of research, with mutual benefit to each supporting discipline.
Traditional areas of investigation, such as population genetics, ecology, neurobiology,
and 3-D reconstructions, have flourished, despite a rather meager environment for the
funding of such work. Irl the past twenty years, the kind and scope of such interactions
between mathematicians and biologists have changed dramatically, reaching out to
encompass areas of both biology and mathematics that previously had not benefited. At
the same time, with the closer integration of' theory and experiment, and the increased
reliance on high-speed computation, tile costs of such research grew, though not the
opportunities for funding. The perception became reinforced, both within the research
community and at funding agencies, that although these interactions were expanding,
they were not doing so at the rate necessary to meet the opportunities and needs.

7I"ohelp foster a broader understanding of this interface, and to provide an analysis of
the most promising and productive areas for expanded activity, the National Science
Foundation sponsored a workshop to explore the current and future trends at the interface
between mathematics and biology. The workshop, which was held in Washington, DC,
bep,veen A.A_! 28 and May 3, 1990, drew together a broadly based group of researchers to
synthesize conclusmns from a group of working papers and extended discussions. The
result is the report presented here, which we hope will provide a guide and stimulus to
research in rnathematical and computational biology for at least the next decade. The
report identifies a number of grand challenges, representing a broad consensus among the
participants.

Tile report documents the participants' enthusiastic conclusion that mathematical and
computational approaches are essential to the future of biology and that biological
applications will continue to contribute to the vitality of mathematics, as they have since
the days of Vito Volterra. Tile goal of this workshop report is to share with the scientific
torah:unity our convictions about the promise of this activity and further to inform the
broader community and relevant institutions about the potential for exciting growth and
productivity in this interdisciplinary field and the need for nurturing it. As with other
interdisciplinary efforts, it must rest on strong disciplinary foundations, but not be
constrained by the nan'ow customs and standards of a,_y particular discipline.

We thank the steering committee and the participants for llelt:)ing to make the meeting
such a success• The plans and format were developed, together with this committee and



in_plemenled with the invaluable assistance of Colleen Martin at Cornell University and

Peter Arzberger and .lohn Wooley of the National Science t:'oundati(m. In addition to the

attendees acknowledged in Appendix 1, three individuals at the National Science

Foundation deserve special thanks for their contributions to the development and

refinement of the report: Deborah Lockhart, DeLill Nasser, and Judith Stanley. Each

contributed time, attention, and constructive additions to the project and to the report.

Sylvia Spengler and the Technical Information Department at Lawrence Berkeley
Laboratory sheperded the manuscript to publication. The workshop and report were

supported by a grant from the National Science Foundation ([)MS 89-10353) to Cornell

University (Simon L,evin, Principal Investigator). Publication of tlm report was supported

by the Associate Director for Health and Envir(mmental Research, Office of Energy

Research, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Simon Levin, Cornell University and Princeton University

David Kingsbury, George Washington University

June 1992
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EXECUTIVE SUMMARY

MOTZ (1987) divided the history of science into three broad tirne

periods: the era before Galileo and Newton, the period 1600--1900, and the modern period.

"Why," he asked, "did [the Greeks] accomplish so little" in the first period, given their

exceptional intellectual capabilities? lt was because "theirs was not a systematic study of the

nature of things in which experiment and theory went hand in hand bt_t a series of unrelated

speculations that stemmed from no basic principles and were never tested." For Motz, modern

science began with Galileo and Newton: "Newton's contributions to science and mathematics

were not independent of each other _ they went hand in hand, for his scientific pursuits forced
him to invent the mathematical tools that enabled hiln to solve the problems presented by the

physics."

This is the stage in which biology finds itself' today, poised for the phase transition that
comes with the total integration of mathematical and empirical approaches to a subject. Many

branches of biology are virtually devoid of mathenaatical theory, and some must remain so for

ye_u's to come. In these, anecdotal information accumulates, awaiting the integration and insights
that come from mathematical abstraction. In other areas, theoretical developments have run far

ahead of the capability of empiricists to test ideas, spinning beautiful mattmmatical webs that

capture few biological truths. This report eschews such areas, and instead focuses on those

where the sepanue threads are being woven together to create brilliant tapestries that enrich both

biology and mathemalics.
The interface between mathematics and biology presents challenges ::_,d opportunities for

both mathematicians and biologists. Unique opportunities for research have surfaced within the

last ten to twenty years, both because of the explosion of biological data with the .advent of new

technologies and because of the availability of advanced and powerful computers that can

organize the plethora of data. For biology, the possibilities range ft'ore the level of the cell and

molecule to the biosphere. For mathematics, the potential is great in traditional applied areas
sucl; as statistics and differenlial equations, as well as in such nontraditional areas as knot theory.

This report explores some ()f tlm opportunities at the interface between biology and

mathematics. To mathematicians, rh,: report argues th,_t the stimulation of biological ,_pplication
will enrich the discipline of mathematics for decades or more, as have applications from the

phy:_ical sciences in the past. To biologists, the report underscores the power of mathematical

approaches to provide insights available in no other way. To both communities, the report
demonstrates the ferment and excitement of a rapidly evolving field.



With the advent of new types and amounts of data and with new technologies, new fields of
research have appeared, and existing fields have been changed beyond recognition. Over
7,000,000 nucleotides of DNA per year can be sequenced and, at least until now, such
sequencing has been done around and through regions that the investigators have judged to be of
biological interest. Thus, sequence comparisons often provide clues to biological function. The
secondary and tertiary structure of both DNA and RNA can be analyzed, and such analysis often
is conducted with the close collaboration of mathenaaticians. At the cellular level, recombinant
technology has made it possible to ask specific questions about cell growth, cell differentiation_
and pattern formation, and to interface with old and new mathematical theories. Similar
excitement attends the problem of how cells communicate with each other and with their
environment; the dynamics of cells, channels, and neural networks; and the behaviors of
populations and aggregations of cells and organisms.

The ways in which whole fields of research are apt)roached have changed. For example,
whereas population genetics and evolutionary biology were fields historically concerned l_u'gely
with infening process from pattern, the explosion of knowledge at the cellular and molecular
levels has encouraged development of a complementary approach in which one begins from
knowledge of processes at the micro level. DNA sequence data make possible a different kind of
analysis of patterns and processes in evolution at higher levels of organization than was possible
previously ft'ore fossil data alone. Mathematic.al approaches allow the use of genetic data to
analyze multilocus traits, which _u'eso importaqt, for example, to plant breeding, and have made
possible a much more quantitative approach to such issues. And perhaps the greatest challenge
for computational and mathematical biology will come in dealing with the problems of global
change, biological diversity, and sustainable development, which will require the integration of
enormous data sets across disparate scales of space, time, and organization.

As this data explosion is taking piace, newer, faster, more powerful machines have become
available in the form of both supercomputing centers and networked work stations. In many
instances, dedicated hardware has outperformed the supercomputers and is inexpensive enough
to be afforded by many scientists. One such example is a chip for sequence comparisons; other
examples come from neural networks. The development of national and international networks
allows immediate access to data, to software, to ideas, and to supercomputers. These changes in
computation have enabled molecular geneticists to store their DNA sequence data, to search for
sequence matches, and to do multiple sequence alignments. Developmental biologists can store
cell lineage data and model morphogen gradients. Molecular evolutionists can reconstruct larger
phylogenies. Ecologists can endeavor to relate global-level processes controlling climate and the
distribution of greenhouse gases tc) biogenic and other mechanisms at the cell and leaf level. In
ali of these examples, mathematics and algorithm development are intrinsic to success.

The interaction between biology and mathenaatics has been a rich area of research for more
than a century. Statistics and the study of stochastic processes had their origins in biological
questions. Galton invented the method of correlation, motivated by questions in evolutionary
biology. Fisher's work in agriculture led to the analysis of variance. The attempt to model the
success (survival) over many generations of a, family name led to the development of the subject
of branching processes; more recently, the compilation of DNA sequence data led to Kingman's
coalescence model and Ewens' sampling formula. In the area of classical applied mathematics,
t)iological applications have stimulated the study of' ordinary and partial differential equations
fundamentally, especially regardin g problems in chaos, pattern formation, and bifurcation theory.



Perhaps more fundamentally, mathematical approaches have long been central to biology.

Before capillaries were discovered, Harvey used a mathematical model to suggest that blood

circulates. Mathematical formulations are so basic to the study of ecology and evolutionary

biology that they are part of the fundamental training of every biologist. Volterra's early analysis

of simple models elucidated the mechanisms underlying the fluctuations of natural populations;

modern work on spatial pattern is proving critical to conservation biology. Mathematical models

have played a central role as well in managing the spread of infectious disease, including the

development of vaccination criteria and studies of the spread of AIDS. The Luria-Delbruck

fluctuation analysis, by a simple but elegant experiment based up()n a mathematical concept,
established that mutation was independent of selection, and mathematical argumen.ts have been

central to the analysis of the recent and potentially revolutior_ary suggestion that in certain

situations bacteria mutate nonrandomly in response to their environment.

In molecular biology, mathematical and algorithmic developments have allowed important

insights, for exarnple, recognition of the unexpected homology between an oncogene product and

a growth factor that forms the basis of the molecular theory of carcinogenesis. Statistical linkage
analysis helped locate the cystic fibrosis gene. An understanding of the topology oi-"DNA has

been enhanced greatly by the close cooperation of biologists and nmthematicians. Classical

analysis has played t: central role in image reconstruction. Radon's techniques, first developed in

1917, formed the centerpiece of computerized axial tomography that led t() a Nobel prize in
1979,

At the organismal level, numerous triumphs can be cited. Mathematical modeling revealed

the cause of ventricular fibrillation. Hodgkin anti Huxley theorized that macroscopic current
might be generated by molecular pores -- ion channels that were later proved to exist. Navier-

Stokes equations for flow through small bristled appendages have shown how the geometry
permits the appendages of aqueous organisms to function as either paddles or rakes.

The primary purpose for encouraging biologists and mathematicians to work together is to

investigate fundamental problems that cannot be approached only by biologists or only by

mathematicians. If this effort is successful, future )'ears may produce individuals with biological
skills and mathematical insight and facility. Today such individuals are rare; ii is clear, however,

that a greater percentage of the training of future biologists must be mathematically oriented.

Both ctisciplines can expect to gain by this effort. Mathematics is the "lens through which to

view the tmiverse" and serves to identify the important details of the biological data and suggest

the next series of experiments. Mathematicians, on the other hand, can be challenged to develop
new mathematics in order to pertk)rm this function.

Flexibility is essential as the funding agencies respond to the needs at this interface. Cross-

disciplinary teams of researchers should be encouraged and appropriate methods for review of

proposals should be developed. Methods should also be devised for selecting and training

individuals at an early stage of their development, at the interface of these ',tisciplines. And

finally, meetings and workshops should be supported to explore as yet unthought of ways in
which the two disciplines can sen, e to amplify each other.



GRAND CHALLENGES

Genomics

Attention to the human genome project and its great potential often obscures the fact that
theoretical work is essential to efforts aimed at sequencing and mapping all genomes, human and.
nonhuman, animal and plant. Without the mathematical and statistical underpinnings and
computational advances, such effo ts will be severely limited; with these methods, we are poised
to make dramatic advances, lntraspecific and interspecific comparative analyses of the genomes
of diverse organisms can aid in identifying genes and determining their function and also
increase our understanding of the natural world.

Global Change

No problem is more compelling, in terms of its importance to life as we know it, than that of
global wanning. Current estimates are that changes in the concentration of greenhouse gases are
occurring at a rate far more rapid than anything we have experienced in the geological record,
changes that could lead to equally rapid changes in climate. Furthermore, increases in pollutants
of various kinds and depletion of our resource base make the analysis of these changes and their
effects upon ali life-forms of prime importance. We must improve our methods to describe, to
predict, and to identify causes. In ali of th.ese areas, a fundamental theoretical problem involves
the relationships among processes at very different spatial, temporal, and organizational scales.
Closely related problems of surpassing importance m'e those associated with biodiversity and
sustainable development.

Molecular Evolutio,1

The understanding of the evolution of all life forms is critically dependent on our ability to
analyze the historical record and to reconstruct phylogenetic relationships among species. The
field of evolutionary biology cmTently offers few methods R)r this reconstruction, and only one
method provides a measure of uncertainty in the final trce. The difficulty of reconstruction
grows exponentially with the number of initial data points, and efforts at resolution pose
challenging mathematical and computational problems. Computational and algorithmic
advances can immeasurably speed up progress in this area.

Organismai Structure-Function Relalionships

The _elationship between the structure and function of an organism is a central theme of classical
biology. Successes include the analysis of functional morphology of organisms and their parts,
such as tree branches, and the analysis of fluid flow through and past organisms. The field of
functional morphoh)gy is a centerpiece of modern bio!ogy, and advances in the subject offer
hope not only for understanding the biological world, but also for in-proving the human
condition. Theoretical and computational advances already have been made in analyzing



artificial heart valves. The potential is great for extending these approaches to mlmr human and
animal organ systems.

Complex Hierarchical Biological Systems

At every level of organization, biological systems are complex hierarchies in which ensembles of
lower-level units become the units in higher-order ensembles. The analysis of complex
hierarchical systems therefore represents one of the most important open areas in biology. At
both the molecular and the cellular level, the components of biological systems are being
revealed by modern experimental methodology. The organization and integration of these details
into a functional biological system will require the techniques of the mathematician, as well as
the data of the biologist. Problerns of this sort are at the core of genetics, neurobiology,
developmental biology, and immunology. Similar problems exist in understanding how
individuals are organized into populations, and populations into communities.

Structural Biology

Structural biology includes the analysis of the topological and geometric structure of DNA and
proteins. It also includes molecular dynamics simulation and drug design. Much basic work
remains to be done on the structure and folding of crystalline and hydrated proteins. For many
proteins, the structure is dictated by the sequence, so this area is closely related to genomics.
Molecules are in continuous motion in nature, but NMR and X-ray crystallography necessarily
produce snapshots. Mathematical and computational methods are essential to complement
experimental structural biology by adding motion to molecular structures.

OPPORTUNITIES FOR MATHEMATICS

A number of fundamental mathematical issues cut across all of these challenges.

(1) How do we incorporate wtriation among individual units in nonlinear systems?

(2) How do we treat the interactions among phenomena that occur on a wide range of
scales of space, time, and organizational complexity?

(3) What is the relation between pattern and process?

lt is in the analysis of these issues that mathematics is most essential and holds the greatest
potential. These challenges.--aggregation of components to elucidate the behavior of ensembles,
integration across scales, and inverse problerns--are basic to ali sciences, and a variety of
techniques exist to deal with them and to begin to solve the biological problems that generate
them. However, the uniqueness of biological systems, shaped by evolutionary forces, will pose
new difficulties, mandate new perspectives, and lead to the development of new mathematics.
The excitement of this area of science is already evident and is sure to grow iv.the years to come.



To achieve the great potential that is evident in this report, we make a number of specific
recomnlendations. We encourage

• Enhanced support for individual interdisciplinary research at the interface between biology
and mathematics

• Support for interdisciplinary collaboration

• Support for graduate and postdoctoral fellowships

• Support for mid-career fellowships and visiting fellowships

• Support for educational developments at the precollege and undergraduate level

• Funding for improved computer facilities, software clearinghouses, and electronic
networks

• Development of rninicourses

• Programs to encourage and involve underrepresented groups

Mathematical and computational biology are vital, crucial, and rapidly growing subjects that
complement and guide empirical work, elucidate mechanisms, and provide model systems for
study and manipulation. Indeed, such model systems can, in some circumstances, reduce the
need for experimentation on living organisms or natural systems when such experimentation
presents ethical, fiscal, or logistical difficulties. Mathematical and computational research is
comparatively inexpensive, and great dividends can be realized from a relatively small
investment of funds. Because the subject lies between traditional disciplinary areas, its support
often "falls between the slats" at funding agencies. We urge that specific mechanisms be
developed to recognize the unique character of the subject and to provide the support that will
foster the development of work that truly can make contributions both to biology and to
mathematics.



1
THE IMPACT OF BIOLOGY ON
MATHEMATICS

THE application of mathematics to biology has, in turn, had
considerable effect on tile development of new areas of mathematics. This may seem surprising,
because of the different natures of biology and mathematics. Mathematics strongly prizes rigor
and precision. Mathematical fact is immutable, and successful mathematical theories have
lifetimes of hundreds or thousands of years. By contrast, most of our knowledge of biological
systems is recent, and most biological theories evolve rapidly. Nonetheless, the interface
between mathematics and biology has initiated and fostered the development of new
mathematical areas. This report highlights areas of e_athematics that have been influenced
greatly by biological thinking in the past, and presage; future developments by identifying some
areas of biology that will require the development of new mathematical tools.

Of course, many, perhaps most, applications of mathematics in biology will have little effect
on core areas of mathematics. Interactions of mathematics and biology can be divided into three
categories. The first involves routine application of existing mathematical techniques to
biological problems. Such applications influence mathematics only when the importance to
biology provokes refinements and further mathematical developments, an inherently slow
process. In other cases, however, existing mathematical methods are inadequate, and new
mathematics must be developed within conventional frameworks. In the final category of
interactions, some fundamental issues in biology appear to require altogether ,'_ew ways of
thinking quantitatively or analytically. In these circum._:tances, creation of entirely new areas of
mathematics may be necessary before it will be possible to grapple successfully with the
underlying biological problems. Development of new biological technologies and the rapid
accumulation of information and data will prompt the application of classical mathematics, as
well as the creation of new mathematics. As in the past, some of these new mathematical
theories will be quite rich and will develop lives of their own. The feedback from these
applications will help mathematics retain its vitality.

The application of mathematics to biology is not new; neither is evidence of impacts on
naathematics. Robert Brown, a botanist, discovered what is now called Brownian motion while

watching pollen grains in water. ]'()day, the mathematical description of such motion is central
to probability theory. Similarly, catastrophe theory is a branch of mathematics stimulated to a

large extent by biological theory. Inspired by Waddington's concept of an epigenetic landscape
(Waddington 1957), Rend Thorn generated interest in singularity theory and the bifurcations of



dynamical systems (Thorn 1975). Although the style of modeling used by the proponents of
catastrophe theory was severely criticized, the beautiful mathematics it spawned has applications
that extend fm"beyond those originally envisaged as part of the theory itself. And perhaps most
irnportantly, the origins of the field of statistics were intimately tied up with biology.

In other areas, the influence has been nearly as great, The theories of dynamical systems and
partial differential equations represent areas of mathematics in which numerous fruitful lines of
inquiry were prompted by biotogicaI questions, and in which such influences continue to be felt.
In theoretical fluid mechanics, the dominant classical strearn of development was toward an
understanding of high-Reynolds-number (almost inviscid) flow and of compressible flows;
biology has motivated a great many new developments in viscosity-domirmted flows (Purcell
1977). More recently, moIecular biology has stimulated advances in analysis and low-
dimensional topology arid geometry.

In this section, ',,'e.discuss these examples in more detail, as well as genomic analysis, an m'ea
of biology that seems !.odemand the creation of new mathematical specialties. The section ends
with a description: of "grand challenges" ira biol(_gical mathematics, areas that seem to demand
novel mathematical and computational api:,roaches.

I, I ACCOMPLISttMENTS OF THE PAST

1.1.1 Statistics and Sto,chastic Processes

Statistics is perhaps the most widely used mathematical science. It has achieved its present
position as a consequence of"an intellectual development begun during the 19th century. "Frorn
the doctrine of chances to the calculus of probabilities, from least squares to regression analysis,
the advances in scientific logic that to.ok place in statistics before I9()0 were to be every bit as
influential as those associated with the names of Newton and Darwin" (Stigler I986, p. 361).

What were the major influences in this development? Porter (1986) introduces his history of
statistics in the 19rh century as follows: "This book . . . is a stud), of the mathematical
expression of wh.at Ernst Mayr calls 'population thinking' " (Porter 1986, p. 6; see also Mayr
I982, 1988, pp. 350-352). He goes on to say that "the development of statistical thinking was a
truly interdisciplinary phenomenon for which mathematics had no priority of position; new ideas
and approaches arose as a result of the applicatiorl of techniques borrowed from one or ro.ore
disciplines tc) the very different subject matter of another" (Porter 1986, p. 8), Porter later states,
"That the rn(>dern field of mathematical statistics developed out of biometry is not wholly
fortuitous. The quanti:tative study of biological inheritance and evolution provided an
outstanding context for statistical thinking, and quantitative genetics remains the best example of
an area of science whose very theory is built out of the concepts of statistics. The great stimulus
for modern statistics came from Galtor_.'s invention of the rneth(>cl of correlation, which,
significantly, he first conceived not as an abstract technique of numerical analysis, but as a
statistical law of heredity" (Porter 1986, p, 270). The profound problems raised b), Darwin's
insight hav.e led to new fields of mathematicaI science, Only the surface has been scratched by
these developm, ents, and rnajo.r challe.nges remain.

Darwin and Galton were cousins, and Darwin's ideas had a great influence on Galton (Porter
1986, p. t33 and p. 28I). Likewise, problems ira eugenics and plant breeding were the



motivation for R. A. Fisher's statistical work (Box 1978, Fisher 1930). The analysis of variance
arid the theory of experimental design were developed to interpret and plan plant-breeding
experiments at the Experimental Station at Rothamsted, ata institution that continues to be a
major influence on statistical theory and practice. The benefits to rnankind of these and later
biometrical developments have been enormous. The "green revolution" in agriculture would
have been quite impossible without these tools. Modern medicine and public health practice
depend upon carefully designed and interpreted clinical trials and upon sophisticated studies of
massive observational data sets.

Problems of the theory of evolution and genetics have had a profound influence upon
probability theory as well as statistics. Galton and Watson founded the theory of branching
pro.cesses iraresponse to a problem of the extinction of human family names (Galton and Watson
1874). Yule, a student of Galton, developed the random process called the Yule process in
response to a paper by Willis on the evolution of genera (Yule 1924). The same ideas appeared
earlier in McKendrick (1914) and later in Fun-y (1937). McKendrick (1926) and Kermack and
McKendrick (19271)developed their nonlinear birth and death process iraresponse to problems in
the theory of epidemics.

The influence of biology on probability theory and statistics has been equally strong iralater
),ears of this century. Feller's celebrated work on stochastic processes originated in the Volte._wa
theory of competition and continued in response to problems in population genetics (Feller 1939,
1951; als() see Kolmogorov 1959). Neyman et al. (1956) developed stochastic models in order to
interpret experiments by Park on flour beetles. Irathese experiments, two species of beetles were
pitted ira competition. "I'o Park's surprise, the outcome of a given experiment could not be
predicted; but in a long series of experiments, tile statistical distribution of outcomes was
predictable. The flour beetle connection is still very strong (see Costantino and Desharnais
199I). The early volumes of tile Berkeley Symposia contain marl), more examples of biological
inspiration of mathematical theory (Neyman 1945 and subsequent).

Marl), current and future challenges for statistics and probability that are motivated by
questions in molecular biology, genetics, and molecular evolution will require new techniques
and theories. One such set of challenges involves the use of DNA sequence data to reconstruct
phylogenetic trees, analyze genetically complex traits, and study other problems. As more and
more DNA sequence data are accumulated, patterns arise, and exploratory data analysis
techniques need to be developed to look through tile wealth of data for these patterns. The
ordering and frequency of the four nucleotides is not random (even in noncoding regions). To
compare two sequences of DNA or protein (or to compare a given sequence with a databank) and
to lo.ok for matches or similarities (sequence alignment) required the creation of new algorithms.
New methods are needed to find regions of similarity and to assess tile significance oi"
sirnilarities detected. Comparisons can answer both evolutionary and functional questions. Are
sequences descended from a conamon ancestral sequence? Do they serve similar functions? One
problem has been to calculate the probability of a long matching region between two DNA
sequences, given that some level of matching occurs if there are overlapping regions. Strong
new limit laws give rates for the longest likely matching sequences between different sequences
(given mismatches) as the sequence lengths increase. Detailed distributional behavior has been
obtained using the Chen-Stein method of' approximation by a Poisson random variable. These
new distributional restalts are now used as a basis for statistical tests. Arratia et al. (199()) offer a
snapshot of current mathematical work on these questions.

9
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Relevant statistical questions include the calculation of Markov-type probabilities and
likelihoods over directed graphs; maximunl likelihood estimation for multinornials with highly
nonregular parameter spaces involving large numbers of nuisance parameters; model selection
from among large numbers of hypotheses of the same dimension; and selection among small
numbers of non-nested hypotheses of different dimension.

These problems would be hopelessly intractable were it not for recent and anticipated
advances in computational statistics. With computing power now available, we can quickly
narrow our search for promising algorithms and test their effectiveness. Other challenges
involving DNA sequence data include searches of two of more pieces of data for (longest)
matching subsequences. For these, new distributional results are required.

Another area of mathematical research that will be stimulated by biology is the probabilistic
theory of discrete and dynamic structures. While scattered beginnings of this field have been
made over the last three decades, the major developments are yet to come. Illustrative
developments in the field include random graphs and random directed graphs, interacting particle
systems, stochastic cellular automata, products of random matrices, and nonlinear dynamical
systems with random coefficients. For example, Erdos and Renyi (1960) created the field of
random graphs to model apparently random connections in neural tissue. They discovered
numerous examples of "phase transitions," and many more have been discovered since (see
Bollob_s 1985).

Advancesin computing power have revolutionized measurement techniques, which generate
an abundance of biological data and a need for concomitant advances in quantitative methods of
analysis. The interfaces among experimentation, nmthematics, and computations are manifested
at every stage of scientific investigation. A biological investigation often results in a proposal for
a class of mathematical models. Such models may provide insight into the molecular processes
(which need not be experimentally observable) and may als() suggest new experiments.

For instance, counting process models have been developed for studying patterns of arrivals
and interactions of nerve impulses from different neurons (Brillinger 1988, Tuckwell 1988).
Markov processes have been used extensively in analyzing membrane channel data, in studying
the kinetic behavior of ionic channels, and in understanding cell survivability and DNA damage
caused by ionizing radiation (Neyman and Purl 1981; Yang and Swenberg 1991). A novel
aspect of some of these studies is that both transition mechanisms and state spaces must be
inferred from data. In fact, the analysis of single-channel data by Markovian models has led to
new interpretations of some neural parameters, different from those offered by the Hodgkin-
Huxley model (see Aldrich et al. 1983). Stochastic differential equation models have been used
for investigating the depolarization of the membrane potential of spatially distributed neurons
(Kallianpur and Wolpert 1987). The stochastic nature of the measurements has res.dted in new
developments in stochastic integration and differentiation. Neurobiology has stimula.ted the
growth of this field.

For the corresponding problems of statistical inference, new methods and corresponding
algorithms are needed for model validation and the estimation of parameters, lt can happen that
models appear to fit according to currently used criteria even though they have not caught the
essence of the biological phenomena of interest. A relevant question to ask is, how far off can
the model be and still 'fit'? In other words_ subject to fitting the data, the model should be
biologically interpretable. In this area of research, collaborations between neurobiologists and
statisticians have been particularly successful, as evidenced by, for example, joint work on spike
train pattern recognition (Brillinger and Segundo 1979), estimation of single-channel kinetic

I0
_



parameters (Milne et al. 1989), temporal clustering of channels (Ball and Samson 1987),
estimation of open dwell time in multichannel experiments (Yang and Swenberg, in press), and
identification of kinetic states (Fredkin and Rice 1986).

Construction of confidence intervals for parameters, identifiability of models, estimation of
kinetic parameters from the partially recorded current data, design of experiments to collect
multivariate data as opposed to univariate data, and integration of the experimental results
collected at micro and macro levels by stochastic modeling are among the important research
problems. Collaborations between biologists and statisticians are essential in developing
statistical modeling methods for research in biology.

A recurrent problem has been the lag between advanced theory and current practice. Many
biologists now have at least an introductory course in statistics, but their understanding is
generally insufficient to perform well-designed experiments or effective analysis of their data.
Expert systems can help biologists make better use of their experimental resources and the data
that result. The production of such expert systems offers both a theoretical challenge and the
prospect of a widespread and lasting effect on the statistical practice of biologists.

1.1.2 Dynamical Syslems Theory

The theory of dynamical systems has been stimulated by biological questions. For example,
iterations of a single nonlinear funcI!on, based on a simple population model, capture the
dynamics of an isolated population, subject to influences that regulate the population numbers
exclusively through the population size. More explicitly, the population size at generation n + 1
is assumed to be a given nonlinear function of the population size at generation n. Models of this
type were introduced in population studies a long time ago. Isolated studies of the iteration of
functions were conducted near the beginning of the 20th century. Some of this work, notably
that by Julia (1918) and Fatou (1919, 19920a_b) an(t then by Myrberg (1963) and Sarkovskii
(1964), pointed to a rich mathematical structure. However, it was only in the 1970s that a
widespread appreciation emerged for the depth and beauty of the mathematical phenomena
involved in these mathematical problems. Population biologists, especially May, played a rule in
stimulating this appreciation. One can only speculate as to whether the theory of these iterations
would have "taken off" as it did without this influence from population biology, but clearly, the
motivation from population biology was an important part of the chain of historical events that
led to very significant scientific and mathematical discoveries.

The stud), of simple population models provides a classic example of mutual stimulation of
mathematics and biology, with resulting benefits to both° The interlocking efforts of
mathematicians, biologists, and physicists formed a network of positive feedbacks that moved
the subject to new levels of sophistication. Their investigations showed clearly the existence of
universal sequences of bifurcations in iterations of one-dimensional maps. Libchaber provided
striking confirmation of Feigenbaum's discoveries about period-doubling bifurcations in fluid
convection experiments.

Substantive mathematics has grown from these beginnings. Among other developments,
Lanford extended Feigenbaum's arguments with numerical analysis to give a beautiful example
of a rigorous "computer" proof. The study of interval map:, was generalized to encompass maps
of the circle. This work ()ta circle maps has been used by Glass, Winfree, and others for
describing the phase responses of biological oscillators, particularly in cardiology. 'l-'hework on
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rnaps of the interval has also been the starting point for the work of Carleson and Bencdicks on
the Henon map, a two-dimensional map that is a prototype for chaotic behavior.,

The mathernatics described above can be evaluated both for its impact within mathematics
and for its "real world" significance. Ota both counts, the subject appears to have lasting value.
Oil the one hand, a rich structure is displayed by a substantial set of mathematical objects.
Overstating the case slightly, one can say that ali families of one-dimensional maps display the
same dynamical behavior. Understanding analytically and geometrically why this is true
continues to be a challenging and interesting area of research, with fascinating connections to the
world of "complex dynamics" and quasi-conformal mappings. On the other hand, the theory has
laid bare what appear to be the fundamental mechanisms for the creation of chaotic behavior in
physical systems and for universal patterns of bifurcations that are displayed by systems
otherwise unrelated to one another. Within mathematics, this sequence cf events has been a
success story, one in which interest in biological models provided a significant stimulus to
mathematics. Feedback from the resulting mathematics to the biological sciences continues.
Good mathematics often finds application in unsuspected ways.

Beyond the work involving iterations of one-dimensional mappings, many other points of
contact have been established bel ween the biological sciences and dynamical ,;ystems theory.
Life itself is a dynamical process, and dynamical systems models are ubiquitous in biology. For
example, the model of Hodgkin and Huxley for nerve irnpulses, described later in this document,
is a dynamical system.

One seldom can measure all the parameter values entering dynamical models of biological
phenomena, and the models themselves usually represent the behavior of aggregate quantities.
Therefore, one would like to classify the possible dynamical behaviors arising from models.
This challenging problem remains an irnportant area of contact between mathematics and
biology. Today, great interest is shown in the dyr|amics of networks of biological neurons and
the dynamics of systems of coupled oscillators. In both situations, one seeks to explain details of
tlm dynamical behavior and understand how collective behavior emerges from the coupling of
individual elements. As the number of elements increases, singular perturbation methods and
continuum naodels blend with dynan'dcal systems theory.

Computation has played an important role in dynamical systems theory, especially in its
application to specific problems. Applications in biology require the development of effective
computational methods for the analysis of dynamical systems and their bifurcations. New
mathematics is emerging from work in this direction.

1.1.3 Nonlinear Partial Differential and Functional Equalions

Nonlinear partial differential and functional equations traditionally have been applied in the
physical sciences. Several examples highlight the seminal imt)act of biological ideas o_
mathematical research in this area. Below, we focus on problems from demography,
developmental biology, physiology, and population biology.

Demographic methods have been applied to the study of l'lurnan and nonhuman populations
for centuries. These methods, which form the basis both for population projeclions and for
understanding population consequences of life history phenomena, have had a strong impact in
mathematical theory. A snapshot of the iml)act of demography is provided by the history of
ergodic theorenls. The renewal equation, a convolution integral equation that provided the first
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dynamical model ti)r an age-dependent population, has l'oots in the work of Euler, Bortkiewicz,

and Lotka (see Samuelson 1976). Sharpe and Lotka (1911) argued that most solutions to their

renewal equation could be represented in a Fgurier-type expansion. Their argument was not
accepted mathematically until Feller (1941) gave a rigorous proof for asymptotic behavior under

appropriate conditions. As yet, the problem of stating conditions under which the renewal

equation admits a Fourier-type expansion remains partly open (see lnaba 1988).

"['he later demographic models of McKendrick (l 926) and Gurtin and MacCamy (1974), and

the epidemiological nmdels of Kermack and McKendrick (1927)and Hoppensteadt (1974) have

generated similar mathematical challenges in the realm of functional differential equations (see
Jagers 1975, Cohen 1979, Metz and Diekmann 1986, Castillo-Chavez 1989). The rich

interaction among demography, epidemiology, ecology, and evol utionary biology continues to be
a source of new matbematical problems related to the existence, uniqueness, and characterization

of the :_olution of nonlinear functional equations. These problems will continue to be a fertile

area of mathematical research since current mathematical and numerical approaches are only
partially adequate for addressing these issues.

The theory, of diffusion, which describes the behavior of a population of randomly m.oving

particles or molecules, exemplifies an area traditionally viewed within the context of chemistry

or physics. However, the rnathematics of nonlinear diffusion equations has received much of its
impetus from biology. R. A. Fisher's (1937) interest in the problem of the spread of

advantageous genes in a population stimulated his consideration of an equation that incorporates
diffusion augmented by a simple ("logistic") nonlinear growth term. lt was treated

simultaneously by Kohnogorov et al. (1937), who proved the existence of a stable traveling wave

of fixed velocity representing a wave of advance of the advantageous gene. This simple
nonlinear reaction-.diffusion equation was also studied by Skellam and others as a model for

spatial dispersal of a population. Reaction diffusioll equations were investigated by Turing
(1952) to understand pattern formation and morphogenesis, fundamental problems of

developmental biology. The ideal that uneven distributions of chemical substances could guide
cellular differentiation had preceded Turing by nearly half a century, but how such "chemical

prepatterns" could arise naturally was unclear. Turing demonstrated that simple molecular

diffusion, coupled with apt:n'(__riate,t bi-molecular interactions, could spontaneously give rise to
such prepatterns, because a Sl)atially unifom_ solution of certain coupled parabolic equations
bifurcates into a nonuniform state as certain i)arameters are varied.

Foll()wing the interest in Turing and Fisher equations, the study of nonlinear reaction

diffusion equations has undergone a rich mathematical development. The study of standing- and
traveling-wave solutions, and of characterizing the bifurcations and dynamical behavior of such

equations, has spawned new and advanced mathematical techniques. Recent attention has been

focused on two- and three-dimensi(mal geometry, including target patterns, spiral, and scroll
wave geometry and the like. Connections with the chemical reaction of Belousov and

Zhabotinskii (see, R)r example, Murray 1989), with pathologies of cardiac physiology, and with

uneven ("patchy") distribution of organisms in space provide new impetus and motivation for
further interest in this field.

Although the equations and mathematical knowledge arising from demography and

epidemiology have already, found applications (e...,..,,,in evolutionary ecology, conservation

bi()logy, and epidemiology), a strong need exists for new mathematics to address pr_'essing' new

biologically motivated questions. For ex_tmple, al the interface of social dynamics and

epidemiology, new models describe "social mixing" (e.g.,, f(_rmati()n and di:;solution of pairs)
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and its role in disease dynamics. The models are novel systems of hyperbolic partial differential
equations. These models rnay affect practical issues of public health and broader biological
issues. Since current techniques are as yet in their infancy, it is likely tMt new mathematics will
develop from these efforts.

While reaction-diffusion equations are mathematically simpler than the Navier-Stokes
equations, they have presented opportunities for fe.rtile biological and mathematical research.
General techniques for studying the finite-dimensional behavior of evolution equations have
found some of their first applications in reaction diffusion equations. But current theories of
developmental biology provide new models that are at present barely iractable under limited
circumstances. Examples include the mechanochemical models of Murray, Oster, and Odell (see

,. Murray and Oster 1984), which incorporate traction forces exerted by cells on e_ch other, and
partial integro-differential equations that depict direct responses of cells to one another, as, for
example, in neural networks. Further understanding of these models Jmeds new mathematics.

1.1.4 Classical Analysis

Numerous examples exist of the mutual interactions of biology and classical analysis. One of the
most important is in the area of digital radiography. Improved technologies for imaging
biological objects have revolutionized medicine. These technologies include computerized axial
tomography ((.'SI'),magnetic resonance imaging (MRI --- also termed nuclear magnetic resonance
imaging, or NMR), and emission tomography (PET and SPECT). Each technique has
mathematical aspects to its implementation and is expected to lead to many additional problems.
Regardless of technique, the wealth of digitized radiologic data has led to problems concerning
their storage and transmission; solutions to these problems of data compressio_ also require
mathematical thinking.

More than 70 years ago, Radon (1917) noted that a finite Borel measure on a Euclidean space
can be reconstructed in principle from its projections on one-dimensional subspaces. This was
rediscovered independently in other contexts by Cram6r and Wold (!936) and others. This piece
of theoretical mathematics is at the heart of CT image reconstruction, for which Cormack and
Hounsfield received the Nobel Prize in Physiology or Medicine in 1979. The Nobel lecture of
Cormack (1980) makes clear the centrality of inversion algorithms to CT. In Hounsfield's
lecture (Hounsfield 1980), he contrasts CT and NMR, which also depends on inversion
algorithms for its successful application. Important early algorithms for image reconstruction
were contributed by Bell L.aboratories mathematicians Shepp and Logan (1974). Their work led
to rnathernatics of interest in its own right (Logan and Shepp 1975).

Vardi et al. (1985) are responsible for a fundamental advance in positron emission
tomography (PET). With emission tomography in general, a substance such as a sugar that is
differentially metabolized by different tissues is tagged with an emitting molecule. In one case
(PET), a positron is emitted, and in another (SPECT), a photon; with PET, each positron gives
rise to two photons that move in opposite directions. In either" case, individual photons are
counted as they hit a detector surrounding the object (for example, a human head) being imaged.
The object can be modeled as a spatially inhomogeneous Poisson process, and the mathematical
task is to reconstruct the intensity function from the counts. The approach of Vardi et al. was to
employ a_l algc)rithm, the EM algorithm, that was developed by Harvard statisticians Dempstcr,
Laird, and Rubin (1977); earlier basic work on EM-like algorithms was done by the
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mathematician Baum (1970) and others (see discussion of the paper by V_u'di et al. [198511for
extensive references). A Bayesian approach to reconstruction in emission tomography utilizes
Markov random fields that arise in statistical mechanics. Important contributions have been
made by Geman and McClure (1985, 1987). Recently, Johnstone and Silverman (1990) have
given minimax (in a statistical sense) rates of convergence for PET algorithms. The interface of
emission tomography, mathematics, and statistics continues to be a particularly active area of
research, lt should be noted that PET permits quantitative measurements, in vivo, of local
hemodynamics, metabolism, biochemistry, and pharmacokinetics (Fox et al. 1985), and that
SPECT is best used for problems of perfusion rather than metabolism.

Data compression, i.e., storing salient aspects of pixel-by-pixel lists of binary integers, is
viewed as a problem in coding, lt is important to compress, in part to enable more complete
medical records to be kept than is possible at present and in part to enable transmitted digital
images to be utilized in real time by experts in different venues when baud rates (i.e., infommtion
transmission rates) are limited. Here, codes are of two basic types. One is lossless, in which
perfect reconstruction of the original image is possible, but which seldom leads to more than a 75
percent reduction in pixel data; this is associated with Huffman, Ziv-Lempel, and other codes.
The other basic type is lossy, in which perfect reconstruction is not possible, but for which it is
possible to retain virtually ali information contained in many images with approximately a 90
percent reduction in pixel data. Tree-structured codes of the latter type have been implemented
(Chou et al. 1989).

1.1.5 Topology and Geometry

Additional areas of mathematics have recently developed interactions with biology. Three-
dimensional topology and low-dimensional differential geometry are two examples. Theorems
about the global topological invariants of curves and ribbons in three-space have been
instrumental in studying the structural conformation of closed circular DNA. These

mathematical ideas apply to supercoiling in closed DNA, topoisomerases, nucleosome winding,
the free energy associated with supercoiling, and binding between proteins and DNA. These
applications were carried out by experimentalists, often in collaboration with mathematicians.
As collaborative work continues and our knowledge of the role of contbrmational changes of
biological macromolecules grows, the biological problems to be solved become more
complicated and the mathematical questions deepen. For example, molecular biology has
renewed interest in embedding invariants for graphs (used in studying topoisomers), the study of
random knots (used to study solutions of macromolecules), and the tangle calculus (used in the
study of the DNA enzyme mechanism).

1.2 GRAND CHALLENGES

Two of the most influential books in the development of biological thought are Plato's Republic
and Darwin's Origin of Species. Plato claimed that all the variation in observable horses, for
example., is a mere shadow of an idealized abstract fore| of pure "horseness," not:available to the
senses. Plato's notion of idealized forms was the basis of scientific developments for two
millennia. For example, Newton's concepts of absolute space and time are idealizations on the
model of Plato's horseness. In biology, the Linnaean concept of species is an operational version
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of Plato's idea: a Linnaean species is determined by a "type specimen," deposited in a museum
somewhere, and all deviations between the type specimen and real members of the species are

mere irrelevant accidents. For Gauss, the variation in repeated astronomical naeasurements led to

a theory of "error" in which variation was something to be eliminated. The influence of the
Platonic theory _f ideal types extended far beyond science to, for example, popular notions of

national or racia, "types."
Darwin's theory of the origin of species gives a central piace to biological variation as a

necessary ingredient in explaining speciation. Because different individuals of a species vary in

ways that are significant for their survival and reproduction, a given environment will select

against some genotypes of a population; those that survive will produce offspring. The survival

of some gene combinations and the loss of others cause a population of organisms to evolve;

differences among populations may then lead to reproductive isolation and speciation. For

Darwin, and for ali biologists since then, the origin and consequences of variation among
individuals are central to biological observation and theory.

I, ittle more than a century has passed since Darwin's startling conceptual insight.
Developments in probability theory and statistics within the last century have made a start

toward developing the concepts required to fully understand variation in nature. But the

mathematical concepts that will provide an integrated understanding of nonlinear dynamics in

systems with variation between individuals have yet to be invented and analyzed. What

Newton's calculus did ti)r the ideas of Plato has yet to be done for the concepts of Darwin. Many
other biological problems could be cited in which the connection between variation and

nonlinear dynamics is an essential aspect of understanding the undex'lying phenonmnon.

A second and related grand challenge recurs throughout this report: the interaction of

phenomena that happen on a wide range of scah, s in space, time, and organizational complexity.
In studying biological sys,ems, one must confront an enomaous range of scales. One deals with

phenomena that range from molecular processes that happen in small fractions of a second, to

evolutionary, ecological, and population processes that occur on geological time scales. Similar

ranges exist in spatial scales, from the molecular to the biospheric, and in organizational

complexity. We cannot develop the analytical or computational capability to treat this vast range
of scales without encapsulating the behavior of smaller scales in models. One consequence of

making such approximations is that we lose the detail that inaparts confidence in models; yet we

must develop ways to suppress detail and proceed to the more aggregated models that are

statistically manageable.

Organisms are complex assemblies of macromolecules reacting with each other in

complicated networks. Many small paFts of the network have important influences upon the

proper functioning of the system. Mutations, which change a single nucleotide along a strand of

DNA, can affect the gross anatomy of an organism. The details of these subunits, their

differences, and their interactions are important at certain levels, and we cannot yet he confident

about which details become unimportant as we move to higher levels of organization. The
problem may be more difficult than comparable problems in statistical physics, because the

differences among subunits are greater. The distinction between these situations is analogous to

the difference between assembling a large jigsaw puzzle and an orderly array of identical
marbles. The complexity of biological systems is of a dift'erenl order of )nagnitude than the

problems that have been confronted successfully in mathematics, and mathematical theories are

needed to develop insights into our newly accumulated slore of biological knowledge.
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Computation is essential for investigating mathematical problems arising in biology. The
storage and retrieval of the accumulated information is an enormous task. The problems of
pattern searching and matching of DNA sequences have been described above. The computer
provides the critical capability to explore and study such complex situations. A useful
comparison can be drawn between problems of engineering design and the structures found in
biology, the products of tinkering rather than design (Jacob 1977). There is a large difference
between understanding the fundamental scientific principles of mechanics and designing large
buildings or automobiles. The most important aspect of a machine is its function, and design
involves far more than drawing the blueprints for its manufacture. Biology confronts us
continually with the inverse problem to that of engineering design. We know the basic principles
of biochemistry and can laboriously determine biological structures. From these blueprints we
want to infer information about biological function. The experimental tools that are available for
observing functional aspects of structure are limited by the fragility of life itself. We are left
with incredible puzzles to solve with literally billions of pieces and only limited clues about how
the), fit together. Even the problem of reconstructing the three-dimensional structure of a protein
from its amino acid sequence is a major unsolved problem. Our brains are incapable of coping
with the wealth of biological data without the assistance of computers. The complexity of
biological problems requires that we als() apply mathematical and computational approaches, and
the benefits of such applications will be shared equally by the disciplines of biology and
mathematics.
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2
THE IMPACT OF MATHEMAI'ICS
ON CELLULAR AND MOLECULAR
BIOLOGY

application of mathematics to cellular and molecular biology
is so pervasive that it often goes unnoticed. The determination of the dynamic properties of cells
and enzymes, expressed in the .form of enzyme kinetic measurements or receptor-ligand binding
are based on mathematical concepts that form the core of quantitative biochemistry. Molecular
biology itself can trace its origins to the infusion of physical scientists into biology with the
inevitable infusion of mathematical tools. The utility of the core tools of molecular biology was
validated through mathematical analysis. Examples include the quantitative estimates of viral
titers, measurement of recombination and mutation rates, the statistical validation of radioactive
decay measurements, and the quantitative measurement of genome size and informational
content based on DNA (i.e., base sequence) complexity.

Several of the "classic experiments" in microbial genetics involved mathematical insights
into experimental results. For example, the Luria and Delbruck fluctuation analysis, which
clearly established that mutation was independent of selection, was a mathematical argument
upon which a simple but elegant experimental design was based.

These examples are cited not to document the accomplishments of mathematical biologists
but to bring focus to the fact that mathematical tools are intrinsic to biological fields. The
discussion that follows focuses more clearly on the more sophisticated development of new
mathematical concepts and statistical models to explain the complexity of biological systems.
Biological complexity derives from the fact that biological systems are multifactored and
dynamic.

Quantitative research in these fields is based upon a wide variety of laboratory techniques,
with gel electrophoresis and enzyme-based assays among the most common. Measurements
include activity, molecular weight, diameters, and sizes in bases, and with all these an
understanding of the accuracy, precision, sources of variation, calibration, etc. In short, the
quality of the measurement process is of central significance.

With the greatly increased amount of data being generated by laboratory techniques, and the
pressure to move to more automated analysis, it is becoming even more important to understand
the statistical aspects of these laboratory procedures. Such statistical work will involve the

analysis of routinely collected data, the design and analysis of special studies, the development of
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new calibration and analysis techniques, and theoretical studies of the procedures in use, with an
emphasis on robustness und the capacity to automate procedures. Furthermore, it will require a
familiarity with the biology and the mathematical foundations of the analyses.

While the experimentalist strives to isolate single variables in order to make statistically
significant measurements, many systems are not amenable to such single-factor examination.
Therefore, mathenaatically based computational models m'e essential to meaningful analyses.
The goal of the present discussion is to provide a framework in which ongoing research in
mathematical cell and molecular biology may be logically placed, and future opportunities can be
described. This framework will provide for the analysis of the resource needs for future
development and carries implications for current shortfalls. One factor is that undergraduate and
graduate training in biology treats mathematics too superficially, especially in light of its role as
an underpinning for quantitative research.

2.1 ACCOMPLISHMENTS OF THE PAST

2.1.1 DNA Structure

Differential geometry is the branch of mathematics that applies the methods of differential
calculus to study the differential invariants of manifolds. Topology is the mathematical study of
shape. It defines and quantizes properties of space that remain invariant under deformation.
These two fields have been. used extensively to characterize many of the basic physical and
chemical properties of DNA. Specific examples of particular note follow.

The recent review of Dickerson (1989) summarizes how geometric concepts of tilt, roll,
shear, propeller twist, etc., have been used to describe the secondary structure of DNA (i.e., the
actual helical stacking of the bases that forms a linear segment of DNA). In addition, these
concepts can be used to describe the interaction of DNA with ligands such as intercalating drugs
(Wang et al. 1983).

From the time that closed circular DNA was discovered, it has been clear that such DNA
exhibits both physical and chemical properties that differ in fundamental ways from those of
related linear (or open circular) DNA. Using differential geometry and topology, both molecular
biologists and mathematicians have been able to explain many of the properties of these
molecules from two basic characteristics of the linking number: first, that it is invariant under
deformations, and second, that it is the sum of the two geometric quantities, twist and writhe
(White 1969). Among the major applications are:

• The explanation for and extent of supercoiling in a variety of closed DNAs (Bauer 1978)

• The analysis of the enzymes that change the topology of a DNA chain (Cozzarelli 1980,
Wasserman and Cozzarelli 1986)

o The estimation of the extent of winding in nucleosomes (Travers and Klug 1987)

o The detennination of the free energy associated with supercoiling (Depew and Wang
1975)

• The quantitative analysis of the binding of proteins and of small ligands to DNA (Wang et
al. 1983)
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• The detemfination of the helical repeat of DNA in solution and DNA wrapped on protein
surfaces (White et al. 1988)

o The determination of the average structure of supercoiled DNA in solution (Boles et al.
1990

Topology, and in particular knot and link theory of closed space curves, has been used
extensively to elucidate additional intertwining of closed DNA caused by catenation of two
closed duplexes or knotting of a single duplex. In particular, the recent developments in
polynomial invariants for links and knots have been used to describe the structure of DNA and to
characterize the action of recombinases (Wasserman and Cozzarelli 1986, White et al. 1987).

2.1.2 Maeromolecular Sequences

DNA sequences are collected in the GenBank database, and protein sequences are collected in
the Protein Identification Resource (PIR). When a new DNA sequence is determined, GenBank
is searched for approximate similarities with the new sequence. Translations of the DNA
sequence into the corresponding amino acid sequence are used to search the protein database.
Sm_sitive search methods require time and space proportional to the product of the sequences
being compared. Searching GenBank (now more than 40 x 106 bases) with a 5000 bp sequence
requires time proportional to 2 x 1011 with traditional search techniques. Lipman and Pearson
(1985) have developed techniques that greatly reduce the time needed. Using their techniques,
one can screen the databases routinely with new sequences on IBM pcs, for example. These
methods rapidly locate diagonals where possib!e similarities might lie and then perform more
sensitive alignments. This family of programs, FASTA, FASTN, etc., are the most widely used
sequence analysis programs and have accounted for many important discoveries. An example of
the impact of such analysis is the unexpected homology between an oncogene and a growth
factor. This discovery became the basis of the molecular theory of carcinogenesis.

More sensitive sequence analysis can be obtained by dynamic programming methods. In part
they are used after the diagonals are located in the FASTN and FASTA programs. Here similar
sequence elements are aligned with positive scores and dissimilar elements are aligned with
negative scores. Complicating the analysis are the insertions and deletions that also receive
negative scores. The challenge of the problem is to arrange two sequences into the maximum
scoring alignments. Additional difficulty arises from the fact that slightly similar regions of
DNA or protein sequences might lie in otherwise unrelated sequences. In spite of the complex
nature of the problem, an efficient algorithm (Smith and Waterman 1981) has been devised and
is in wide usage.

The problem of sequence comparison creates a related statistical problem of estimating p-
values (attained significance levels) for the alignment scores. The set of possible alignment
scores from two sequences are dependent random variables since they result from overlapping
sequence segments. Motivated by the problems of sequence comparison, investigators have
refined and extended the Chen-Stein n:ethod (Arratia et al. 1989). This method is a powerful
tool for approximating the distribution of sums of dependent indicator random variables by the
Poisson distribution. In addition to sequence analysis, this method is being used in regression
analysis and random graphs.
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2.1.3 Genetic Mapping

Genetic mapping deals with the inheritance of certain "genetic markers" within the pedigrees of
families. These markers might be genes, sequences associated with genetic disease, or arbitrary
probes determined to be of significance (e.g., restriction fragment length polymorphism [RFLP]
probes). The sequence of such markers and probabilistic distances (measured in centimorgans)
along the genome can often be determined by hybridizing each family member's genome against
the predetermined probes. In essence, the genetic map most likely to produce the observed data
is constructed. Only a few years ago, our knowledge of the mathematics involved and the
computational complexity of algorithms based on that mathematics allowed us to analyze no
more than five or six markers. As our knowledge of approximations to the formulas and
likelihood estimation has improved, we have been able to produce software capable of producing
maps for 60 markers or more (Lander and Botstein 1986). Progress in this area has been based
on mathematical areas such as combinatorics, graph theory, and statistics.

2.1.4 Cell Motility

Cells can move, monitor changes in their environment, and respond by migrating toward more
favorable regions. It is a remarkable fact that a bacterial flagellum is driven at its base by a
reversible rotary motor powered by a transmembrane proton flux, and analysis of models for this
device has been prolific. The study of bacterial chemotaxis (the migration of bacteria in
chemical gradients) has been particularly rewarding, in part because organisms such as
Escherichia coli are readily amenable :o genetic and biochemical manipulation, and in part
because their behavior is closely tied to the constraints imposed by motion at low Reynolds
number and by diffusion (of both the cell and the chemoattractant). Mathematics has helped us
learn how a cell moves (Brokaw 1990, Dembo 1989), how it counts molecules in its environment
(Berg and Purcell 1977), and how it uses this information (Berg 1988). Mathematics has also
given us a way to relate the macroscopic behavior of cell populations to the microscopic
behavior of individual cells (Rivero et al. 1989).

Studies of eukaryotic cell motility (and of the motion of intracellular organelles) have been
revolutionized by in vitro assays in which motor molecules (myosin, dynein, kinesin) and the
polymers along which they move (actin and microtubules) are linked to glass or plastic surfaces.
Following the addition of ATP, one can obserx e, for example, the motion of individual actin
filaments over a glass slide bearing only the heads of the myosin molecules. Statistical analysis
is playing an important role in determining how such assays can be extended to ihe study of
single motor molecules (Howard et al. 1989).

2.1.5 Structural Biology

Mathematics has made perhaps its most important contribution to cellular and molecular biolog)
in the area of structural biology. This area is at the interface of three disciplines -_ biology,
mathematics, and physics-_ because its success has involved the use of sophisticated physic_,l
methods to investigate the structures of biologically important macromolecules, their assembly
into specialized particles and organelles, and even higher levels of organization. A wide array (_f
methods has been employed, but we focus on the two most powerful of these, x-rag
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crystallography and nuclear magnetic resonance (NMR) spectroscopy, with a mention of other
methods.

Mathematics plays three roles. First, cornputational methods lie at the heart of these
techniques because a large amount of information about local areas or short distances is
encrypted in the raw data, and. it is a major computational task to deduce a structure. Second,
new mathematical methods of analysis are continually being developed to improve ways of
determining the structure. Third, increasingly sophisticated computer graphics have been
developed in response m the need to display and interpret such structure.

In crystallography, the actual process of data collection has been enhanced by modern
methr:xts of detection (e.g., area detectors) and the use of intense synchrotron sources so that data
collection per se is rarely rate limiting. Also, fhe use of moderr| techniques of recombinant DNA
have greatly facilitated the isolation of material for crystallization. The rate-limiting step is often
the preparation of isomorphous derivatives. As computational methods improve, fewer and
sometimes no derivatives need to be analyzed.

Until the development of 2D NMR in 1978 by Richard Ernst, the use of nuclear magnetic
resonance for studying the structure of biological macromolecules was limited by the need to
represent too much ir_formation in a limited space. With the pioneering development of the
ability to represent NMR spectra in two frequency domains, it became possible to resolve the
spectra of small proteins and oligonucleotides. A key benefit was that cross peaks, resulting
from magnetic interactions of nuclei close to one anotlaer, could be measured, Since these cross
peaks contained spatial information, there was an immediate movement to determine the
structure of these molecules at atomic resolution. The technique has been remarkably effective.
The s.r':uctures of a number of proteins and oligonucleotides have been determined. The use of
NMR to determine structures has proved to be ata important complernent to x-ray crystallography
because many biologically important molecules (e.g., zinc fingers by Klevit 1991, Summers
1991., and Lee et al. 199I) have resisted attempts at crystallization; these structures must be
studied in solution. The success of this technique has been critically dependent ott mathematics,
beginning with the theoretical underpinnings developed by Ernst, The determination of
structures is dependent on the mathematical technique of distance geometry that calculates all

, structures consistent with the distance constraints obtained from the NMR experiment. Other
methods have included molecular dynamics and, more recently, the use by Altman and Jardetzky
(1989) and Altman et al. (1991) of a Kalrnan filter to sample cont/'ormational space, There are,
however, significant limitations to 2D NMR for structure determinations. First of all, the
,'esolution obtained from NMR is less than that obtained from the best x-ray structures and is
insufficient tc see in detail active sites of biologically important molecules. A major
mathematical challenge is to obtain such detailed structural information from structures that are
basically underdeten'nined, One important approach is to use the structure to back-calculate the
NMR data and by iteration to improve the resolution. A second limitation is that the
de_emfination of structures is limited to molecules with a weight of less than about 1.5,0'00.
Better computational techniques could extend the limit.

One cannot overestimate the importance of solving structures at atomic resolution, lt has led
directly to an understanding of the replication of DNA and its supercoiling in chromatin; the
basis of protei:n and nucleic acid secondary, tertiary, and quaternary structures; how proteins act
as enzymes and antibodies; and how electron transfer is achieved. The medical and commercial

implications of advances in structural biology are enormous.
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2.2 GRAND CHALLENGES

The grand challenges at the interface between mathematics and computation and cellular and
molecular biology relate to two main themes: genomics, which is critical, for example, to
support efforts to sequence and map the human and other genomes, and structural biology,
including structural analysis, molecular dynamic simulation, and drug design. These two areas
have developed rapidly in the recent past because of the contributions of mathematics and
computation, and they will continue to derive particular benefit from an enhanced interaction.

2.2.1 Structural Analysis of Macromolecules

The area of molecular geomeu'y and its interface with visualization has been underrepresented in
research to date. This research, which would benefit from the involvement of geometers and
would likely contribute to new mathematics, is a major limiting area in structural biology,
especially in drug design and protein folding. As noted above, new methods will enhance the
use of NMR for the determination of structures. Significant advances aimed at solving the phase
problem mathematically are being pursued. Important advances are also being made in the field
of computer-aided drug design.

Related to the structure of crystalline and hydrated proteins is the question of how proteins
fold. For many proteins, the folded structure and organelle formation (e.g., ribosomes) are
dictated by the sequence. Reduction of the folding code has resisted intense efforts, but very
recently important new approaches have been developed that have revealed significant new
information. For example, two laboratories have shown that relatively short polypeptides can
have significant secondary structure. This finding is important because it validates a piecemeal
approach to protein folding, where secondary structure can be considered apart from tertiary
structure. The second is the minimalist approach of DeGrado et al. (1989), in which model
structures with predicted motifs are synthesized by chemical means. Experimental advances
such as these, together with the explosive expansion of the available data and the development of
more powerful decoding methods, mean that members of families of protein-folding codes will
soon be readily identifiable. Once again lhis area requires mathematical innovation.

Finally, we note that microscopy is undergoing a technical revolution. Two new
microscopes, the scanning tunneling and atomic for,"z microscopes, can yield a picture of
macromolecules at atomic resolution. Actually, for these computer-age microscopes, the picture
is represented via a computer graphics display of digital data stored on optical media.
Additionally, computatiol,al methods are the heart and soul of electron microscopic tomography.
For example, using this technique, one can obtain four-dimensional information on chromatin
structure (e.g., Belmont et al. 1989).

It is worth repeating that mathematical biologists are in great demand in the field of structural
biology. The theoretical work also is highly important and frequently has immediate payoff.

2.2.2 Molecular Dynamics Simulation

Three-dimensional structures as determined by x-ray crystallography and NMR are static since
these techniques derive a single average structure, In nature, molecules are in continuous
motion; it is this motion that allows thern to f_nction (a static molecule is as functional as a static
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automobile). Mathematical and computational methods have been able tc) complement
experimental structural biology by adding the motion to molecular structure. These techniques
have been able to bring molecules to life in a most realistic manner, reproducing experimental
data representing a wide range of structural, energetic, and kinetic properties. Systems studied
have extended from pure liquid water, through small solutes in water, to entire proteins and
segments of DNA in solution.

The methods used for these calculations provide a glimpse of how simulation can be used
generally in biology. Starting with a three-dimensional structure, a mathenaatical formulation for
the forces between atoms gives the total force on each atom. These net forces are then used in
Newton's second law of motion to give the accelerations, which are then integrated to give a
numerical trajectory. The trajectory provides a complete description of the system, giving the
position and velocity of every atom as a function of time. lt is remarkable that simple R)rces and
classical mechanics seem to give such a faithful picture of molecular motion.

At present, some of the most extensive molecular dynamics simulations have been used to
study proteins and segments of DNA in solution. Such calculations involve tens of thousands of
atoms and generate trajectories containing hundreds of thousands of structures changing with
time; they require hundreds of hours of computer time, yet simulate periods lasting less than a
nanosecond. As computer power continues to increase, it should be feasible to run simulations
lasting microseconds (a billion time steps) and deal with the largest biological structures (a
million atoms). In the limit of these longer time scales, there is a natural connection with
analytical and stochastic theories. Indeed, such theories provide essential checks on the
numerical methods used to generate trajectories. An area ripe for this combined approach
involves ionic channels, where molecular dynamic simulations can provide the frictional
constants used in analytical treatments. This provides a direct link to the extensively studied

- phenomenological equations of nerve conduction (Hodgkin-Huxley equations). The molecular
dynamics method gives a fully detailed description of the system sirnulated; this in turn provides
a unique opportunity to visualize these molecular systems at work. Such visualization is often
accomplished by making a motion picture of the system as it changes with time. Numerical
analysis of the trajectories is also necessary to calculate properties that relate to experimental
data. Better techniques for this analysis are sorely needed.

2.2.3 Drug Design
=

Molecules interact strongly when they fit together weil. This occurs when their three-
. dimensional shapes are complementary and when there are stabilizing interactions (hydrogen

bonds, charged pairs, etc.). One of the most interesting and t)otentially useful molecular
interactions concerns drugs that bind with very high affinities _() protein and nucleic acid
nlacromolecules and either block the normal function of the nlacrom(_lecules or mimic other

ligands fT)rsuch structures as receptors and induce a normal physiological response. Inhibition
-: can be advantageous ii:"the protein is made in excess or if normal cellular control of the protein's

activity has been lost. Because drug binding involves spatial c'Oml._lenlentarity, and because the
aim is to design a molecule that binds with the highest affinity possible, it should be possible to=

use the three-dimensional s,I.,.-',cture"-"to aid design. Current work in this area has followed several_

-_ directions. Tlm most direct approach is to crystallize the protein together with the drug. Study of
-: the structure of the complex can suggest modifications to the drug expected to enhance its



affinity for the receptor or enzyme active site. For this method to work, one needs an initial drug
known to bind to the protein.

Other methods aim to circumvent this requirement by deducing the structure of the drug
directly from the structure of the protein. While these methods are able to suggest completely
new drug molecules, they involve a ,_;earchfor structures that fit a binding site. The theoretical
underpinnings of such searches require further theoretical development. More specifically, they
would benefit from application of better methods ira global optimization and graph theory.

2.2.4 Nucleic Acid Sequence and Structural Analyses of Nucleic Acids

When a DNA sequence is determined, it is examined for a variety of sequence features known to
be important: tRNA's, RNA's, protein coding regions--introns and regulatory regions,
promoters, and enhancers. Since these sequence features are not identical in ali organisms, it is
often quite difficult to identify them. Even the widely studied bacterium Escherichia coli
promoter sequences cannot be identified with certainty. As more and more DNA is sequenced, it
becomes increasingly important to have accurate methods to identify these regions without many
false positives. Statistics and mathematics should make significant contributions in this area.

As described above, pairwise alignment of sequences using dynamic programming is a well-
developed area. However, alignment of more than two sequences remains a serious problem,
one requiring extended computation time. Some recent advances reduce the computation time so
that 10 sequences might be practical, but many problems are not approachable. Heuristic
methods that align by building up pairwise alignments have been proposed, but they often fail to
give good multiple alignments. Closely coupled with multiple alignment is the construction of
evolutionary trees. Closely related sequences should be neighbors with few changes between
them.

In the area of DNA structure, several subareas are particul_u'ly anaenable to mathematical
analysis: (1) A complete analysis of the packaging of DNA in chromatin. Only the first-order
coiling into core nucleosomes is understood. By far the largest compaction of DNA comes from
higher-order folding. (2) Presentation of the topological invariants that describe the structure of
DNA and its enzyme.tic transformations. The goal is to be able to predict the structure of
intermediates or products from enzymatic mechanisms and in turn to predict mechanisms from
structure. (3) An analysis of the reciprocal interaction between secondary and higlaer-order
structures. This includes the phenomena of bending, looping, and phasing.

This work has implications for both biology and mathematics. Mathematics will be affected
in the areas of both topology and geometry. Renewed interest in the study of embedding
invariants for graphs has been stimulated by the enumeration and classification of topoisomers;
the study of random knots has been used to study macromolecules in dilute solution, and tangle
calculus and Dehn surgery theory have been used in the study of DNA enzyme mechanisms.

In the study of kinetoplast [)NA, topology and the theory of interacting particles have been
brought together in a unique way. Finally, in the study of DNA-protein interactions, theorems
from differential geometry and differential topology have been recast in different frameworks to
solve helical periodicity problems. The determination of the configuration of closed circular
DNA brings together the fields of geometry and topology and nonlinear partial differential
equations, or topology and Monte Carlo techniques. These will involve extensive use of
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computational techniques including the creation of new codes to use nonlinear partial differential
equations to solve elasticity problems for closed circular rods.

2.2.5 Structural Analysis of Cells

Mathematical models have played, and will continue to play, an important role in cell biology. A
major goal of cell biology is to understand the cascade of events that controls the response of
cells to external ligands (hormones, transport proteins, antigens, etc.). The problem begins with
understanding the interaction of the ligand with the cell's surface receptors. For some types of
receptors, binding of the ligand to the receptor will lead to the generation of a transmembrane
signal. For others, aggregation among the receptors must occur before a cell response can be
triggered. The receptors themselves are under dynamic control, up or down regulating in
response to external ligands, changing their rate of capture by coated pits, altering their recycling
pattern, changing their rate for new receptor synthesis, changing their rate of delivery of old
receptors to lysosomes for degradation, etc. The signaling pathways that are now being
elucidated are equally, or more, complex. The role of mathematical models in studying these
processes is to help rigorously test ideas about mechanisms and pathways, to aid in analyzing
experiments, to determine parameter values, and to help in the design of new experiments.
Mechanistic models for some of the stages of the receptor pathway have already been developed,
e.g., aggregation of receptors on cell surfaces (Dembo and Goldstein 1978, Perelson and DeLisi
1980), capture of receptors by coated pits (Goldstein et al. 1988), receptor-ligand sorting in
endosornes (Linderman and Lauffenburger 1988), and have been useful in understanding
receptor dynamics. Kinetic models have been used to analyze studies of ligand binding and
internalization for a variety of receptor systems. With models it should be possible to dissect the
relationship between structure and function. Thus, for example, a large number of mutants of the
epidermal growth factor receptor have been generated. Determining whether the induced change
in structure then affects ligand binding, tyrosine kinase activity, receptor aggregation, capture of
the receptor by coated pits, etc., can best be done via collaborative experinaental modeling
efforts. A major challenge that lies ahead is to build mathematical models of specific cell types
that incorporate all the known biochemistry and that can be used to answer questions about the
normal and disease states of the cell. Such an attempt is under way for the red blood cell
(Yoshida and Dembo 1990), but here the effect of the biochemistry on the biomechanics of the
cell is also important since the shape of the red blood cell is so critical for normal function.
Predicting cell shape and the dynamic changes that occur in the cell's cytoskeleton due to
interactions at the cell surface, which may lead to calcium influxes, receptor phosphorylation
events, etc., are challenges for future models.
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3
TttE IMPACT OF MATHEMATICS
ON ORGANISMAL BIOLOGY

ORGANISMAL (sometimes called organismic) biology deals
with all aspects of the biology of individual animals and plants, including physiology,
morphology, development, and behavior. Thus, it interfaces cellular and molecular biology at
one extreme and ecology at the other. In the former, one attempts to develop integrative theories
of organismal function; in the latter, one attempts to piace individual behavior and function
within an environmental context. Mathematical theorists have made signal contributions to
organismal biology and have employed a wide range of mathematical techniques in doing so.
Examples range from technological advances to theories of biological structure and function.
We begin this section with a review of some of the outstanding examples.

3.1 ACCOMPLISHMENTS OF THE PAST

hnage reconstruction is of importance across a range of organizational levels in biology. At tile
molecular level, work by the applied mathematicians Karle and Hauptman in constructing
algorithms to reveal structure from x-ray data was rewarded with a Nobel Prize in 1987. As
mentioned earlier, another Nobel Prize was awarded for work done at the organismic level by
Comaack and Hounsfield in constructing algorithms that permit structure to be determined from
tomography. PET and NMR are other areas where mathematical analysis is essential. Past
achievements are impressive, but they must be supplemented by significant further advances
before the difficult but vital problem of image reconstruction is rninimally satisfied.

One of the most exciting areas of mathematical application has been to cardiac function. A
major cause of death from malfunction of the heart is the phenomenon called ventricular
fibrillation, wherein properly coordinated heart action is replaced by purposeless local
oscillations of the ventricles. Mathematical modeling has revealed why this phenomenon occurs.
Major experimental efforts have been suggested by the modeling. The leading figure in this line
of theoretical research, Arthur Winfree, received the 1989 Einthoven Prize for his contributions

to the subject. (This prize is awarded every five years to a cardiologist, usually a surgeon.)
In related work, powerful numerical algorithms and state-of-the--art computing have been

applied by Peskin and others to study blood flow in the heart. Even with the use of two.-
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dimensional models, progress has been sufficient to enable significant input into the design of
heart valves, with resulting patents and licensing agreements (see McQueen and Peskin 1983,
1986). Three-dimensional models also are under development (Peskin and McQueen 1989,
McQueen and Peskin 1989).

Another major contribution of mathematics to physiology is the theory of cross-bridge
dynamics in striated muscle. Introduced by A.F. Huxley (1957) and further developed by T.E.
Hill, Podolsky, Lacker, and others, this theory not only has provided a satisfying explanation of
the mechanical behavior of muscle, but it also has served to provide organizing principles for
biochemical research on the fundamental energetic and control mechanisms of muscle
contraction.

Mathematical methods for the quantitative description of morphogenesis of organs composed
of nonmigrating cells (including plants, animal bone and skin, and shells) were suggested by
Richards and Kavanagh (I943) and by Erickson and Sax (1956). These methods, which involve
evaluation of velocity gradients from empirical data, have provided the phenomenological basis
for understanding the physiology of growth (for reviews see Erickson 1976, Silk 1984, 1989).

As will be argued in detail below, theory is essential in understanding hierarchical systems
phenomena in biology. A famous contribution in this area is the theoretical model made by
Hodgkin and Huxley (1952) of the electrical signals in the squid axon. This Nobel-Prize-
winning work incorporated the findings of a series of brilliant experiments concerning the ion
permeability of the axonal membrane into a set of mathematical equations that predicted the
shape and speed of the "action potential" wave that moves down the axon. Patch clamp
recordings now permit investigators to relate the Hodgkin-Huxley membrane models to the
opening and closing of the molecular channels that span the membrane and are responsible for its
ionic conductance. Hodgkin and Huxley's inferences from macroscopic current measurements
have been confirmed in basic form but have also been greatly expanded with respect to their
descriptions of configurations and transition mechanisms. In recent years the work of Hodgkin
and Huxley has found unexpected application in nonneural systems in which electrophysiology
plays a surprising regulatory role. One example of this is the control of insulin secretion by the
electrically active beta cells of the pancreas.

In developmental biology, it was hypothesized decades ago that gradients of key chemicals
were responsible for triggering macroscopic events. In recent years, especially since the
landmark paper of Turing (1952), the gradient idea has been greatly elaborated by theorists. In
parallel, experimentalists devoted considerable efforts to find the "morphogen" chemicals whose
gradients were postulated to have such importance, efforts that recently have been successful in
Drosophila, hydra, and limb morphogenesis.

3.2 GRAND CHALLENGES

,",,,vide variety of exciting venues exist for the application of mathematical and computational
approaches to organismal biology. Among these, two stand out as having exceptional promise
and impo,'tance: the study of complex hierarchical biological systems and of dynamic aspects of
structltre-fi_nction relations.
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3.2.1 Complex Hierarchical Biological Systems

The analysis of complex hierarchical systems is one of the most important open areas in modern
biology. This holds true at all levels of organization, and is a theme to which we return in the
discussion of ecological and evolutionary processes. The essence of the matter is this: On
several levels, the components of biological systems are being revealed by modern experimental
biology. The techniques of molecular biology are most important here; other experimental
advances are also of major utility. The central theoretical question is, How are the molecular
details integrated into a functional unity?--a question central to at least three major fields:
neurobiology, developmental biology, and immunology. We now consider each of these areas in
greater depth.

Neuroscience. Mathematical modeling has made an enormous impact on neuroscience. The
Hodgkin-Huxley format for describing membrane ionic currents has been extended and applied
to a variety of neuronal excitable membranes. The significance of dendrites for the input-output
properties of neurons was not understood before the development of Rail's cable theory (Rall
1962, 1964). Hartline and Ratliff (1972) were pioneers in developing quantitative and predictive
network models. In addition, Fitzhugh's work (1960, 1969) demonstrated the value of simplified
nonlinear models and of qualitative mathematical analysis. The success of these theoretical
contributions, and the high degree of quantification in neurobiology, ensures continued
opportunities for mathematical work.

Recent technical advances in experimentation---e.g., patch clamp recording, voltage- and ion-
specific dyes, and confocal microscopy_are providing data to facilitate further theoretical
development for addressing fundamental issues that range from the subcellular to cell-ensemble
to whole-system levels. For thorough understanding, we must synthesize information and
mechanisms across these different levels. This is perhaps the fundamental challenge facing
mathematical and theoretical biology, from molecule to ecosystem. How do we relate
phenomena at different levels of organization? How are small-scale processes to be integrated
and related to higher-level phenomena? For example, in modeling neuronal networks, what are
the crucial properties of individual cells that must be retained in order to address a particular set
of questions? Mo_t network formulations use highly idealized "neural units," which ignore
much of what is known about cellular biophysics. We need to develop systematic procedures to
derive, in a biophysically meaningful way, descriptions for ensemble behavior.

Correspondingly, we seek to identify low-level mechanisms from data at higher levels. The
Hodgkin-Huxley theory hypothesized that macrosco[,ic curx'ents might be generated by molecular
"pores"; only much later were these individual channels discovered. Another set of common
modeling needs are methods for dealing reasonably with the wide range of time and space scales
encountered in different intracellular domains and processes and in short.- and long-distance
interactions between cells and among different cell assemblies.

At the lowest level, improved biophysical understanding is needed of the mechanisms for ion
transport through membrane channels. How does the voltage dependence of opening and closing
rates arise? What accounts for ion selectivity, by which, for example, channels discriminate
among ions of the same charge and similar properties? Theories at this level are beginning to
involve stochastic descriptions for fluxes (Fokker-Planck equations) and simulation methods for
molecular structure and dynamics. Kinetic modeling of single-channel data is being debated
hotly with regard to whether a finite or infinite number of open/closed/inactivated states is
appropriate.
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The discovery of new channel types continues at a rapid pace (Minas 1988). Of basic interest
is how the mix of different channel types, and their nonuniform distributions over the cell surface
(soma, dench'ites, and axon), determine the integrative properties of neurons. Some cells fire
only when stimulated, others are autonomous rhythnlic pacemakers, and some fire in repetitive
bursting modes. Theoretical modeling plays an important role here since channel densities
cannot yet be measured directly, especially in dendritic branches. Computational models that
incorporate detailed dendritic architecture, in some cases known from morphological staining,
m'e suggesting that individual regions of dendrites can perform local processing (Fleshman et al.
1988; Holmes and Levy 1990). Differential dendritic processing has been implicated in motion
detection in the visual system (Koch et al. 1986).

One of the most actively pursued goals in neuroscience research is to discover the
mechanisms for plasticity and learning at the cellular/molecular level. The above techniques,
together with state-of-the-art biochemical methodologies, are beginning to yield the information
for feasible, detailed biophysical modeling. Dendritic spines, NMDA receptor-channels, and
spatio-temporaI dynamics of calcium and other intracellular second messengers '.arefocal points
for these explorations. Such studies are bringing together theoreticians, neuroscientists, and
biochemists.

Although theorizing about mechanisms for synaptic plasticity is proceeding, disagreement
remains about the basic mechanism of chemical synaptic transmission. Two competing
hypotheses (one involving calcium alone and the other including voltage effects as weil) are
being explored with fervor, and mathematical modeling is a key ingredient in arguments for each
case. Many additional experiments have been suggested from these debates (see Zucker and
Haydon 1988 and Parnas et al. 1991).

Models of neural interactions lead to many interesting mathematical questions, for which
appropriate tools must be developed. Typically, networks are modeled by (possibly stochastic)
systems of differential equations. In some simplified limits, these become nonlinear integro-
differential equations. The question now becomes one of proving or otherwise demonstrating
that the simplified models have the desired behavior. Furthermore, one must characterize this
behavior as parameters in the model vary (i.e., understand the bifurcations in the dynamics).
Another important point that mathematicians must address is the extraction of the underlying
geometric and analytic ideas from detailed biophysical models and simulations.

The next level of neuronal complexity beyond the single cell is the small network with tens
to hundreds of neurons. Such networks have been most extensively studied in invertebrates and
the sensory or motor systems of vertebrates, in which the function of small groups of neurons can
be related to specific behaviors of the animal (Kandel 1984, Selverston and Moulins 1985,
Locker}, et al. 1989). These so-called simple systems also are attractive because one can expect
to characterize their cellular and intercellular properties more completely than in vertebrates.
Much research on their structural features has been based on the explicit assumption that once
network structure was understood, functional understanding would follow. Recently, however,
many workers have come to realize that, even with a great deal of structural information, the
understanding of functional rnechanisms will require the development of sound, structurally
based theoretical models.

A principal challenge for modeling at this level is the development of more biologically
realistic computational models and mathematical analyses that can provide insight into how these
networks function. Although these networks involve relatively small numbers of neurons, their
complexity will require increasingly powerful mathematical tools. At _he same time, modeling at
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this level is likely to be especially valuable for neurobiology. In few other neural systems is the
link between neural structure and behavior more direct. Thus, it is already possible to see in the
structure of the nervous system its functional correlates. Moreover, few other systems currently
provide the anatomical and physiological parameters essential for realistic modeling. As models
for understanding the general dynamical properties oi' such neural networks or for understanding
the way in which feedback modifies neuronal behavior, small neural systems represent a gold
mine for computational and mathematical neurobiology.

Coherent brain areas dedicated to particular functions_for example, primary sensory cortical
areas_provide complex challenges for computational and mathematical models (Sereno et al.
1988). Such areas typically contain multiple types of cells, receive inputs from multiple distinct
sources, and often are heavily interconnected with their links to inter-area recurrent or reentrant
loops. Large bodies of anatomical and physiological data are available, but the integrative
capabilities are poorly understood and modeling techniques will almost surely be needed to
unravel them.

Developmental neurobiology is a source of biologically important and mathematically
interesting questions. Modeling at the large-network level has played an important role in this
field, with many collaborations between mathematicians and experinaental biologists. Among
the important questions arising in this field are the topography of connections from one part of
the brain to another and how these maps might spontaneously form. Many examples exist of
such maps in the central nervous system; the best characterized are in the vertebrate visual
system. The earliest theoretical models and experinaents concerned the "wiring" from the retina
to the optic tectum. Many models have been proposed and analyzed (von der Malsberg 1973,
Whitelaw and Cowan 1981, see Linsker 1990 for a review); but as new experimental results have
become available, many of the models will have to be altered or eiiminated. Recent
investigations have led to the formulation of minimal hypotheses for the explanation of the large
body of experinaental manipulations (Fraser 1985). These mechanisms m'e ripe for mathematical
formulation and analysis.

Several new technologies, such as voltage-sensitive dyes and deoxyglucose injection, have
led to the discovery of beautiful regular maps in the visual cortex of mammals. The patterns
include stripes of ocularity and twists and singularities of orientation preference. Models have
been proposed for these patterns (Miller et al. 1989, Durbin and Mitchison 1990) involving
mechanisms ranging from band-pass-filtered noise, to competitive interactions, to Hebbian rules
with lateral inhibition. What must be done is to identify the common idea that underlies these
models and how it might possibly be realized in the nervous system.

As we begin to understand the mechanisms of synaptic plasticity, it is natural to ask about the
consequences of this for the behavior of large networks involving plastic elements. Only in this
way will we understand the relation between synaptic plasticity and learning at the organismic
level. This has been a major focus in the study of computational properties of large-scale neural
networks across a number of disciplines, including physics, biology, psychology, and
matheinatics (Hopfield 1984, Rumelhart et al. 1986). Mathematical analysis promises to provide
an important bridge between computational and behavioral studies and the empirical results of
neurobiology (Poggio and Girosi 1990). An excellent survey is Koch and Segev (1989).

Models at the level of the complete organism provide an opportunity to make real progress
on the long-sought unification of the behavioral sciences with neurobiology. Models intended to
explain behavioral observations (e.g., from psychology and ethology) can be cast in terms of
underlying neural mechanisms, rather than at the phenomenological or control-theory level as
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before. Such models can bring about a new understanding of such phenomena as visual illusions
(e.g., Treisman et al. 1990), the relation between long- and short-term memory and category
formation. They will provide significant constraints on psychological explanations that have not
in the past been easy to correlate with the nervous system. To carry out this analysis, one must
eventually couple models of the nervous system with those of the environment in which the
whole system exists (Kersten 1990).

Immunology. The imnaune system contains 1012 cells comprising at least 10 7 specificities.
These cells move within the body a,'_dcommunicate both by cell-cell contact and via tens, maybe
hundreds, of regulatory molecules. The systena is capable of pattern recognition, learning, and
memory expression, and thus has many features in common with the nervous system.

Theoretical ideas have played a major role in the development of the field. Controversies
such as instructive vs. selective theories oi antibody formation, germ-line v,:,. somatic-mutation
models for the generation of antibody diversity, and regulatory circuits vs. idiotypic networks
have dominated the intellectual development of the field and determined the direction of much
experimental effort. Mathematical theories have not been nearly as important, but this appears to
be changing as the field addresses more quantitative issues, such as the role of somatic mutation
in the generation of antibody diversity; the role of receptor clusters in cell stimulation and
desensitization signals; the effects of different concentrations of cytokines, receptor affinities,
and receptor number on cell stimulation, cell proliferation, cell differentiation; and the
engagement of effector functions.

Modeling the immune system requires the same type of hierarchical approach as does
neurobiological modeling. At the lowest level, one must develop quantitative models of the
action of single lymphocytes as they interact with antigens and cytokines. A large amount of
effort involving the study of infinite systems of ordinary differential equations and branching
processes has gone into the mathematical modeling of receptor cross-linking by multivalent
ligands (Perelson 1984, Macken and Perelson 1985). Cell response in terms of proliferation or
differentiation has been examined ft'ore an optimal control perspective (Perelson et al. 1976,
1978). The effects of the T cell growth factor IL-2 have also been incorporated into cellular
models (Kevrekidis et al. 1988). At the next higher levels, small idiotypic networks containing
two complementary cell populations have been modeled, as well as networks containing
hundreds to thousands of B cell clones (Segel and Perelson 1989, Perelson 1989, Weisbuch et al.
1990). In the immune system, not only is the number of components large, but in distinction to
the nervous system, the components turn over rapidly. The average life span of a B cell is about
four days, that of serum antibody one to two weeks. Thus, on a rather rapid time scale, many
immune system components n-mybe replaced, although the system as a whole remains intact.

New ideas and mathematical representations are required to handle systems with large
numbers of constantly changing components. Some promising approaches involve the
formulation of models in terms of a potentially infinite dimensional "shape space," wherein
emphasis is placed on determining interactions among molecules based on their shapes. In
computer models, binary strings have been used to represent molecular shape, with the obvious
advantage of fast algorithms to determine complementarity and the ability to represent 4 × 10 9

different molecular shapes with 32 bits (Farmer et al. 1986). To handle the perpetual novelty that
the elimination of old components and the generation of new components introduces into the
immune system, models can be formulated using "metadynamical" rules, wherein an algorithm is
used to update the dynamical equations of the model, depending upon the components present in
the system at the time of update (Bagley et al. 1989). One needs to understand in a mathematical
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sense the dynamics of a system in which the variables of the model are in constant flux. What
does it mean to have an attractor if the variables describing the attractor are eliminated from the
system before a trajectory approaches the attractor? Formulation of models appropriate to
unravel the observed complexity in the immune system is the first major step. Next, a massive
effort is required to unravel the behavioral modes of these complex models and compare them
with experiment. Here theoretical immunology merges into the mainstream of theoretical
biology.

There are other areas in which we see future growth of theoretical ideas in immunology. For
example, vaccine design depends on the ability to predict T cell epitopes. DeLisi and Berzofsky
(1985) suggested that T cell epitopes tend to be amphipathic structures. Alternative algorithms
have been suggested (e.g., Rothbard and Taylor 1988), and databases have been used to identify
sequence patterns characteristic of T cell epitopes (Claverie et al. 1988). This area is clearly one
in which we will see future growth and one that will rely heavily on theoretical and
computational analyses.

Understanding the dynamics of HIV infection (AIDS) and its effects on the immune system
is another important area for future research. Quantitative questions include these: How can the
CD4 + T cell population be depleted if only one in a hundred cells is infected? Why is there such
a long incubation period from time of infection to the clinical symptoms of AIDS? Why is this
incubation period different in children than in adults? In a seropositive patient, what does the
level of serum antibody predict about the course of the disease? Can one define quantitative
measures of an individual's chance of infecting a sex partner on the basis of antibody or antigen
levels measured in the blood? Models also will help in determining the pathogenesis of the
disease and in isolating primary effects of HIV from the secondary effects of immune
dysfunction. Mathematics also can play a role in the development of optimal treatment
schedules and in the design of clinical trials of multiple drug therapies for AIDS. Development
ef epidemiological models is currently an active area of mathematical endeavor and one that will

continue at a high level as we attempt to track the course of this epidemic and develop vaccine
strategies aimed at its eventual eradication.

Genomic regulatory networks. A fundamental activity over the next two decades will

involve analysis of the integrated structure and behavior of the complex genetic regulatory
systems underlying development in higher organisms, a massive task since the human genome
encodes perhaps 100,000 genes. Its accomplishment will require uniting work in molecular and
developmental genetics with new mathematical and computational tools.

In more detail, recent progress in molecular genetics in eukaryotes now is revealing the
detailed composition of structural genes as well as cis-acting regulatory loci such as promoters,
homeoboxes, and tissue- and stage-specific enhancer sequences, as well as trans-acting
components. These genetic elements, together with their RNA and protein products, constitute
the genomic regulatory network that coordinates patterns of gene expression in cell types, cell
differentiation, and ontogeny ft'ore the zygote. Understanding the structure, logic, integrated
dynamical behavior, and evolution of such networks is centred to molecular, developmental, and
evolutionary biology.

Tile Human Genome Initiative will provide massive sequence data from which we can
eventually identify the diverse locations in the genome of each regulatory sequence, as well as
the locations of many or most structural genes. These data are fundamental to understanding the
"wiring diagram" of tile genomic regulatory networks in eukaryotes. Analysis will require
development of appropriate computer databases and development of new theory _md algorithms
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in the mathematical theory of directed graphs. Understanding tile evolution of such genomic
networks under the influence of point and chromosomal mutations that literally scramble the
genornic wiring diagram will require new uses of random directed graph theory, stochastic
processes, and population genetic models.

In addition to understanding the structure and evolution of genomic regulatory networks, we
must understand the coordinated behavior of such systems that integrate the behavior of 100,000
molecular variables. It is here--in the effort to relate the information that we can obtain about

small parts of the genomic system to the overall behavior of the integrated system--that a new
marriage of mathematics and biology must be found. Without mathematical theories, we have
no hope of understanding the integrated behavior of such complex systems---systems that link
the "microlevel" of structure and logic with the macrolevel of behavior. Although no approach is
yet clearly adequate, new avenues are available.

A first approach is via ensembles. Statistical mechanics is the paradigmatic example of a
theory that links microscopic and macroscopic levels. There it is possible to e,'tplain

macroscopic behaviors without knowing ali the details of the microscopic dynamics. Similarly,
it may be possible to build up statistical understanding of the integrated behavior of extremely
complex genomic regulatory systems without knowing ali the details of microscopic structure.

Molecular genetic techniques reveal small-scale features of genomic systems, such as the
sequences that regulate a gene, and biases in the "rules" governing the activity of genes as a
function of their molecular inputs. Using these local features, one can construct mathematically
the ensemble of ali genomic systems consistent with those local constraints. This ensemble
constitutes the proper null hypothesis about the structure and logic of genomic systems that are
random members of such an ensemble. Thus, the typical or generic behavior of ensemble
members are predictions about the large-scale features of random members of the ensemble.
This is a new kind of statistical mechanics, averaging over ensembles of systems (Kauffman
1969, 1974, in press, Derrida 1981). If the distributions of properties parallel those seen in
genomic regulatory systems, then those properties may be explained as consequences of
membership Jn the ensemble. Indeed, work based on this approach (Kauffman 1969, 1974, in
press) has shown that many features of model genomic systems do parallel, and hence may
explain, a number of features of cell differentiation, such as the numbers of cell types in an
organism, the similarity of gene expression patterns in different cell types in an organism, and
other statistical features. Improved ensemble models, coupled with population genetic models,
offer hope of understanding how evolution can mold the structure, logic, and behavior of
integrated genomic systems.

A second approach may be the development of new mathematical and experinaental tools to
"parse" the genomic system into structurally or functionally isolated subcircuits. Thus, clusters
of genes may be regulated in overlapping hierarchical batteries, or some genes may fall to fixed
steady states of activities that are common to many or ali cell types, while other subsets of genes
oscillate or exhibit complex patterns of temporal activity unique to different subsets of cell types.
Analysis of such temporal patterns by time-series techniques, and based on temporal series of
two-dimensional protein gel data, where each gel shows the synthesis patterns of up to 2000
genes at a time, may help resolve the genome into behavioral "chunks." If so, this will help
block out the overall behavioral organization of the genomic system. Thereafter, analysis of
detailed midsized subcircuits, with perhaps _everal to 100 or so genes, will require use of
promoter constructs allowing activation or inhibition of arbitrary genes in arbitrary cell types at
arbitrary moments, with analysis of the cascading consequences. Union with dynamical systems
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theory for modestly small systems, where the "inverse problem" of guessing plausible circuitry
to yield observed synthesis patterns is practical, can then be carried out.

Developmental biology. As already described, mathematics can play a crucial role in
connecting different levels of organization. What biologists seek are molecular-level
explanations of supramolecular phenomena. For example, embryogenesis involves the
coordinated movement and differentiation of cell populations. Biologists would like to
understand this in terms of chemistry and. genetics. To understand organismal biology is to
understand how high-level coherent organization results from mechanisms operating at the
molecular level. The essence of the problem is to build from one level to another. How can we
bridge this gap?

The mathematical, analytical, and numerical problems posed by the nonlinear systems of
partial differential equations that arise in modeling developmental processes are extremely
challenging and interesting. Reaction diffusion equations, for example, as discussed earlier, have
already stimulated the creation of new mathematics to study the wide spectrum of solution
behaviors exhibited by these equations. The numerical simulation techniques used to investigate
solutions in three dimensions are still very difficult and need a great deal of further refinement to
be practically useful. Mechanochemical models for generating pattern formation deal with more
directly biological quantities (see Murray 1989 for a general survey of these and other pattern
formation models); but they are more complex than, for example, the Navier-Stokes equations,
which govern fluid flows, and they possess a correspondingly richer solution behavior.

Bifurcation theory, linear analysis, and singuhu" perturbation methods already have revealed
new phenomena. Numerical simulation, particularly with the mechanochemical models, is
challenging even in two dimensions. Real biological applications require solutions in three-
dimensional domains whose sizes increase in time. New analytica! and numerical simulation
techniques, as well as novel visualization methods, will have to be devised before we can explore
the sophisticated solution behaviors of such models. Unfortunately, the methods developed for
Navier-Stokes equations frequently are not adequate to cope with the new models that arise in
biology.

Recently, several advances in experimental biology (e,g., recombinant DNA technology,
computer-enhanced imaging) have created new databases so extensive and complex that
mathematical and computational approaches are essential to make sense of them. For example, a
network of perhaps 60 cross-regulating genes has been shown to regulate early development in
Drosophila; similarly, cell motility, which underlies morphogenesis, is driven by the cellular
cytoskeleton, whose mechanochemical regulation is controlled by a network of more than 40
regulatory molecules. These systems should catalyze new collaborations between biologists and
mathematicians to deduce the macroscopic consequences of newly revealed molecular
mechanisms. Below we illustrate the general case with a few specific examples.

In the past five years, recombinant DNA technology advances have produced an
unprecedented molecular-level database documenting a complex network of genes that code for
proteins that control the expression of other genes. Mathematics can compute the macroscopic
pattern formation consequences of this molecular-level information. Indeed, mathematical

analysis may be the only way to synthesize the global picture from the molecular-level parts,
given the apparent complexity of genetic networks, in which each gene's expression is
modulated by many other genes.

Computer graphics can be used to visualize data and the dynamical behavior of mathematical
models (Odell and Segal 1987). Many instruments in the biologist's arsenal (e.g., the confocal
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scanning laser microscope, gene sequencers) gather data into a computer-based graphical
database, Modern computer graphics technology makes it possible to display, dynamically and
pictorially, the dynamic behavior of a mathematical model in the same form iri which
experimental data are stored. This technology should become the common way to compare the
behavior of a quantitative model with the data it purports to explain. Moreover, this same
technology yields the fastest and most compelling medium of communication between
mathematical modelers and biologists.

Using immunofluorescent probes from cloned gene products and scanning confocal laser
microscopy on whole-mount Drosophila embryos, one may now obtain three-dimensional stereo
reconstructions of the temporal evolution and spatial expression pattern of each of the genes that
organize future morphological segmentation of the larva. Similarly, it is possible to observe
intracellular and intercellular events such as cytoskeletal reorganization, calcium transients,
distribution i=a_terns in cell adhesion molecules, and putative morphogens in real time. Thus, a
model of early pattern formation and/or morphogenesis (Edgar et al. 1989) in the Drosophila
embryo, if it is col'rect, should produce the same output that confocal microscopy gathered as
input. The intellectual challenge is to understand how the gene network, operating identically in
every ceil, results in a globally coherent spatial pattern as a consequence of temporal biochemical
dynamics.

Theoretical models have stimulated a great deal of experimental work in developmental
biology. Here we briefly describe three major classes of models that illustrate the way in which
mathematics provides a framework fi)r connecting information at the micro level to observations
at the macro level.

Spatial pattenls can be created according to the classical local-activation lateral-inhibition
mechanism (Keller and Segel 1970, Oster and Murray 1989). A purely chemical mechanism for
pattern formation (but not morphogenesis) was proposed by Turing (I952). In this model,
activator and inhibitor morphogens diffuse at different rates and react with one another.
Mathematical araalysis shows how spatially heterogeneous patterns of morphogen concentration
can arise. For pattern to emerge, it is necessary that the activator be relatively short-range
relative to the inhibitor, i.e., that the activator diffusion be relatively slow. If cells can sense the
morphogen level and respond, then we have a molecular mechanism for Wolpert's (1969) notion
of '_positional information," one of the most influential concepts in modern developmental
biology. Although chemical gradients have been suspect in biological pattern formation for over
100 years, 'it is only recently that their existence has been unequivocally demonstrated (e.g., the
bicoid protein in Drosophila and retinoic acid in vertebrate limb development). However,
morphogenesis may not be a purely chemical phenomenon in which cells merely respond to pre-
existing chemical patterns.

One possibili,_y is generation via chemotaxis, _he response to a chemical gradient. The
classical exampl,: is the slime mold Dico,olstelium, whose cells p_'oduce the chemoattractant
cAMP as we,.l as a chemokinetic morphogen (ammonia). Starting from the view that
rnorphogenesis is, at least proximally, a mechanical event, several modelers have shown that the
same spatial patterns that arise in 'l"uring models can be produced by biomechanical models
whose variables are cellular stresses and strains. These mechanochemical models have

stimulated experimental programs to address their validity (Wolpert and Hornbruch, in press).
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3.2.2 Dynamic Aspects of Structure-Function Relc,tionships

The relation between structure and function is a central theme of classical biology. Some
mathematical models have already illuminated problems in this area. For instance, McMahon
and Kronauer (1976) modeled the tree branch as a beam of greatest lateral extent. Another
example involves the biomechanics of feeding of aqueous organisms. Solving the Navier-Stokes
equations for flow through small, bristled appendages, Cheer and Koehl (1987) have shown how
the geometry permits the appendage to function as either a paddle or a rake.

In temporally shifting systems, the description of structure-function relations remains
especially elusive; and it is here that mathernatical modeling is particularly essential. In
physiology, for example, only by solving the appropriate equations of fluid mechanics and
elasticity can one understand the relationships between tile structure of the helm and its function
of providing appropriate blood flow (and changing blood flow) in response to changing
environmental conditions. Similar remarks apply to other organs; for example, the kidney. Here
fluid-mechanical considerations play a role, but the details of chemical reactions are perhaps
even more crucial to describe accurately. The interplay between chemistry and solid and fluid
mechanics is similarly important in the description of plant growth.

Organ physiology is a natural target for mathematical and computer modeling. Such models
can serve a threefold purpose: to understand the normal structure-function relationship of the
organ, to study the mechanisms and impact of disease processes, and to aid in the design of
artificial devices that can be used to repair, assist, or replace the organ. For plants one can add
the possibility of aiding breeders by identifying structures that optimize performance.

In the case of the heart, a computational method has been introduced (Peskin and McQueen,
1989) to solve the coupled equations of motion of the muscular heart walls, the elastic heart
valve leaflets, and the viscous incom.pressible blood that flows in tile cardiac chambers. Variants
of this method have been applied to other problems in bio-fluid dynamics, including platelet
aggregation during blood clotting, aquatic animal locomotion, and wave propagation along the
basilm" membrane of tile inner ear. In the heart itself, the method has been used to study the
optimal timing of events of the cardiac cycle, to simulate a disease state involving prolapse of the
mitral valve, and to conduct paranaetric studies aimed at the optimal design of prosthetic cardiac
valves. At the level of mechanics, another set of challenges is to develop theories for explaining
the heat's structural components: the orientation and layering of muscle fibers in the venn'icles,
the position and makeup of the heart valves.

Cardiac contraction is mediated by propagation of electrical activity over the three-
dimensional multicellular musculature. Disturbances in this electrical system result irl
arrhythmias: tile most severe of these is ventricular fibrillation, the principal cause of death after
a heart attack. This is an active area of modeling research, with many open avenues to explore:
the ionic channels underlying the cardiac signal (Noble 1962); the effects of spatial
inhomogeneities, say from damaged tissue; the consequences of discreteness (finite ce!l size and
gap-junction coupling); and the fundamental nature of synchronization and sustained propagation
patterns in three dimerisions (Winfree 1990).

Other organ systems that are under intense investigation, and which cannot be understood
without the help of mathematics, include the kidney and pancreas. The kidney's countercurrent
rnechanism achieves a substantial separation of water and solutes, which determines, under the
influence of antidiuretic honnone, whether a dilute or concentrated urine will be excreted. A key
difficulty in this field is that tlm basic rules governing the transport of ions and molecules (e.g.,
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Na+, Cl-, urea, and water) across the walls of renal tubules are quite different in different parts of
the nephron (the fundamental unit of renal function) and are in many cases unknown.
Differential equation models are leading to considerable insights in this area by illustrating the
physiological consequences of different assumptions and therefore suggesting experiments
critical in distinguishing the possibilities (Stephenson 1972, Weinstein and Windhager 1985,
Layton 1989). The many nephrons in a kidney are spatially distributed in a particular way;
modeling will be invaluable in helping us to understand the reasons.

The pancreas also plays a key role in homeostasis, the control of the body's internal
environment, in which cells must operate. Although the classical view of homeostasis is based
on steady-state notions, the release of insulin for metabolic regulation actually occurs in a
rhythmic, pulsatile manner (period of 10 minutes or so), which appears to involve a hierarchy of
oscillatory time scales. Release by cells in the islet (the functional unit of the pancreas) is
correlated with their electrical activity, which exhibits a 5-10 second oscillation in response to
glucose. Modeling, analogous to that for ionic currents in neurons, is helping to identify how the
cellular oscillations arise, how cells are synchronized, and what the possible glucose-sensing
mechanisms are (Keizer 1988, Sherman et al. I988, Rinzel 1990). Further challenging questions
have to do with coupling between electrical activity and release and with interactions among the
million or so islets in the whole pancreas.

In organ morphogenesis, important challenges for future work include finite element analyses
of mechanical stress fields in the cellular continuum of growing tissue; optimization mcxtels to
understand the functional significance of morphologies; and hydrodynamical models for nutrient
transport in plants and animals (including marine invertebrates). Another interesting class of
problems involves demographic models to predict cell cycle duration, age distribution, and
family trees of cells in developing tissue (Bertaud and Gandar 1986). Kinematic analyses could
be used to help unravel the physiological significance of gene products recently found to be
correlated with the events of the cell cycle (reviewed by Mun'ay and Kirschner 1989).

One of the strengths of mathematics is, of course, the ability to contend with temporally
varying phenomena and, in particular, to use models to deduce mechanism from kinetic data. lt
is a theme of modern biology, which has been reiterated several times in this report, that what
was previously regarded as static has now come to be understood as dynamic. We have just cited
the dynamic nature of pancreatic homeostasis. An example of similar type is the hormonal
regulation of ovulation, which has been shown in the laboratory of Knobil to involve pulsatile
secretion of the relevant hormones with a periodicity of about one hour. This too is an especially
fertile field for naathematical investigation. The book edited by Goldbeter (1989) is a source for
up-to-.date references for theoretical work on this and many other dynamical problems in
physiology.
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4
THE IMPACT OF MATHEMATICS
ON ECOLOGY AND
EVOLUTIONARY BIOLOGY

ECOLOGY and evolutionary biology encompass a broad range of
levels of biological organization, from the organism through the population to communities and
whole ecosystems, and a tremendous range of spatial and temporal scales. Aspects of it have
been discussed in the earlier chapters, from phylogenetic reconstruction to organism-
environment interfaces. The grand challenges identified earlier--in particular, analysis of
structure-function relations and the integration of phenomena occurring at different scales_are
of particular relevance both to ecology and to evolutionary biology.

Autecology refers to the interaction of organisms with their environments, including such
aspects as physiology, morphology, and behavior. Some related aspects of organismal biology
have been covered in the preceding section. The need for enhanced mathematical and
computational ability is most evident when one attempts to couple large numbers of individual
units into highly interactive networks. Individual-based models of populations provide a case in
point, as do spatially distributed analogues of simpler dynamic models. Computationally
intensive areas of autecology include those linking neurobiology with behavioral models for
certain tasks, such as sem'ch, and the modeling of spatial pattern fomaation through interacting
particle systems or partial differential equations.

Population biology deals with the basic and applied aspects of ecological and evolutionary
change, including links to resource management, epidemiology, and demography. The rich
theoretical literature in this subject, including the work of such giants as Lotka, Volterra, and
Kostitzyn in ecology; Fisher, Wright, and Haldane in genetics; and Kemaack and McKendrick in
epidemiology, has greatly influenced the development of fields as diverse as dynamical systems
theory on the one hand and probability and stati,stics on the other (see Chapter 1). As already
discussed, May's demonstration of how chaotic behavior could arise in simple dynamical models
was a catalyst for the development of that aspect of dynamical systems theory, and interest in the
dynamics of epidemics has spurred research in differential-difference equations and i_tegro-
differential equations, an area pioneered by Volterra in the classical models of mathematical
ecology.
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Population biology thus includes a dauntingly diverse assemblage of topics, including, for
example, the construction of phylogenetic trees from data sets, the interface of game theory and
population genetics, the ecology and evolution of quantitative characters, molecular evolutionary
dynamics, and human population genetics.

Among the critical computational problems in population biology are those that relate to
database management in the examination of risk groups for epidemiological models.--for
example, the classification of sexual behavior and its relationship to the spread of AIDS;
categorization and analysis of information on the global environment, being collected by means
of remote sensing techniques; and the manipulation of databases, such as those derived from
sequence analysis, and their use in interpreting phylogenetic histories. Dynamic aspects relate to
models of the spread of disease in heterogeneous populations; the interaction between
evolutionary biology and neural networks, as reflected in the view of evolution as a
combinatorial optimization problem in a very-high..dimensional space; more sophisticated game
theoretical approaches to evolution; and quantitative genetics.

The study of communities and ecosystems includes the study of how assemblages of species
are organized in space and time and how these assemblages interact with each other and the
physical environment. One area that has received great interest is the analysis of the organization
of trophic webs _ the compilation and storage of data from hundreds of webs collected by
ecologists introduces substantial problems of data storage and retrieval. Cohen's analysis of the
consistent patterns exhibited by these webs (Cohen 1978) demonstrates how sophisticated
mathematical analysis can lay bare patterns in the balance of nature. Biogeochemical cycles
represent a complementary aspect of the dynamics of ecosystems; and the analysis of patterns in
these cycles, and of how they respond to different stresses in different ecosystems, is of
fundamental importance. The analysis of ecosystems_and especially of the transfer of energy
and nutrients within the biota and between the biota and its physicochemical environment_
involves a class of problems of considerable applied importance.

Agroecosystems, ecotoxicology (the responses of ecosystems to chemical stresses),
landscape ecology, and global change represent other areas of importance. The study of
agroecosystems raises problems from the characterization of rates of spread of pest species (for
which the mathematical results of Kolmogorov et al. (11937) provide the mathematical
underpinnings, and for which models and approaches borrowed from percolation theory and
interacting particle systems allow the extension to fragmented habitats) to issues of management,
as represented by dynamic programming approaches to integrated pest management, a_nong
other' problems. Ecotoxicology trades heavily on diffusion-advection models of spread and on
multivariate statistical methods for the analysis of the fate, transport, and spread of chemical:_.

4.1 ACCOMPLISHMENTS OF THE PAST

For interdisciplinary work, such as theoretical and computational biology, a success occurs i_
one or more of three ways. First, new mathematics can develop from the biological problem.
Second, the theory can affect in a fundamental way the world view of biologists, most of whom
are not theoreticians. Third, the theoretical contribution can lead to modifications of practice.
Ecology and evolutionary biology have had numerous instances of each kind of success.

The application of mathematical methods in this area is a very old enterprise; as already
discussed, it spans a range of topics from the very basic to the very applied (Roughgarden 1979,



May 1981, Hallam and Levin 1986, Levin et al. 1989). Demographic methods have been applied
to the study of human and nonhuman populations for centuries (see, for example, Keyfitz 1977)
and form the basis both for population projections and for the understanding of the population
consequences of life history phenomena (Cole 1954). The interface with population genetics,
and more recent game theoretical approaches, has produced a rich mathematical literature that
forms the basis for our understanding of the evolution of the living world. At the other extreme,
mathematical models have been fundamental in describing the fate and transport of pollutants in
the environment (Levin et ai. 1989), tile spread of agricultural pests, the dynamics and control of
epidemics, the management of renewable and nonrenewable resources, and the response of
ecological systems to such stresses as toxicants, acid deposition, and global climate change.

4.1.1 The Synthesis of Population Genetics and Evolutionary Biology

A major role of mathematical biology, and of biology in general, must be to improve our
understanding of the evolution of the living world. The theory of evolution by natural selection,
and the associated extensions that include the neutral theory, relate to the central organizing
principle of modern biology. A key aspect of the elaboration of that theory lay in the
mathematical contributions of Fisher, Haldane, and Wright, already discussed, and in relating
evolutionm°y change to the underlying genetic mechanisms (see Provine 1971).

The suggestion that most molecular genetic variation within a species and between species is
selectively neutral (i.e., has no adaptive or functional significance) stimulated a great deal of
mathematical work on random changes in allele frequencies due to sampling effects in finite
populations. Diffusion approximations to finite population models have been employed
successfully to understand the amount and pattern of genetic variation in populations, including
sampling properties (work by Kimura I983, Ewens 1972, Watterson 1977, Griffiths 1979). The
mathematical analyses of these models had an enormous impact on tile biological view of
molecular genetic variation and led to the development of statistical tests and estimation
procedures useful in the analysis of enzyme polymorphism and sequence variation (see Nel 1987
for examples). This theoretical and empirical work als() stimulated important work on models
with random temporal and spatial variation of selection coefficients by J. Gillespie (1978).

Modern topics of fundamental interest that involve considerable mathematical content
include punctuated equilibrium, coevolution, and sociobiology. Quantitative methods have been
involved intimately in the development and logical structure of sociobiology, broadly construed
to encompass all interactions among individuals that affect reproductive success. Quantitative
theory has been instrumental both in establishing the hypothesis itself within an evolutionary
fi'amework (Hamilton 1964, Cavalli-Sforza and Feldman 1981) and in testing and revising the
fundamental theory (Hamilton 1964, Uyenoyama and Feldman 1980).

4.1.2 Autecology

Classic studies in heat balance in leaves and plant parts (Raschke 1960, Gates 19(_5) and animals
(Porter and Tracy 1973) were used to predict "climate space," the set of microclimate variables
(exposure to sunlight, wind, etc.) consistent with maintaining body temperature within nonlethal
limits, and tc) predict activity times of animals and whole-plant water and gas exchange. Cowan
(1965) used electrical circuit analogues of flow of water ti"om roots to leaves and out through
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stomatal pores to predict the onset of wilting. More recently, plant physiologists have developed
models to represent photosynthesis and carbon allocation at scales ranging from biogeochemical
(Farquhar et al. 1980) to global. These models draw from studies of physiology, biophysics, and
adaptation, and are important tools in theoretical and applied studies of plant biolc)gy. Similarly,
a range of' models exists for transpiration, many based on the Penman-Monteith formulation for
surface-energy balance (Monteith 1973), but with many versions including more sophisticated
biology. Models include relationships between carbon assimilation and water use based on
optimization principles (Cowan and Farquhar 1977) or on isotope discrimination during cax'bon
assimilation. These models can be used in applications ranging from crop production, through
evolutionary studies of plant adaptation, tct examination of the role of vegetation in global
climate change.

Other work of considerable importance in this area, focusing on the relationship between the
structure of an organism and its ability tct function in its environment (see for example,
McMahon and Kronauer 19'76, Wainwright et al. 1976, Cheer and Koehl 1987, Vogel 1988), has
already been discussed in Chapter 3.

4.1.3 Population Biology

Population modeling and populatic)n projection have been important parts of demography and
ecology since the pioneering contributions of John Graunt (1662). Demographic methods have
been applied to tlm study of human and nonhuman populations for centuries (see, for example,
Keyfitz 1977), and they form the basis for population projections an0 for the understanding of
the population consequences of life history phenornena (Cole 1954). These mathematical
methods provide organizing principles for collecting and analyzing data on the rates of fertility
and mortality. Such analyses are now commonplace in many areas of population biology and are
applied to numerous species, ranging from humans to insects of economic importance (Keyfitz
1977, Carey, in press). The theory of age-structured populations, and tile theories built on
Leslie's matrix and the Perron-Frobenius operator theory, are among the most elegant and
important advances in mathematical biology. Recent advances treat other aspects of population
structure (e.g., Nisbet and Gurney 1982) and open population systems (e.g., Roughgarden et al.
1985).

The seminal work of Volterra and l_,otka on predator-prey mechanisms showed how simple
assumptions could lead to sustained oscillations of predator and prey populations. The predator-
prey models of Volten'a and I_,otka are rarely taken literally. Yet they have formed the
cornerstone of the subject, being the point of departure for rnore sophisticated models and
stimulating both experimental studies of individual behavior and further mathematical studies of
the bifurcation properties of systems of continuous time-differential equations,

Related closely to these predator-prey models are complementary models of competing
organisms; again, the original models assume a simple quadratic form but have stimulated more
sophisticated approaches. The theory of the ecological niche (see, for example, Whittaker and
Levin 1975) and the associated theory of competitive exclusion, anaong the most inlluential
ccmcepts in community theory, derive in large part from the mathematical al)proaches. Other
work dependent upon that theory has examined the limits to similarity and niche width of
coexisting species (MacArthur 1972), studies of coevolution and character displacement
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(Roughgarden 1979, Slatkin 1980, Fenchel and Christiansen 1977), and stochastic models of
competition and predation.

One of the greatest successes of mathematical theory has been the application of diffusion

models and their extensions to the spread of populations. The methods have been available, of

course, for over a century (Skellam 1951), and early successes in the theory of epidemics

occurred shortly after the turn of the century (Brownlee 1911). But the fix'st major advances

came from population genetics, especially the work of Haldane (1937) and Fisher (1937) and

later work by Maldcot (1969) and (in a discrete setting) Kimura and Weiss (1964), Maruyama
(I 977), and others.

Fisher modeled the spread of an advantageous gene through the use of diffusion-reaction
equations, hypothesizing that, in the generic case, allelic spatial distributions would relax to ones

characterized by fronts, spreading at the rate of twice the product of square root of the diffusion
coefficient and the maximal selection coefficient. This remarkable insight ....confirmed in

simultaneous mathematical analyses by Kolmogorov ct al. (1937)_has been a stirnulus to much

modern mathematical work (e.g., Aronson and Weinberger 1978, Brarnson 1983). In ecology,

there are direct analogues (Skellam 1951, Okubo 1980), and such models have been applied to
study the rate of advance of invading species (I, ubina and Levin 1988, Andow et al. 1990).

Kareiva (I983), stimulated by the mathematical theory, examined the link between these

population level descriptions and the individual movements of foraging insects.
Closely related to this work, and building upon it, has been the development of models to

explain patchiness in the distribution of organisms (e.g., Segel and Jackson 1972, Steele 1978).

This has stimulated research into critical patch size (Skellam 1951, Kierstead and Siobodkin

1953, Okubo 1980) and other mechanisms for generating and maintaining )_onuniti>rm spatial
distributions (Levin 1979).

Evolutionary approaches to ecological problems have had a tremendous growth and influence

over the past two decades. Maynard Smith (1982) ai)plied theoretical approaches to evolutionary
problems. Earlier, optimal foraging theory (Emlen 1966, MacArthur and Pianka 1966) linked

behavior and optimization by the assurnption that certain behaviors had been optimized by

natural selection. Optimal foraging theory stimulated considerable biological research, including

more than 100 empirical tests of the theory (through 1986, reviewed in Stephens and Krebs

1986). The most recent conceptual advance in this field involves the use of stochastic dynamic
programming and computational methods to derive biological insights (Mangel and Clark 1988).

This latter work shows one of the first instances in ecology (although common in physics and

chemistry) of gaining biological insight through numerical computation.

Life history theory (Cole 1954) has been a fundamental and active area of research, providing
a link between demographic and evolutionary theories. Problems of interest include senescence

(evolution of the mortality schedule, Hamilton 1966), the timing of reproduction and tradeoffs
with respect to mortality (Cole 1954, Caswell 1982), dispersal and dormancy (Cohen 1966,

Cohen and Levin 1987), and density-dependent selection on equilibrium population sizes
(Roughgarden 1979).

4.1.4 EI)idemiology oi Infectious Diseases

The mathematical theory of infectious diseases, pioneered by Ross, Macl)onald, Kermack and

McKendrick, and others, has been an important applied tool, especially for the establishment of
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vaccination strategies. (See various papers in Levin et al. 1989.) Recently, Anderson and May
(1979) and May and Anderson (1979) stimulated a renaissance of activity in this area, especially
involving viral diseases such as influenza (Liu and Levin 1989, Castillo-Chavez et al. 1988,
1989a); rubella (Hethcote 1989a); myxoma (Dwyer et al. 1990); and AIDS (Anderson and May
1987, Castillo-Chavez 1989, Castillo-Chavez et al. 1989b).

Models of gonorrhea transmission were used to evaluate the effectiveness of strategies to
combat the rapid rise in gonorrhea incidence in the United States in the 1960s. The initial step
was the formulation and analysis of a simple model (Cooke and Yorke 1973), which was later
extended to incorporate a "core" group of highly sexually active individuals. Tracing and
treating the sexual contacts of members of the core group was shown to be a more cost-effective
control than random screening of asymptomatic women (Hethcote and Yorke 1984). The work
of Hethcote and Yorke has been one of the success stories of the application of mathematical
models in epidemiology to influence management practice.

4.1.5 Fisheries Management

Fisheries management has proved a fertile area for the interaction of mathematics and biology.
Fisheries managers recognized early that the problems involved were not only difficult, but could
benefit considerably from a quantitative approach. The biological side has contributed concepts
of nonlinear maps, such as the Ricker map. Many mathematical methods of optimal control and
adaptive management (Clark 1985, Walters 1986) have been developed to solve problems in
fisheries management. The recent work on nonclassical control problems by Clark (1985) was
directly motivated by the problems of irreversible investment in fisheries. The methods
developed by Clark, Walters, Ludwig, and their students and colleagues are currently applied
worldwide to manage renewable resources.

A strong link also exists between fisheries management and evolutionary ecology. Although
allozyme variation has been used for about 20 years in the study of evolutionary processes, in the
last 10 ye_u's such variation also has been used to provide genetic "markers" that can be used to
assess the composition of populations. This method, called Genetic Stock Identification,
currently is used in Washington and California to determine the composition of oceanic mixtures
of salmon in terms of the contributing source stocks. Because of the complexities of the
analysis, the teams working on this problem always include biologists and mathematicians. The
calculations are done by use of the EM algorithm (Dempster et al. 1977).

4.1..6 Community and Ecosystem Processes

Historically, the applications of mathematics to community- and ecosystem-level processes have
been of two types: the simplistic dynamic approaches patterned after the Lotka-Volterra theory
and the descriptive multivariate methods, of which Whittaker (1975) was the most important
practitioner. Recently, however, a number of directions that blend theory and data have proved
promising.

Understanding the causes of vegetation change has been an important long-term goal of
ecology. A recent class of models has linked individual-based simulations of populations to
models of detritus composition and nutrient release. Because species differ in the chemistry of
their detritus, and because this difference influences decomposition and nutrient release, this
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class of models exhibits a rich behavior that minlics real systems, lt is becoming apparent that
these models exhibit a rich array of dynamical behaviors, including deterministic chaos and
multiple stable states. These models provide important information on plant community
processes, constraints over selection and biogeochemistry. The development of
succession/production/decomposition models is continuing with applications to paleobiology and
global change.

One of the most important advances in conamunity theory in the past decades has been the
recognition of the patchy nature of most systems and the importance of spatially localized
disturbances in maintaining diversity. The seminal paper here was Watt (1947), but its influence
was negligible for a quarter of a century. More recent work in the marine intertidal (Levin and
Paine 1974, Paine and Levin 1981), in forests (Pickett and White 1985), and in other systems has
made this one of the most active areas of research in ecology.

A number of important studies in biogeochemistry have relied heavily on simulation models.
Dynamic watershed models simulate water movement and biogeochernical reactions affecting
soil and lake water chemistry, and have been central to integrated assessment of aquatic effects
of acid deposition. They have been used as heuristic tools to improve understanding of
watershed dynamics and as bases for projecting regional responses of watersheds to changes in
acidic deposition. The comparison of the mathematical basis of these models; their calibration
and application to watersheds that differ in size, slope, and geology; and the experiments that
these models have stimulated have been significant components of the national integrated
assessment of acid deposition effects. Similarly, the models of Parton et al. (1988), Pastor and
Post (1988) and Schimel et al. (1990) have been used to analyze the effects of climate change on
carbon and nitrogen biogeochemistry.

The early developments in ecosystem analysis also dealt with problems concerning the
transfer of energy and materials among biota and their physico-chemical environment. The
relevant models were composed of linear differential equations and, with the availability of
computers, led to development of a suite of mathematical and simulation tools based on

thermodynamics (Odum 1960), compartmental analysis (Patten 1971), and systems analysis
(Watt 1966). The transfer of energy and nutrients among the biotic and abiotic components of
ecosystems is one of the classic areas of application of mathematical models in ecology. Perhaps
the most fruitful applications have been in nonlinear simulation models at levels from individuals

(Botkin et al. 1972, Shugart and West 1977) to spatially explicit long-term ecosystem succession
(Costanza et al. 1990).

Trophic webs describe the flow of energy among biological components in an ecological
community and are of applied importance because they help predict, for example, how
environmental toxins propagate through living species and which predators may help regulate
weed species or pests. From the first monographs on food webs (Cohen 1978, Pimm 1982) have
followed collections of hundreds of food webs (catalogued in machine readable form) from
different habitats. These catalogues have led to the discovery of several new quantitative
regularities, previously unsuspected, in the structure of food webs. These regularities, in turn,
have led to the development and analysis of new mathematical models based or_ random directed
graphs, which have made new and testable predictions about food web structure. A current

general reference, the result of collaboration between an aquatic ecologist, a population biologist,
and a mathematician, is Cohen et al. (1990).
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4.2 GRAND CHALLENGES

In this section, we identify two grand challenges, among the many confronting mathematical
ecology and evolutionary biology. The first, global change, includes relations to biodiversity
and sustainable development of the biosphere (see, for example, Lubchenco et al. 1991), as well
as global changes in the carbon cycle, clia_ate, and the distribution of greenhouse gases. The
second, molecular evolution, builds bridges between population biology and the problems of
cellular and molecular biology, as discussed in Chapter 1.

4.2.1 Global Change

Global change, with its great implications for the future of our biosphere, presents one of the
grandest challenges to computational biology. The proliferation of information fi'om remote
sensing, as well as more traditional ground surveys, introduces the need for geographical
information systems that provide a framework for classifying information, spatial statistics for
analyzing patterns, and dynamic simulation models that allow the integration of information
across multiple spatial, temporal, and organizational scales. Multigrid techniques, parallel
processing, and other advances will be essential tools in interfacing general circulation models
with ecological models and will require substantive partnerships among physical scientists,
biological scientists, and computational scientists.

The deficiencies of our knowledge about the patterns and processes of individuals,
populations, and communities ,u'e serious enough even for static climatic conditions. But these
shortcomings are magnified in any attempt to deal with long-tem_ changes in global climate.
Historical measures of production contain information on the variations in the climate, but the
global increase in "greenhouse" gases portends a trend of unknown magnitude in climatic
change. We are challenged to predict how such global changes will be reflected in the genetic
structure of organisms, in biodiversity, in the behavior of individuals, in the recruitment and
growth of populations, and in the behavior of communities, and we are challenged to develop
strategies for mitigation and sustainable development. Understanding and dealing with the
biological implications of global climate change, from every perspective, requires a significant
new initiative. One of the central challenges, as discussed many times in this report for other
problems and again in more detail below, is the development of approaches for dealing with and
relating phenomena across disparate scales of space, time, and organizational complexity.

4.2.2 Molecular Evolution

Many challenging and important problems remain to be solved in the application of population
genetic theory to molecular evolution. The existing methods of population genetics, such as the
neutral theory, which were developed to describe variation at single loci, require restructuring to
address questions that arise in the analysis of DNA sequence data. For example, the implications
of tight but incomplete linkage among nucleotide sites within loci present a serious challenge.
Molecular evolution is an area of rapid growth in the acquisition of sequence data as well as in
theoretical development; it also has enormously important economic and political implications,
ranging from the environmental release of genetically engineered organisms to improvements in
biotechnology.
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Although several methods are available for reconstructing phylogenies from sequence data
(Cavalli-Sforza and Edwards 1967, Felsenstein 1981, Nei 1987), robust methods for assessing
the reliability of the inferred phylogenies are not available. Realistic models of the evolutionary
process that can form the basis for statistical inference are needed. Rapidly accumulating
sequence data raise questions far ahead of current statistical methods. Progress in this n,,'e_twill
be important for understanding the evolutionary relationships of virtually all organisms that lack
a detailed fossil record, including bacteria and plants, as well as recently diverged human
populations.

Molecular variation within populations and divergence between species contain information
about the relative importance of evolutionary forces, including mutation, recombination, natural
selection, migration, transposition, and gene conversion (e.g., Hughes and Nei 1988, Hudson
1990). Efficient methods of extracting this information and for testing alternative models are
needed, particularly since large amounts of DNA sequence data are becoming available. The
task of characterizing the properties of sequence variation expected under neutral models is
under way, but alternative models with various forms of natural selection interacting with genetic
drift are only beginning to be developed and explored. Gillespie (1989) has begun the analysis
of the evolutionary process irl a highly structured molecular landscape. Takahata and Nel (1990)
have obtained some results for a model with many alleles maintained by overdominant selection
and frequency-dependent selection. These studies indicate the possibility of progress, but much
more effort in these directions is needed.

A promising area for further research, and one in which important progress already has been
made, is in understanding molecular variation in populations by consideration of gene
genealogies. This research was initiated by analysis of the coalescent process (Griffiths 1980,
Kingman 1982) and extended by Tavare (1984), Watterson (1984), Kaplan et al. (1988), Tajima
(1983), Takahata (1988), Slatkin (1989), and others. The analysis of measure-valued diffusions
(Fleming and Viot 1979) represents another powerful approach for the study of multidimensional
population genetic processes.

4.2.3 The Problem of Scale

An important factor motivating new developments in ecology is the expanding temporal and
spatial scale of many critical environmental problems. Within a decade we have moved from
forest and lake studies on the scale of tens of hectares, to acid precipitation and air pollutants
operating on entire regions, to carbon dioxide problems on a global scale. The mathematical
challenge will be to develop a theory of scale that can (1) guide the aggregation and extrapolation
of fine-scale understanding to larger scales and (2) suggest hypotheses and methods for the direct
investigation of large-scale phenomena.

Fundamentally new approaches to studies in population biology will be made possible by an
understanding of phenomena that occur at different spatial and temporal scales. For example,
genes express their effect at the individual level, but the effect of individual variation on
population dynamics is poorly understood. Some recent successes in this area include the

expression of genes in individuals and the role of individual behavior and variation in population
dynamics (Mangel and Clark 1988). New approaches (i.e., theory, models and data) are needed
to link subpopulations that are intermittently connected by stochastic events mediated by fluid
flow (e.g., water, wind) and even plate tectonics. The key problems are to (1) determine the
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"characteristic scales" for various ecological processes, (2) formulate the corresponding models
that capture scale-dependent effects, and (3) test these models at the appropriate spatial and
temporal scales.

Different dynamical characteristics are displayed by epidemiological systems, depending on
the level of spatial aggregation of observations. At tile individual level, stochastic effects are
very important. In a small group, a disease may enter and quickly disappear. However, in cities
and counties as a whole, persistence is more likely and the patterns of incidence appear more
regular. For larger aggregations, deterministic models have proved to be useful. An
understanding of the appropriate ways to link small-scale and large-scale epidemic behavior is
important for understanding the impact of disease. Greater access to powerful computers will
make it possible to study the relationships between different scales.

The development of new models and innovative mathematical and statistical methods for
addressing tile interaction of social dynamics and epidemiology_at distinct biological and
sociological levels of aggregation and at distinct temporal and spatial scales_is a rapidly
expanding area of research. Models and methods that follow the dynamics of pairs (or groups)
of individuals in different "sociological spaces" are now being extensively studied.

Population biology and ecosystem ecology long have been disjunct subdisciplines.
Challenges posed by environmental problems, including global change, are causing these two
areas to pull _ogether, Paleobiology, process studies, and theoretical examinations show that
biogeochemical cycling imposes important resource constraints on populations. In return,
patterns of resource use specific to populations, suct_ as type of gaseous product, carbon element
ratios and organic compounds, produce feedback to local and global element cycles. This
linkage is central to our current understanding of plant populations dynamics, dynamics of
species invasions, and marine biogeochemistry.

Linking population biology to biogeochemistry involves some major challenges to
n-mthematical representation. For example, species of phytoplankton that have highly contagious
distributions affect global air chemistry, possibly influencing global climate. Soil carbon levels
change over time scales of hundreds to thousands of years, yet control soil nutrients that regulate
plant growth and competition over short intervals. In addition, the interactions take place in a
spatial context, which requires large input data sets for realistic simulation. Better theory, more
powerful computations, and large-scale field studies are all required to achieve the coupling of
these subdisciplines. The requiremer_t to predict the effects of hun:mn use of ecosystems and
global climate change makes this coupling essential.

Global problems ultimately must be studied at global scales. This is especially true when
linking spatial and temporal scales in the study of oceanic processes and global climate change.
For example, zooplankton respond to the spatial and temporal distribution of their food resources
(phytoplankton) and their predators (planktivores), while the planktivores respond to the
temporal and spatial distribution of the zooplankton and their predators (piscivores). In order to
predict the patterns of these organisms, one must deal with spatial scales that range from
millimeters or less (phytoplankton), centimeters (zooplankton size), meters (zooplankton
aggregation size), tens of meters (planktivore school size), to kilometers (planktivore school
group size, piscivore group size and movement scale). Each of these spatial scales has its own
temporal scale (Okubo 1980).

The concept of self-similarity, derived fi'om fractal geometry (Mandelbrot 1977), implies that
extrapolation of information across scales is possible as long as the underlying process remains
unchanged. However, ecological processes (e.g., energy flow, nitrogen exchange) are not always
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self-similar at ali scales, because processes often change abruptly between locations. Relatively
uniforna areas might be measured with a few samples and extrapolated to large regions with little
error, while heterogeneous regions with complex gradients of soils, light, and moisture might
produce major differences within a single watershed (i.e., not self-similar) and thus be difficult to
extrapolate. The principal questions are: (1) How does one identify self-similar processes? (2)
How can situations that are not self-similar be anticipated? (3) Can extrapolation methods be
developed for these situations?

Many ecological processes occur in spatially patterned environments. Plant succession,
biodiversity, foraging patterns, predator-prey interactions, dispersal, nutrient dynamics, and the
spread of disturbance all have important spatial components. Many theoretical studies (e.g.,
Levin and Paine 1974, Steele 1974, Clark et alo 1978) have demonstrated the significance of
spatial considerations in processes such as energy flow, nutrient cycling, and population growth
rates. However, the difficulty of analyzing these processes often has caused the spatial dynamics
to be ignored.

Models based on percolation theory (Stauffer 1985) have recently been used to relate the
spatial distribution of resources to the propagation of disturbance (Turner et al. 1989) and the
dynamics of species dispersal and habitat utilization (G_u'dner et al. in press, O'Neill et al. 1988).
Other ideas from the theory of interacting particle systems are being applied to ecosystem
problems. For instance, models that simulate the change in critical thresholds of disturbance
propagation as a result of climatic change (i.e., drier forests), previous disturbance history, and
the effects of human intervention will be useful for unravelling the issues associated with global
change. Studies of the percolation "backbone" (a connected series of sites that transports
material, energy, or organisms through a spatial system) may provide an objective view of
critical habitats for the design and management of conservation areas.

Spatially explicit models can be very useful in addressing the problem of linking scales. The
spatial resolution (grain) can be manipulated and changed in modeling studies. Evaluation of
model predictions against spatial data available in geographical information systems allows the
uncertainties of model predictions to be evaluated and key processes and parameters to be
identified, lt is expected that measurement of these parameters will significantly improve the
accuracy and reliability of spatial predictions.
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5
MODES AND LEVELS OF SUPPORT

THE potential for interactions between mathematics and biology
can be developed only by careful nurturing. Some of the isolated interactions between the two
disciplines have been discussed in a limited fashion in the Executive Summary. The interactions
occur because the questions exist and because efforts are being made by individuals to promote
interdisciplinary collaborations, But this interaction can be strengthened through attention to the
modes and levels of support that will encourage such interactions. Specific recommendations
follow.

5.1 RESEARCH SUPPORT

It is recommended that funds for the support of interdisciplinary research between biological and
computational scientists and mathematicians be dramatically increased. Projects could take
several forms, including the following.

• Projects involving interdisciplinary research by a single investigator

, Interdisciplinary groups of mathematicians, biologists, and computational scientists of
sizes ranging from two individual investigators to networks of individuals from the
different disciplines at different universities

Related to these projects is the further recommendation that specific guidelines for the review
process of such proposals b,econsidered. Databases containing _he names of reviewers who have
biological, mathematical, and computational expertise, or any combination of those skills, should
b.edeveloped and made available to administrators at all involved federal agencies.

5.2 INFRASTRUCTURE

It is extremely important that adequate computer facilities and support of such facilities be
provided. It is recommended that:

, Funding for computer facilities and support of those facilities be considered to be intrinsic
to all awards made
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• Funding for clearinghouses for software development, maintenance and distribution be
tnade available

• Support be provided for networks for database access and network collaborations

5.3 TRAINING

Training in this interdisciplinary field must be regarded as a lifelong exercise, lt must start early
and continue for the professional lifetime of the scientist. Thus, recommendations for such
continuing education are made for several levels of training.

5.3.1 Precollege and Undergraduate Education

Children, both in primary and secondary school, have a natural interest in biology. In the past,
this has been limited largely to field biology or experiments that are chosen for minimal cost
rather than the long-range view of building a base for exciting the child into consideration of
quantitative bielogy as a career. While this remains perhaps the most natural avenue for arousing
the curiosity of a child about the nature of biology, quantification must be introduced at an earlier
stage. This is a natural area to show students projects and group efforts consistent with new
mathematics curricula (see National Council of Teachers of Mathematics, Commission on
Standards for School Mathematics 1989, Mathematical Sciences Education Board, National
Research Council 1990). Few of these applications appear in textbooks, and most are absent
entirely from the preparation of teachers. Our recommendations are to:

• Develop curriculum materials in mathematical biology for grades K through 12 and
commit special teacher enhancement funds to introduce these materials to the nation's
cadre of teachers

• Establish a program of summer internships for high school students and/or undergraduate
students in which the students would spend two months working with mathematicians or
biologists

• Support faculty at undergraduate institutions for training and research experiences that will
further their knowledge and interest in the cross-discipline

• Support summer workshops developed for high school or undergraduate level faculty
or/and students that focus on biological subdisciplines in which mathemati_zs and
computation play a large role. Instructors should be recruited from both disciplines. A
paradigm might be the Computational Neurobiology Course at Woods Hole, MA

• Support workshops and conferences to develop methods for introducing significant
quantitative tools to be introduced naturally into precollcge and undergraduate biology
curricula

• Support graduate students in applied mathematics and/or biology with an interest in the
other discipline to work with high school and/or undergraduate students as teaching
assistants or in other more imaginative ways to develop the younger students' interest
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5.3.2 Graduate and Postdoctoral Training

The recommendations in this category are designed to improve the quantitative knowledge of
biologists, to improve the biological knowledge of mathematicians, to facilitate ongoing
collaborations, and to encourage new collaborations.

* Specifically t_u'get a substantial number of graduate fellowships in the biological sciences
to individuals with undergraduate degrees in the mathematical or computer sciences and
vice versa

, Support special cross-disciplinary postdoctoral fellowships that will allow Ph.D.s irl one
field to work in the other field

, Hold mini-courses, lasting four to eight weeks, in areas where both biological insight and
mathematical or computational expertise are needed. Levels would be appropriate for
graduate or postdoctoral students in one of the disciplines with more basic information in
the cross-discipline

5.3.3 Senior Established Investigators

It is recognized that established scientists with expertise in biology, mathematics, and
computational sciences are rare. lt thus becomes important, at least initially, to encourage and
facilitate eflbrts by scientists in one discipline to cross over into the other discipline to answer
significant questions. The recommendations are to:

• Establish special mid-career fellowships for rnathematical or computer scientists to join
biological teams or individuals to enhance their biological insight and for biologists to
work with mathematicians for varying lengths of time

• Support special visiting arrangements, both short- and long-term, be supported for
scientists from one discipline to work with scientists from the other disciplines to
encourage greater insight into the use of naathematics in biology

5.4- HUMAN RESOURCES

Several federal funding agencies already have a number of programs that encourage and seek out
underrepresented groups (women, minorities, and persons with disabilities) in the sciences. This
effort should continue that emphasis. Ali of the disciplines considered in this initiative have
underrepresentatior_ of minorities and people with disabilities. A significant number of biologists
are women, but the number of female mathematicians decreases as the level of the degree
increases, lt is hoped that, as mathematical biology develops as a field, this statistic will change.
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Appendix 3
RESEARCH OPPORTUNITIES IN

COMPUTATIONAL BIOLOGY

EXECUTIVE SUMMARY 1

Computational Biology is emerging as a current analog to the development of molecular
biology as a discipline in its own .right. In the late 1950s and early 1960s a group of
scientists began to apply the tools of several disciplines, genetics, microbiology, physics,
biochemistry, and biophysics, to analyze biological problems in a new way. The power
of this approach was so great that it emerged as a discipline itself and is now known as
molecular biology. As described in this document, the application of mathematical and
computational tools to all areas of biology is producing equally exciting results, is
providing insights into biological problems too complex for traditional analysis, and is
emerging as a new discipline within the biological sciences.

There is a consensus among all observers that biology, regardless of the sub-
speciality, is overwhelmed with a large amount of very complex data. However, what
sets biology apart from other data rich fields is the complexity rather than the sheer
volume of the data produced. In contrast to other data rich fields, biology remains a
scientific "cottage industry," with the data generation done in a highly distributed mode,
with no standard format or syntax.

Thus, all areas of the biological sciences have urgent needs for the organized and
accessible storage of biological data. Generally this is referred to as biological database
development, however, this terminology infers traditional database technology such as
transaction oriented relational database systems. Unfortunately, relational database
technology is inadequate to serve many areas of the biological sciences due to the
complexity of biological data and the absence of a standardized data structure. It is clear
that collaboration between computer scientists and biologists will be necessary to design
information platforms which accommodate the needs for variation in the representation of
biological data, the distributed nature of the data acquisition system, the variable
demands placed on different data sets, and the absence of adequate algorithms for data
comparison, which fonns the basis of biological science.

1Executive Summary from "Oppommities in Computational Biology" (D. Kingsbury, cd.), a companion publication to this document.

It summarizes the current status of computational biology as a field and focuses on the future development of computational
' approaches to investigating and modeling biological problems. Following publication in mid-1992, it will be available from the

National Science Foundati(nl and the l)epanment of Energy.
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biological data, the distributed nature of the data acquisition system, the variable
demands placed on different data sets, and the absence of adequate algorithms for data
comparison, which fomas the basis of biological science.

There have been dramatic advances in commercially available hardware over the past
few years and it has had an effect at both the high and low ends of the spectrum. In the
past this general purpose hardware was inadequate to address the most computationally
intense problems in the biological sciences. These computational problems were best
%ndled by special purpose equipment designed by teams of biologists and chip and
circuit designers. This condition has been dramatically altered in the past two years as
high perfornaance general purpose instruments have become more widely available. Not
only hardware limitations have affected the productivity of the computational biologist.
There is a continuing need for new algorithm development to cover many tasks,
especially comparisons between objects and images. Imaging technology is central to
almost ali of biology and data representation though image construction remains an
elusive but astoundingly powerful tool. The full utilization of modern CAD tools in
computational biology will advance image analysis, but will require intense software and
hardware development because of the complexity of biological data

During the last decade there were dramatic advances in instrumentation and related
methodologies for both light and electron microscopy. The advances lie not simply in
higher resolution, but rather ivaa broader size range of structures that can be analyzed, and
more powerful methods for putting together the pieces of three-dimensional puzzles of
cell form, and the addition of dynamic details of biological form and function, ranging
from the subcellular to the physiological level. The new approaches are computationally
demanding. Extant computational resources, which were typically set up for entirely
different processing needs, not surprisingly, are proving inadequate fe_"dealing with the
massive data flow. An effort to develop new computational approaches is under way in a
few laboratories around the world. However, it is important that new software be
developed within the context of the experimental research driving the needs; that is, there
must be close collaboration betv,'een those developing the software and the groups
can'ying out research on static and dynamic structures. Furthermore, augmentation of the
experimental environment, particularly image processing equipment and other" specialized
equipment, is needed. Pc_sitions for sophisticated programmers are even more important.
A prime example of the ,_eed for such a laboratory-based specialized programming effort

_-Dis the development of workstations for interactive visualization and interpretation of ;_,
data. The development will proceed in pace with experimental research only if it is done
in an environment "open" in the terms used by the computer science world, where nea,
applications are developed free from proprietary restraints and dist>,,uted as source code
to other laboratories facing the same experimental needs. Commercial interests or
specialized production groups will be required finally, to add value to the base line
development, producing highly reliable ("bullet proof") production line products.

X-ray crystallography and NMR are the major experimental methods for deducing
macronmlecular structures at atomic res,)lution. NMR and X-ray crystallography both
produce extremely large anaounts of data and are entirely dependent upon the availability
of powerful computers and sophisticated processing algorithms for the interpretation of
raw data. In add'.tion, there are fundamental scientific oroblems in both areas that require

...._ major computational advances. In additio,_, substantial opportunities exist for combining
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structural information from several experimental techniques. This may provide the basis
for a structural solution where only partial data are available from any single technique.
With improved computational tools, combining physical data from a variety of sources
may become commonplace. These developments will allow solutions to be obtained for
structural problems which would otherwise be intractable. Analysis of errors in
structures based upon experimental data from several sources also represents a new
computational challenge.

Advances in X-ray and NMR data analysis will lead directly to rapid developments in
the field of protein folding which will be synergistic with developments in other areas of
biology itself, and especially computational biology. Common problems of data
representation, search strategy, pattern recognition and data visualization appear in many
fields. There is a particularly exciting synergistic relationship between the protein folding
field and those of structure determination by X-ray crystallography and 2-D NMR. Each
field will benefit from rapid advances in the other disciplines. Improved folding
algorithms provide a new way to attack the phase problem in crystallography, and new,
more carefully refined protein structures provide rich new insights into protein folding.

Various initiatives in computational neurobiology give us the hope of interpreting the
mass of anatomical and physiological information about the nervous system that is now
available in functional terms. Better interpretation of these data will permit neurobiology
to make contact with other fields such as psychology and artificial intelligence. This
work will make specific, testable predictions in the areas of sensory perception (visual,
olfactory, and auditory), memory, learning, and motor control. Above all, it will lead to
the integration of all these aspects to provide an eventual understanding of _he total
functioning of the nervous system. Such integration can be expected to provide new
insights that will lead to improvements in the treatment of diseases of the nervous system
at all levels, from neuropharmacology to psychotherapy. In addition, studies of this kind
may be expected to contribute to major advances in artificial intelligence and practical
robotics.

In the area of genome analysis significant progress has been made over the past few
years, including the use of molecular tools such as Restriction Fragment Length
Polymorphism (RFLP) analysis. However, considerable effort is still required to make
genetic linkage maps effective tools fox"genetic research. To be useful in common
situations, more markers must be identified and mapped to produce higher-resolution
maps. In many cases marker analysis requires the ability to analyze srnaIl families and
consider quantitative traits, q'o be fully useful in a meaningful quantitative sense this
analysis will require powerful computer simulation and n'todeling. Common to all of the
problem areas examined is the need for good visualization of data. Visualization is
necessary because the sequence analysis phase for a molecular biologist is equivalent to
exploratory analysis for a statistician, lt is at this point that the experimentalist gains the
feeling for, and understanding of, a sequence which may then guide many months of
experimental work. The complexity inherent in biological systems is so great that very
sophisticated methods of analysis are required. These are the tools which must be readily
accessible to molecular and cellular biologists untrained in computer technology.

Ecology and evolutionary biology encompass a broad range of levels of biological
organization, from the organism through the population to communities and whole
ecosystems. This complexity demands computational solutions. The need for enhanced
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computational ability is most evident when one attempts to couple large numbers of
individual units into highly interactive and largely parallel networks, whether at the
tissue, community or ecosystem level of organization. The proliferation of information
from remote sensing introduces the need for geographical information systems that
provide a framework for classifying information, spatial statistics for analyzing patterns,
and dynamic simulation models that allow the integration of information across multiple
spatial, temporal, and organizational scales. Today, in these fields application software is
mostly nonexistent except in a few special special cases such as image processing and
remote sensing. As more researchers begin to use computational techniques, we can
expect to see a wider sharing of applications developed by an individual or small group.
This will require additional resources to take research codes and make them "bullet-
proof" enough for community use and to add adequate documentation. In order to take
advantage of ali these new capabilities, we need to increase training modalities. This can
take a wide variety of forms, from on-line self training techniques to special sessions at
universities, national centers, or workshops.

lt is recommended that Federal granting agencies piace greater emphasis on the area
of Computational Biology through a number of mechanisms. This support must be
developed over a period of several years with a particular emphasis on infrastructure and
training. Many of the necessary changes may be instituted immediately while others will
requi_e a longer time in order to generate budgetary resources to build in new areas. The
cu_ent focus on biological databases is a good beginning, however, the need is so great
that the initiative needs considerable additional resoarces. These resources should be
directed in three areas. First, the enhancement of current .aatabases which are in wide use
but need concerted effort at standardization of data st_act,_res and broadened access.

Second, a continued examination of new databases which will incorporate important
information needed by many investigators, but also explore new database ideas and
representations. Third, research on the representation of objects and images which will
be searchable and comparable within database structures. For example, there is a great
need to be able to search a database of enzyme or antibody active site configurations to
test for binding of nev'ly developed ligands. Database development remains the highest
priority item since this area is common to ali fields of biology. A second area of high
priority is the development of n.3re powerful visualization tools for data interpretation.
This area too is a need shared by almost ali fields of biology. Funding agencies could
immediately respond to some of the needs of the research community by recognizing the
need for professional programmers and hardware and s,fftware facilities on grants in this
area. Agencies must break out of the habit of immediately removing these items from
budget requests in order to reduce the overall cost of an award, since these items are
critical not only to doing the proposed work but also to making the results of the work (in
the form of usable source code) available to the rest of the rese_u'ch community.
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Appendix 4
TRAINING COMPUTATIONAL AND

MATHEMATICAL BIOLOGISTS 1

SUMMARY

1. Introduction

It has been estimated that in mid-1990, there were approximately 4000 professional level
scientists identifiable as computational or mathematical biologists. These scientists were
found in a wide variety of institutions and in a wide range of positions within those
institutions.

The pattern of distribution of these individuals among and within different institutions
appears to be related to their academic training. For example, mathematicians and
computer _cientists who have primarily followed an interest in the biological sciences
generally work as biologists and find themselves in nonacademic research positions in
industry, government or private research institutes, or quasi-academic research centers
(e.g., supercomputer centers). A small minority are in biology departments. In contrast,
mathematicians who have continued to pursue research activities in mathematics,
choosing biologically related problems or examples, or collaborating with biologists, tend
to remain in departments of mathematics or applied mathematics in academic institutions.
Computer scientists follow a similar pattern. Statisticians may be found in statistics
departments, biostatistics groups or departments, or even in biological sciences
departments, depending on the extent of their involvement with biological problems, and
the local structure of the institutions within which they work.

Biologists who rely on computational and mathematical tools in their research

activities are found in many institutions. A large number have moved into industry where
they play a role in tile analysis of macro-molecules in biotechnology and pharmaceutical
companies. Another major source of employment is in governm.ent and private research
institutes, which tend to focus on problem-oriented research and directly utilize their
computational biology skills. In the academic environment, computational biologists
pursuing accepted biological problems are found in a variety of departments of biology

1Final report of the NSF-sponsored Workshop on Training Computational and Mathematical Biologists, held at the
......... ,7 ...................... p,_,l/A AJo.t t._,_ l_a,._,,,_atviy, x..utu o1..11tll_ l"la.ttYOl, l'_gw '_1 k '' ' _--i i, I_.'.'_L
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pursuing accepted biological problems are found in a variety of departments of biology
(including departments of related name such as genetics, ecology and evolutionary
biology, molecular biology, and microbiology), chemistry, and biochemistry.

The character of the institutional acceptance of these interdisciplinary activities
depends on two factors: the need of the institution for problem-oriented work, and the
traditional academic expectations on the performance of the individual. For example,
biology departments piace their emphasis on disciplinary achievements, and
computational and mathematical approaches are secondary to the disciplinary results.
Therefore, the infusion of mathematical and computational tools is dependent on the
confidence of the researcher that they can afford to invest the time and effort to enable
them to use this approach, let alone develop new tools. Thus in many cases,
computational and mathematical biology makes a backdoor entrance into the academic
world. In contrast, these approaches are embraced more directly by industry and research
institutes whose problem-oriented programs utilize a broader range of approaches,
including direct application of mathematical and computational techniques.

The workshop participants' assessment is that in the immediate future, this situation
will not undergo a substantial change. Therefore, scientists expecting to enter the
academic research world will continue to need a strong disciplinary grounding for their
cross disciplinary work. Employment opportunities in industry and research institutes
appear to be stable, or growing slowly. Such centers will continue to be major sites for
the development of computational techniques and applications in biology.

Because of their frequently strong mathematical and computational environments,
and the less frequent presence of rigid departmental structures, one possible source of
future growth for computational biology is the four-year college. Mathematical and
computational approaches fit well within the research environments found in these
institutions, and they are likely to find effective implementation in the teaching programs.
In this context, faculty in these institutions may be expected to employ mathematical and
computational techniques in both research and the development of teaching aids that will
eventually find their way into research institutions. However, here again, strong
disciplinary training will be essential as the basis for the research approach.

2. Profiles of Computational and Mathematical Biologists

In the past, most of the migration of scientists into computational biology has been from
disciplines outside of biology (e.g., math, physics, chemistry, computer science, etc.).
Physicists _ecome biologists, but not the reverse. This migration and its asymmetry has
been prompted by successful applications of domain-specific technology to solving
biological problems.

Many early successes in computational biology were obtained by scientists who were
primarily biologists with marginal skills in computer science and mathematics
(programming skills and some algorithmics), while many others were the result of work
by scientists with extensive mathematical and computational backgrounds. However, as
the problems under investigation become more complex, training which provides great
depth in quantitative analysis will be essential.
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Current interest and excitement in computational and mathematical biology is driven
in large part by neurobiology, global change, and genomics. In all of these areas, vast
amounts of information are accumulating at a rate that precludes human absorption and,
hence, understa_ding, Biology needs tools for manipulating and analyzing information.

, _; .In order for trai_il_g 9nv_ronments to be maximally effective there must be a clear
understanding c_t w!,_,lchprofessional profiles are suitable for current and future
researchers in computhtional and mathematical biology.

The profiles which follow are dependent upon the nature of the position.
Academicians tend to reside within traditional departmental units; whereas, in industrial
settings and research institutes there is a wider range in the mixtures of disciplines in
working groups. The following lists of specialities within computer science, mathematics
and biology are those in which there is substantial research activity today and where there
is likely to remain some research focus in the future.

Computer' Scientists:

Most computer scientists retain their primary professional identification with computer
science. They tend to view biological applications as a source of computer science
problems. Biological applications are new to compqter scientists, and the traditions
across the interface are developing at a moderate pace. The tendency is to cross the line
as a senior scientist by developing collaborations. There are some successful scientists in
this field whose first exposure to biology was at the graduate level. Examples of the areas
of computer science in which such collaborations t_e place are:

Artificial Neural Networks (AI)

Algorithmics

Database design and theory

Visualization (Graphics)

Biologists:

Biologists working on computational problems come from a plethora of backgrounds:
computer science, mathematics, statistics, engineering, physics and chemistry as well as
biological disciplines. The biological sciences are themselves diverse and different areas
of biology draw upon very different quantitative skills. Those biologists who have
crossed the boundaries between biology and other disciplines have often done so to
address specific biological probI_ms. Their acceptance by the biological community has
been out of necessity since ma_y biological problems require technology that has been
driven by insight and intuitio_ from other disciplines. This report is motivated by the
assumption that this trend will accelerate in the near future in areas such genomics,
neurobiology, imaging, structural biology and issues of global climate change. Many of
these developments have been initiated by scientists whose initial training was outside
biology (e.g., mathematics, chemistry and physics). The current technological advances
will require a new range of quantitative skills beyond the norm of current curricula in the
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biological sciences. Biological Sciences that currently draw substantially from the
computational and mathematical sciences include:

Population Biology, including Ecology and Genetics

Molecular Biology

Molecular Genetics

Cellular Biology

Neurobiology

Biophysics and Structural Biology

Ecosystem Ecology

Epidemiology

Physiology

Mathematicians:

There is a long tradition of mathematicians and statisticians working on biological
problems. Indeed, the field of statistics grew largely out of biological origins, and there is
a substantial portion of the statistics community working on problems of biometry and
biostatistics. There is also a small but stable community of mathematical biologists
working within departments of pure and applied mathematics. Some members of this
community migrate to biological departments during the course of their careers while
others remain in mathematical science departments. Those who do remain within
mathematical science departments either establish a career based upon collaborations
with biologists, or focus upon mathematical questic,ns driven by biological problems. In
some cases, threads of mathematical research initiated by biological problems take on a
life of their own as interesting areas of mathematics per se. Areas of mathematics making
substantial contributions to biology include:

Applied Mathematics (Differential Equation Models, Image

Processing and Analysis)

Probability (Sequence Analysis, Interacting Particle Systems)

Statistics

Discrete Mathematics

Topology and Differential Geometry

2.1. Summary of the Current Status

With regard to the current panorama of activity, we perceive that several difficulties exist.
First, computer scientists are not sufficiently involved in computational biology. Their
work is frequently on problems so abstracted from the application as to make them less
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than fully effective as collaborators. Another limitation is that biologists tend to view the
work of computational scientists as service, and not original research, which tends to
alienate this community. Mathematicians are caught between mathematical peers who
evaluate their work on the basis of its mathematical depth and elegance, and biologists
who have little appreciation for theory that does not have a direct bearing on the
interpretation of experimental data. Finally, those biologists who have invested in cross-
training are frequently misunderstood and undervalued by their colleagues, most of
whom do not understand how to evaluate their work.

Computer science is a new discipline that is rapidly maturing. As the field develops,
a tradition of interdisciplinary work will evolve much as it has for mathematics,
especially statistics. This will, in part, alleviate the problem of computer scientists'
involvement. A greater emphasis on the early grounding in scientific disciplines while at
the tmdergraduate level should also help to cultivate computer scientists with a stronger
interdisciplinary focus. As the need for computation in the various areas described above
beconles clearer, the biological community must become increasingly more tolerant and
accepting of computational biologists within their midst. As a result of this and other
factors, such as heavy dependence on physical measurement, the training of biologists at
ali levels must become increasingly more quantitative in nature.

3. Encouraging Interactions

The most effective way to encourage interactions between mathematicians and computer
scientists on the one hand, and biologists on the other, is through direct co-involvement
with a particular problem. This applies at all levels from undergraduate through senior
scientist. The ways in which this interaction may be encouraged depend on the level and
direction of movement (math/CS to biol or biol to math/cs). At present, the pattern is
generally unidirectional, with movement from mathematics or computer science into
biology as the dominant paradigm. Significant changes in this state of affairs are likely to
require substantial curricular changes based upon et:fective means of overcoming the
apprehension of most biology students towards mathematics.

Interaction can be improved through a strengthening of mechanisms that already
exist. However, one area deserves much greater emphasis than is now the case, and that
is support of small research gToups with a genuine interdisciplinary focus: within this,
substantial support is needed for post-doctoral scientists. Support of small group research
will develop critical mass in important areas, will help to foster and sustain collaborative
research, and provide a crucial home for individuals who are in the early stages of (what
is now) a cross-disciplinary research career.

The most effective mechanisms for stimulating these fields vary by the level of a
scientist's career stage as outlined below.

(a) Senior researchers (tenured and above)

(CS, Math -> Blol) Support for sabbaticals and, later, research in biology.

(Biol -> Math/CS) Suppor_t for visits to math research groups to learn/update new
technical areas.



(b) Pre-tenure

Most mathematics and statistics PhD students will start in untenured positions. Changing
fields (or, at least becoming more interdisciplinary) at such an early stage is a very risky
career move, particularly by individuals approaching a tenure decision. One way to
ameliorate this situation is through a new focus on PYI-level type support (National
Science Foundation Presidential Young Investigator) for promising people (prestigious
competitive awards).

(c) Postdoctoral

Support for postdoctoral training within existing grants is essential. Postdocs are an
important educational component of existing research groups, and are very scientifically
profitable in the short term. These should support a given individual for multiple years,
and not be specifically tied to a particular investigator within the group. This mechanism
allows quick response to changing areas of interest, while providing enough time for a
postdoctoral fellow to develop a useful independent research focus.

Another aid to young investigators is the computational research associates program
at the NSF sponsored Supercomputing Centers. This program is of great value to the
biological sciences and the field would benefit from its continued existence. However, to
be maximally effective these investigators must be part of an active and focused research
program and not "generalists" in applied computer science.

The concepts behind these training programs are not based on the assurn:ption that all
people passing through them will eventually obtain tenure track positions in aniversities.

(d) Graduate students

An important source of mathematical biologists comes from mathematically trained
undergraduates who change fields early in their postgraduate education. Such students
are then main-stream biologists, with the requisite quantitative background to enter the
fields of mathematical or computational biology. The educational challenge for students
with this background is the continuation of the quantitative approach to biology in a
supportive environment. This requires an appropriate mentor and an appropriate
departmental or graduate group environment so that the student's background is valued
and prior training reinforced. Given the many opportunities available to an
undergraduate with computer science or mathematical training, it is essential that
graduate student support I:,e provided to entice these students to forego the immediate
gratification of lucrative employment for the longer term prospects of graduate training
and research careers _n biology, To this end the continued and renewed support of
training ga'ants or traineeships (for example in the research groups described above) are of
central and continuing importance.

Furthermore, educational institutions must be encouraged to recognize the need for
training students in these areas as a means of dealing with the future of biological
research. To this end institutional and departmental support of fellowships and RA
(Research Assistant) positions are of supreme significance. Cross-training students at the
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graduate level will lengthen an educational process that already can be inordinately long.
Freeing a student from the demands of a teaching assistantship or a research assistantship
with responsibilities to further the work of a principal investigator will help make such
programs educationally feasible, lt would be especially appealing to find a mechanism to
support mathematical or computational biologists within the structure of departments of
mathematics or computer science.

One of the most significant factors in the training of graduate students is the role
model of the major professor. This mentorship plays a greater role in the ultimate
aspirations of a student than is generally acknowledged. The successes, failures, and
frustrations of a student's mentor plays a profound role in the expectations and
aspirations of a student. In this context the small group research environment is a highly
significant environment in which to u'ain students for the future of the biological sciences.

(e) Undergraduate

In most institutions it is very common for the top biology students, especially those
interested in eventual graduate study, to participate in undergraduate research projects,
especially in their Junior and Senior years, this opportunity should not be confined to
biology students, but should be expanded wherever possible to include interested students
from mathematics and computer sciences whenever possible. The proper environment is
essential to the nurturing of a student that might wish to commit to a c,'u'eer in the
biological sciences, using this valuable undergraduate training. To this end the National

Science Foundation REU (Research Experiences for Undergraduates) program provides
an extraordinary opportunity in the Math/Biol area.

One area of extreme importance for the future development of a cadre of
computational and mathematical biologists, and for the continued recruitment of students
into biophysics and related disciplines is the development of better course materials
devoted to the quantitative approach to biology. The workshop participants valued very
highly the concept of "enculturation of quantitative thought" through the introduction of
quantitative approaches in biology courses

(t3 Pre-college

While there was considerable discussion during the workshop regarding the state of pre-
college science education, no specific recommendations were developed. Many private
and government agencies have focused great attention on this problem, and it remains a
top national priority. There was general agreement that two issues posed particular
concern to the participants. First, the need to involve more fully parents in the
e:Jucational process. This is particularly important in groups which do not have a cultural
history of educational achievement. The second concern was the current selection of the
"ultimate underachiever" as the folk hero of the nation's children. We believe that this

message is alan ningly inappropriate in the current context of rapid technological change
and global competition. The participants hope that the leadership of the Education and
Human Resources Directorate of the National Sciences Foundation will use its influence
and insight to find a mechanism tc, reverse this trend.
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(g) Summary Principles

(1) If time is limited for education, spend it in mathematics, not computer science.

(2) What we want is an attitude/consciousness change, so that people are aware of
the input of the "other" type of science in their own area.

(3) While collaboration will enhance the science of the current generation, we are
seeking to change the way that biology is done by changing the way biologists
are educated for the next forty years.

4. Fundamental Educational Principles

(a) Undergraduate Education

(i) General Course Content

The cross-disciplinary aspects of modern science must be emphasized in all
undergraduate science and mathematics courses. The role of computer science and
mathematics, as well as technologies from physics and chemistry, need to be presented in
biology courses. In contrast, the research areas that have used various tools of computer
science and mathematics in the experimental sciences should be identified throughout
mathematics and cs courses.

(ii) Mathematics/Computer Science Majors

All mathematics and computer science majors should have required experimental science
courses. We recommend a minimum of two years that can be concentrated in one area or
spread over the basic sciences. The purpose of this is to provide the student with an
understanding of the vocabulary and concepts and an experience of the ways in which
mathematics or computer science have contributed to other disciplines.

(iii) Biological Sciences

In order to produce biological scientists who will be qualified to do modern research, we
strongly recommend that the science curricula require four years of mathematics and/or
computer science. Representative courses migh_ include programming, theory of
algorithms, probability and statistics, linear algebra, calculus, discrete mathematics, and
numerical analysis.

(b) Consequences

Failure to implement these recommendations ai a minimal level will foreclose the future
for many undergraduates majoring in biological sciences. This originates in the types of
problems that are coming into e×istence and that are consistently more and more
dependent on quantitative skills for their solution. Secondarily, lack of training in these
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quantitative areas will limit tile questions that can be asked by an investigator, and may
come to threaten an individual's levels of funding. We must remember that we are
addressing the education of persons who will be in the pool for the next forty years. If
education changes are not implemented, much of biology will fail to thrive.

The broad education that we are proposing also permits people to change their minds
and acquire additional course work in another field, even late in their studies, without
having to start from the beginning.

Our recommendations should not be construed to support any concept that
presupposes a gender-specific bias in the ability to perform. It may be that a type of
matti/cs anxiety will become apparent if our recommendations are instigated. In order to
counter this, we propose that support groups, personal tutorials, study circles and other
tools of encouragement and enhanced performance/esteem be supported so that they are
readily available.

5. Additional Recommendations

Part of the difficulty in implementing the course recommendations may be the prevalence
of pre-med education as a major component of biology curricula. Although there will be
a number of additional consequences, it would be well worth considering the
restructuring of the undergraduate major so that pre-rneds follow a separate track and
their presence does not determine the future of an academic discipline.

It is incumbent upon those who practice cross-disciplinary science and
mathematics/CS to become both role models and mentors for others. It is particularly
important for representatives of under-represented groups to make an effort to encourage
others.

Several members of the group have suggested that a new type of biology course
should be developed. It would cover the elements of modern biology, but highlighting
the contributions of other disciplines. The hope is that someone will be inspired to write
a founding text, one that will change the field.

GRADUATE EDUCATION

Continue to create opportunities for cross-disciplinary work. NIH programs in molecular
biophysics and the NSF research training groups are examples of attempts to encourage
this type of interaction.

One-on-one mentor/student relationships are not sufficient to maintain cross-
disciplinary development. Direct support for cross-disciplinary efforts would help to
break down the interdepartmental barriers that frequently exist. Seminar groups or other
frequent interactions should be encouraged.

New graduate students (and postdocs)might acquire an elementary grounding in a
new field through summer institutes or some other "crash course." The courses would be

taught by highly interactive, expert, senior level researchers. For example, a course in
basic molecular biological concepts could include molecular biology, biochemistry, and
molecular biophysics. Emphasis would be on the vocabulary and point of view, that is,
how the science is done and what are its assumptions. For a course on computation in
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genetics, this material might include basic computer science concepts, e.g., files,
databases, algorithms and their use, graphics and statistics. The benefits of such a course
could also be made available to more senior investigators.

6. Women And Other Under-Represented Groups

In high school, women represent a reasonable proportion, approximately 30-40%, of
those students who are interested in the physical sciences and mathematics. Partitioning
begins in college and is nearly finished by graduate school. Some disciplines within the
biological sciences do have equivalent or even over-balanced representation by women.
Increasing the level of course work in mathematics and computer science may be
threatening to some of these women. In order to prevent this, specific actions may well
be necessary. Similarly, for some students from other under-represented groups, it may
be necessary to have additional courses available at the undergraduate level to improve
the level of computational competence of entering students.
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