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The IBM assumes that collective behavior arises from the coupling, through

the neutron-proton interaction, of the separate low-lying states systems of

valence protons and neutrons defined with respect to a major shell closure. The

eigenstates of the proton (neutron) systems are assumed to be constructed purely

from combining two-particle "bosons" with L = 0 and L = 2 to form many-particle

states. The model is capable of handling nuclear systems which are far beyond

the domain of applicability of any reasonably complete shell-model calculation.

It is the purpose of this report to present the results of a large shell-model

calculation of pseudo-nucleus which displays striking collective behavior sug-

gestive of rotational phenomena. In these calculations, a specific and physically

reasonable single-particle structure is given to the wave functions, and an

explicit two-body residual interaction is used. An analysis of the shell model

•wave functions of the eigenstates of the resulting K. = 0 rotational bands offers

strong support to a primary assumption of the IBM; i.e., wave functions which de-

scribe collective behavior can be constructed from many-particle states of valence

nucleons which are constructed only from J = 0 and J = 2 two-particle states.

The calculations here were suggested by earlier calculations of Hecht et_al.

The model space for the calculations reported here includes the Of . , lp,/9»

and lp1/2 proton single-particle orbits, and the 0g?.2, Id . ,?.2, Id . , Id . , and 2s.
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neutron single-particle orbits. The single-particle levels are taken to be

degenerate. For a reasonably large number of particles, one-body spfcin-orbit

effects should be minimal. For the residual shell-model Hamiltonian, the

2
surface delta interaction (SDI) is used with equal strengths in the p-p, p-n,

and n-n systems. The SDI is known to be a useful approximation to more empir-

ical and/or more realistic interactions. This model space is still a very

large one. A truncation scheme is used here as follows. The Hamiltonian can

be written in obvious notation, as

H = H + H + H .
pp nn pn

H and H are diagonalized exactly in the complete proton and neutron model
pp nn

spaces. The basis space of the truncated n-p-model is formed by coupling

together a selected set of eigenstates of the neutron and proton systems; i.e.,

|rp,n |rp |Tn

The justification for selecting these particular eigenstates is discussed in

some detail in Hecht et _al_. The reasoning is reviewed briefly here. For the

SDI in the n-p basis space used here

V ' m > % z <^i||QkH/>-<*jllQk|kII1>
p,n ' r p,n ^ k V P P *nM i i l | 4n

where 0 is proportional to the spherical harmonic Y . I t is demonstrated in
m m

Hecht .et_ _al. that for the set of neutron and proton states listed in Table I,

the matrix elements of the surface harmonics, Q_, between states within the

set and states not in the set are very small. Thus, the eigenstates resulting

from diagonalizing H in the truncated basis we use are essentially uncoupled

to exact eigenstates of H which have significant admixtures of proton or neutron

states not included in our model space. In the truncation scheme used here

the maximum dimension of any matrix model is 130, as compared to 45,000 in the

full space.
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Hecht et_ al_. introduce the concept of a "favored pair". A favored pair

is an eigenstate of the SDI of a system of two identical particles distributed

in all the (degenerate) orbits of a complete oscillator shell with S = 0,

L = J, and with a non-zero eigenvalue. There is only one such eigenstate for

each even value of L up to the maximum possible L-value for a two-particle

state in the given model space. All other two-particle eigenstates are de-

generate, with E = 0. Thus, in the (5/2,3/2,1/2) space, there are favored

pairs with J = 0, 2, and 4. In the (7/2,5/2,3/2,1/2) space there are favored

pairs with J = 0, 2, h, and G. Hecht et_ al. show that the four-particle

eigenstates listed in Table I, and included in the truncated model space here,

can be constructed essentially completely from coupling of two favored pair

states. In the IBM model, the many-particle states are formed from J = 0 and

J = 2 identical-particle pairs. In the calculations discussed here, I include

J = 4 and J = 6 pairs in addition to the J = 0 and J = 2 pairs. To the extent

that the calculations reported here are a good approximation of a realistic

shell-model calculation in a many-particle space, the importance of the J = 4

and J = 6 pairs in the many-particle space reflects the adequacy or inadequacy

of the restriction to J = 0 and J = 2 pairs of the IBM.

In Fig. 1 is shown the calculated spectrum of low-lying states of a

system (4 x 6) with six protons and four neutrons in the model space described

above. The first column in Fig. 1 shows the spectrum of all states up to 5 MeV

excitation and selected high-spin states up to 20 MeV. B(E2) values for tran-

sitions between these states have been calculated with total proton and neutron

charges of l.Oe, respectively. In succeeding columns in Fig. 1,.states are

grouped into bands determined by observing which states are connected by strong

B(E2)-values.

The last column in each figure shows the states not included in the "bands".
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In Fig. 1 we see that a number of states in the (4 x 6)-system can be grouped

into three bands. The "ground state" band has the level ordering a ltd spacings

very similar to the J(J+1) spacing of a rigid rotor with K = 0. The level

energies of the second and third bands strongly resemble those of K = 2 and a

K = 0 rotational bands, respectively. In Table II, the relative B(E2)-values

for transitions within the two "K = 0 " bands and the "K = 2 " bands of the

(4 x 6) system are shown. For comparison, the relative B(E2)-values predicted

by the usual rigid rotor model for K = 0 and K = 2 bands are shown, i.e.,

J 2J 2

B(E2)a C K Q K

There is remarkable agreement between the shell model and the rigid rotor for

the K = CL and the K = 2. band for states with J < 8. There is a band crossing
1 1 —

at the J = 8 level between the second K = 0 band and the K = 2 band. The

+ + +

J = 6 members of the K = 0_ and K = 2 bands are almost degenerate, and this

fact may be reflected in the deviations between shell model and rigid rotor

for transitions involving these states. There are similar results in the

system with four neutrons and four protons (4 x 4 ) , but the rotational behavior

breaks down above the J = 6 state in both bands and the second K = 0 band is

not present in the (4 :•; 4) calculation. Thus, from these calculated results,

one sees that there is cle . evidence of rigid-rotor behavior appearing in the

large calculations, considerably more striking than I have seen in previous

shell-model calculations. The collective behavior is more distinct when two

protons are added to go from the 4 x 4 to the 4 x 6 system. This behavior

appears with a neutron-proton interaction (the SDI) which does not obviously

enhance the possibility for rotational behavior.

Some analysis of the wave functions of the ground-state band of the

6 x 4 system is shown in Table III. In this table, for each spin, all basis
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states admixed with coefficients greater than 0.2 are shown, and the compo-

nents are listed in decreasing order of magnitude. In all cases thefee

components account for 60% or more of the wave function amplitude. For states

up to the J = 6 state, these large components are dominated by coupling of

J = 0 and J = 2 two-particle bosons, as assumed by the IBM. One might argue

that this results from simple perturbation theory arguments; i.e., that the

J = 0 and J = 2 states lie lowest in energy. However, note that besides the

J = 0- and J = 2 states, the other important states are the J = 2 state with

seniority v = 4, the J = 4~ state with v = 4, and the J = 4 state with v = 6.

The low-lying J = 4 , v = 2 (which must be the coupling of a J = 0 and a J = 4

pair) state plays essentially no role in the important components of the J = 0,

2, 4, and 6 levels. As shown in Hecht et_ ai^., these two v = 4 and one v = 6

states are constructed essentially from the coupling of the J = 0 and J = 2

two-particle states of the neutron and proton system. The J = 8 state has

important components which cannot be accounted for by coupling J = 0 and J = 2

two-particle states, but many of the largest components can be so described.

Note that the agreement with the rigid rotor model breaks down at the J = 8

state for the B(E2)-values. Thus, when the J = 0 and J = 2 two-particle

states are not so dominant a factor, the rotational pattern is violated.

A similar analysis of the K = 0 band of the 4 x 4 system leads to simi-

lar conclusions. There, the "rotational behavior" and the dominance of the

J = 0 and J = 2 states deteriorates after the J = 4 state in the 4 x 4 system.

These results suggest that when additional two particles are added, the col-

lective behavior extends to two higher units in angular momentum.

The K = 0 2 band in the (4 x 6) system is dominated by J = 0 and J = 2

couplings up to the J = 4 state. The states in the K = 2 band in both the

(4 x 4) and (4 x 6) systems are much more complicated than are the states in



the K = 0 band. In the K = 2 bands, the states are not dominated by the J = 0

and J = 2 couplings. In particular, there are significant admixture's of the

lowest J = 3 two-particle eigenstates.

In summary, the calculations reported here offer considerable supporting

evidence for the validity of the assumptions of the Interacting Boson Model.

The calculations show:

1. The coupling of key low-lying neutron and proton states of valence

particles can lead to collective rotational features which appear to be more

distinct and which extend to higher angular momenta as the number of particle

increases.

2. Those states which are rotational are dominated by states formed by

coupling J = 0 and J = 2 two-particle states.
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Table I. Eipenstatcs included in truncated calculations. Colur.n headed v
shows the seniority of the state. E is the eigenvalue of the state. Column
headed % {2 >• 2) shows percentage of given eigenstate which is formed from
coupling of J=2 two-particle states. *
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Table II. Relative B(E2)-values in four-neutron, six-proton systems. (The
transitions are normalized to one for the first transition in each column.
Column headed S.M. gives shell model results. Column headed R.R. gij/es
calculated relative B(E2)'s for rigid rotor model as discussed in the text.)
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2-0

4-2

6-4
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0.24
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1
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1

.31

.72

.53

.51

.49

.41

.70

.34

.74

.28

.60

.18

.62

.18

R.R.

1

.3

.75

.53

.53

.66

.39

.74

.30

.80

.24

.83

.19

.87

.16



Table III. Principle components of ground state band wave functions in six-
proton, four-neutron system. The number in each column is the observed value
of the admixture of the given basis state in the eigenstate. Thefcnumbers in
parentheses (Jj x Jo) indicate the basis state (J x J ), where J and J
are given in Table 1.

+ • + + +
J = Q J = 2 J = 4 J = 6

0.600 (0. x 0 ) 0.458 (2 x 0 ) 0.454 (2± x 2 ) 0.401 (2 x h^

0.594 (2 x 21) 0.424 (0x x 2±) 0.320 (42 x 0 ) 0.391 (4£ x 2 )

0.229 (42 x 42) 0.275 (42 x 2±) 0.313 (21 x 2£) 0.328 (42 x 22

0.218 (22 x 2 ) 0.266 (21 x 21) 0.296 (0± x 42) 0.296 (21 x 4 )

0.210 (2X x 22) 0.260 {2^ x 2g) 0.229 (42 x 2 ) 0.203 (2X x 4 ^

0.255 (22 x 42) 0.213 (2J, x 42) 0.200 (42 x 42)

0.216 (0± x 22)

J = 8 " J = 10+ J =

0.425 (42 x 4£) 0.476 (42 x 6 ^ 0.515 (6 x 6 )

0.331 (42 x 43) 0.464 (42 x 62) 0.491 (6 x 6 )

0.315 (21 x 62) 0.425 (62 x 42) 0.486 (62 x 6 )

0.314 (2X x 6X) 0.373 (62 x 4 g ) 0.472 (6 x 6 )

0.307 (62 x 2±) 0.209 (62 x /; )

0.278 (6 x 2 )

0.258 (4« x 4.)
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Fig. 1. Calculated Spectrum, states in tha four-neutron si:c-proton
system, described in the text.


