
LBL--32965

' DE93 004694

i

Generalized Approach to Inverse Problems in
Tomography:

Image Reconstruction for Spatially Variant Systems
Using Natural Pixels

John R. Baker tr, Thomas F. Budinger t*, and Ronald H. Huesman _
t Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
and

Research Medicine and Radiation Biophysics Division
Lawrence Berkeley Laboratory

University of California
1 Cyclotron Road

Berkeley, CA 94720

1This work w_ supported in part, by the Director, Otfice of Energy Research, Office of Health and
Environmental R , ,arch, Medical Applications and Biophysical Research Division of the U.S. Department

of Energy under contract No DE-AC03-SF00098 and in part by NIH grant HL07367.
_tmAOTtT_O ,y,,-_
IIIP,,JII"- LI1 "-



2 Generalized Approach to Inverse Problems in Tomography

Abstract

A major limitation in tornographic inverse problems is inadequate computation m

speed, which frequently impedes the application of engineering ideas and principles
in medical science more than in the physical and engineering sciences. Medical prob-

lems are computationally taxing because a minimum description of the system often
involves 5 dimensions (3 space, 1 energy, 1 time), with the range of each space co- :_

ordinate requiring up to 512 samples. The computational tasks for this problem can
be simply expressed by posing the problem as one in which the tomograph system

response function is spatially invariant, and the noise is additive and Gaussian. Un-
der these assumptions, a number of reconstruction methods have been implemented

with generally satisfactory results for general medical imaging purposes. However, if

the system response function of the tomograph is assumed more realistically to be
spatially variant and the noise to be Poisson, the computational problem becomes

much more difficult. Some of the algorithms being studied to compensate for position
dependent resolution and statistical fluctuations in the data acquisition process, when

expressed in canonical form, are not practical for cfinical applications because the num-
ber of computations necessary exceeds the capabilities of high performance computer

systems currently available. Reconstruction methods based on natural pixels, specifi-
cally orthonormal natural pixels, preserve symmetries in the data acquisition process.

Fast implementations of orthonormal natural pixel algorithms can achieve orders of

magnitude speedup relative to general implementations. Thus, specialized thought in
algorithm development can lead to r_ore significant increases in performance than can

be achieved through hardware ,nprovements alone.
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1 Background

' The tomographic projection formation can be described by the discrete-continuous model
f,)[1],M, [3],[4]

po_ = Fo_.b (1)
...-.

where pok is the measured projection at angle index 0 and bin position k. Fo_,is a second order
tensor functional operating on the two dimensional object distribution b. The operation of
equation 1 represents the integration of the product of the impulse response f_(z,y) and
the object distribution b(:r,9) over the imaging field as depicted in figure 1. The symbol
• indicates integration over the imaging field. The impulse response function is the spatial
response of a projection at angle 0 and bin k to a point source moved to every position within
the sampling domain. There are 19 different angles and K projection bins at each angle.

Y
b(x,y)

0

X

...- F (x,y)
/ Ok

" Figure 1" Schematic of projection formation.

To simplify notation 1, the projection formation equation is written in vector form

p = F. b (3)

XLowercase bold symbols denote vectors, lower case script symbols denote functions or scalars, upper
case bold symbols denote matrices, and upper case script symbols denote operators.
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4 Generalized Approach to Inverse Problems in Tomography

by combining the 0 and k indices into one index. Specifically[5],

b (4/
p E R°K and (5)

r • (6)
Because the model is based on the fact that the detection process is defined on a discrete

domain and the original distribution is defned on a continuous domain, the model is easily

adapted to include a variety of physical effects found in many imaging modalities. For

positron emission tomography (PET), F0k can include radioactive deca),, positron range,

non-collinearity of photons, sampling geometry, attenuation, inter-detector-crystal scatter,

detector crystal penetration, and detection efficiency [6] [7] [8].

The singular value decomposition of the tomograph system response function is

F = US. V T. (7)

U is an orthogonal matrix containing the left singular vectors of F and is defined by the

eigenvalue decomposition of the projection normal matrix,

A = F. F T (8)

-- US.,'.s'Tu r (9)

where F r is the adjoint operator ofF [5]. An element A0,t-,0k is the projection at angle 0'

and bin k' of the backprojection at, angle 0 and bin k of a unit projection value, p0k = 1. A

schematic of this operation is shown in figure 2. The projection normal matrix is symmetric

and positive seinidefinite. V are the right singular functions of F and are defined by the

relationship

FrF = V. sT,5 '' V T. (10)

The functional S' operates similarly to F in that it. maps continuous domain functions to

discrete domain samples. Thus, V performs an infinite dimensional rotation on the continu-

ous domain object space, ,5' selects and scales a finite nuInber of the rotated fimctions, and

U performs a finite dimensional rotation into the discrete domain projection measurement

space as shown in equations 11-13.

U • R °K _R °K, (11)
t

S " L2 [R2] _ R °'`. , and (12)

A geometric interpretation is given in figure 3.
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Figure 2: Schematic of the computation of one element of the projection normal matrix. A
unit projection is backprojected and reprojected to a new projection to form a projection
matrix element.
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6 Generalized Approach to Inverse Problems in Tomography

Figure 3: Singular value decomposition of the projection operator. The operator VT performs
an infinite dimensional rotation on the continuous doinain object space, S selects and scales
a finite number of tile rotated functions, and U performs a finite dimensional rotation into
the discrete domain projection measurement space.

The goal of tomography is to reconstruct, the unknown distribution, b, from one re-
alization, p, of the projection measurement process p [9] [10] [11] [12] [13] [14] [151 [16].
Reconstructing the true continuous space distribution, b, from sampled projections is prob-
ably impossible without prior information about the distribution [3] [17] [18] [19]. Instead, a
discretized representation, Cmn,is estimated from the measurements where Bm,_(x, y) defines
a generalized pixel.

b(x,y) r (14)Bran(x, Y
In 71.

In vector form the pixelization is

b "_ BTc. (15)

Using this representation, a least squares estimator (LSE) [5] [20] [21] [22] [23] is for-
mulated to estimate the mean intensity of the generalized pixels, /z, used to describe the
unknown spatial distribution from one measured projection dataset, p. While the resulting
LSE formula is quite general, specific application to image reconstruction using square pix-
els, Buonocore's natural I)ixels [24] [25], and the new orthonormal natural pixels is shown.
The least squares estimator for the mean intensity of the generalized pixel image is found
by minimizing the square of the L2 norm of the difference between the projection vector, p,
and the estimated projection, F. BTc, over all possible image vectors_ c; i.e.,
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_ J

= (S" V r" BT) + UTp. (17)

The operator + is the Moore-Penrose pseudo-inverse [26] [27] [28]. Using the measured

projection vector, p, as a single sample estimate of the mean projection vector gives

i: = (S. V T. B T) + UTp. (18)

The fluctuations of the generalized pixel least squares estimator due to random variations
in the measurements can typically be characterized in terms of the covariance between pixel
estimates. The covariance matrix for the generalized pixel estimator is

- E [(a- Ee)(e-Ee)

where _'p is the covariance of the projections.
The estimator for the mean of the intensity of tile object in continuous space is found

by applying the adjoint of the basis operator, B, to the generalized pixel estimator of the
intensity mean. For the continuous space object, the least squares estimator for the mean
of the intensity is

i, = Bre (21)

: B T (S. VT. B T) + UTp. (22)

The basis set used to describe the pixels influences the types of artifacts that appear in.
the reconstructed image [25] [2o][30].In this work, th,'ee bases are evaluated. The first, Bl,
is the traditional square pixel or Heaviside basis. The second basis set, B2, consists of the
set of functions that comprise the to,nograph system response functional and w,_s proposed
by Buonocore [24]. The third, B3, has been proposed by us and is composed of the right
singular functions V, defined by equation 7, that have been selected by S and normalized
by the L2 norm.

B1 - Heaviside (23)

B2 = F (24)
1

' B3 =--[(S.,Q_'T)+]gS.V T (25)
1

Smallsingularvaluesinthesingularvaluefilter, [(s. ST)+] _, of equation 18canlead
^

to large statistical errors in the reconstructed image, b. By applying a diagonal weighting
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matrix, D, to the filter, the mean square error of the object estimates may be decreased [3].
The resulting estimates and covariance are

!

- g/+]
1 1

= V. ST D (S. S T)* utp--. (28)

Determining the weighting values is the subject of Gngoing research. Since basis vectors are
assumed to be arranged so the singular values are in the accepted non-increasing order, one
possibility is to truncate the number of singular values used in the singular value filter so
only the J largest singular values will be included. A weighting matrix with elements

1 ifj'=jandj < J,Dj,j = 0 otherwise (29)

will select only the J largest singular values. Since the basis is orthonormal, the resulting
object, estimate is the sum of the estimates of each pixel that was multiplied by one; i.e.,

J-1

= _ Ba_ (3o)
j=O

I-1

= E v. (s. g) +vv_. (al)
j=0

2 Example

As a simple example, consider the spatial sampling system of figure 4 that has three projec-
tion angles and two projection bins at each angle. The angles are equally spaced between
zero and 7r radians. The impulse response functions are defined by

{ 1 it'/c-1 _ -xsin (0_) + ?/cos (03) < k and x2-t - y2 _ 1, (32) 'fok(x,y) = 0 otherwise

and are shown in figure 4. The projection normal matrix and the singular value decomposi-
tion of the projection normal matrix for this example are
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A = F. _r
302112
031221

_r 2 1 3 0 2 1 (33)
= g 120312

122130
2 1 1 203

-- US" sTu T
1

73
1 1 1 1 1 1 1
1 -1 -1 -1 1 1 7_ 1

1 1 -i -I 0 -2 7i_
= 1 -1 1 1 0 -2 1

1 0 -2 1 -1 1 76 t
1 0 2 -i -I I 7_

I

9
6rr

4
67r

4
6,r

1
6rr

0
0

1

7_
1 1 1 1 1 1 1

1 -1 1 -1 0 0

' l -i -i I -2 2 (34)7_ t i -I -I I I -I
t 1 1 0 0 -1 -1

77 1 1 -2 -2 1 1
1

7r_

where the left singular vectors, U, are given as the product of a matrix and the inverse of the
norm of that matrix. There are four non-zero singular values fox"this example parallel beam

sampling system meaning that. of the six measurements only four are linearly independent.
The linear dependence between the measurements is simply demonstrated by subtracting
one of the impulse response functions at, one angle from all of the impulse response functions
at the other angle, the resulting difference is equal to the impulse response function that was
not included in the difference; e.g., for the system of figure 4,

£0(', ")"lt- J;l(', ")- flO(', ") -- f!l(','). (35)

Figures 5-7 show, respectively, a possible set of basis functions for square pixels, Buono-
core's natural pixels, and orthonormal natural pixels using the sampling defined by the
impulse response functions of figure 4.

Consider the wedge shaped object of figure 8 which is defined as

{ [ ] 'andx >0andx2+y2<l
1 ii" _ < 7 - - ' (36)

b(x,y) = 0 otherwise.



10 Generalized Approach to Inverse Problems in Tomography

l_x,y) _,l(x,y)

Y Y x

Y Y x

Figure 4" Schematic of spatial sampling functions for a, simple parallel beam tomographic

system with three equally spaced projection angles and two projection bins at each angle.



Generalized Approach to Inverse Problems in Tomography 11

1 1

B 10(x,y) Bll(x,Y)

B 12(x,y) B 13(x,y)

Figure 5: Square pixel or Heaviside basis for a simple parallel beam tomographic system
with three equally spaced projection angles and two projection bins at. each angle.
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B2o(X,y) B21(x,y)

B22(x,Y) B23(x,y)

B24(x,Y) B25(x,y)

Figure 6" Buonocore's natural pixel basis for a simple parallel beam tomographic system
with three equally spaced projection angles and two projection bins at each angle.
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B30(x,y) B31(x,Y)

B32(x,y) B33(x,Y)

B34(x,y) B35(x,Y)

Figure 7: New orthonormal pixel basis for a simple parallel beam tomographic system with
three equally spaced projection angles and two projection bins at each angle.
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The pixel coefficients using the square pixel basis of figure 5 are

1 1 ] Tc = 5 0 0 5 . (37)

In Buonocore's natural pixel basis of figure 6, the pixel coefficients are

1 l (_)7---_[4 4 13 -5 13 --5 jT
C

and for the orthonormal natural pixel basis shown in figure 7

4 _,, -7_ 0 0 0 _39)

Y

o

X

m

Figure 8: Wedge shaped phantom object.

Figure 9 shows, respectively, the continuous space representation of the wedge shaped
object using square pixels, Buonocore's natural pixels, and orthonormal natural pixels with
the sampling defined bv the impulse response functions of figure 4.

All systematic reprojection errors clue to pixelization are elim;nated using a basis like B2
or B3 as shown irl table 1 for the wedge phantom. While this is true in particular for B2
and B3, any basis that spans tile subspace of functions defined by £'. V T will also have this
property. A geometric interpretation of the error associated witll computing projections of
pixelized object is showr_ in figure 10. Many of these bases may represent the original object
distribution, b, better than B2 or B3. ttowever, no information about tile coefficients for"the

functions that are outside tile space 5'. V T is available from the projection measurements.
By using a priori information about tile continuous space distribution of b, the formulation

of Bayesian estimators that use basis filnctions not in .5'. V r is an exciting area for future



Generalized Approach to Inverse Problems in Tomography 15

Figure 9: Representation of a wedge shaped object using top) square pixels, middle) Buono-
" core's natural pixels, and bottom) orthonormal natural pixels.
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Basis Object Estimate Projection Estimate

Squared Error Squared Error

4 _2
B1 5 3_--_

B2 Z 06

B3 z 0
6

Table 1" Errors due to pixelization for a wedge shaped phantom sampled with a parallel
beam tomographic system with three equally spaced projection angles and two projection
bins at each angle.

V S U

/

Figure 10: Simplified geometric representation of the systematic error that results from
computing model projections from pixelized versions of a,n object. Pixel bases that include
the subspace S. V T eliminate systematic pixelization error.

=
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research. Thus, the basis subset, contained in S. V T is from a channel model for F and the
subset contained in V T - S. V T is from a process model for b.

• To test the LSE in the presence of noise, a noisy projection dataset,

p = [0.8579 0.2920 1.4252 0.0000 0.4829 0.0000 ]T (40)

will be used. This projection dataset was created by sampling an independent multivariate
normal (Gaussian) distribution with mean and variance equal to the noiseless projections
of the wedge shaped object. The estimated pixel coefficients and tbe covariance of those
estimates using the square pixel basis of figure 5 are

T/: = 0.5508 -0.3602 0.0981 1.0092 (41)

0.1738 0.0014 -0.0854 0.0870

0.0014 0.0677 -0.0191 -0.0854 (42)ZYe = -0.0854 -0.0191 0.0677 0.0014
0.0870 -0.0854 0.0014 0.1738

In Buonocore's natural pixel basis of figure 6, the pixel coefficient estimates and covariance
are

T(5 = 0.1534 0.0629 0.5383 -0.3220 0.1336 0.0827 (43)

0.1810 -0.1771 -0.1428 0.1468 0.1556 -0.1517
--0.1771 0.1810 0.1556 -0.1517 -0.1428 0.1468

ZTe = -0.1428 0.1556 0.189!) -0.1771 -0.1384 0.1512 (44)0.1468 -0.1517 -0.1771 0.1722 0.1512 -0.1561
0.1556 -0.1428 -0.1384 0.1512 0.1899 -0.1771

-0.1517 0.1468 0.1512 -0.1561 -0.1771 0.1722

and for the orthonormal natural pixel basis shown in figure 7

T

/:: = 0.5751 0.6879 -0.3641 -0.2124 0.0000 0.0000 (45)

0.0556 0.0340 -0.0589 0.0000 0.0000 0.0000
0.0340 0.12,50 0.0000 0.0000 0.0000 0.0000

-0.0589 0.0000 0.1250 0.0000 0.0000 0.0000
ZT_ = 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 (46)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Figure 11 shows, resi)ectively, the continuous space reconstructiozl of the wedge shaped
object using square pixels, Buonocore's natural pixels, and orthonormal natural pixels with
the sampling defined t)y the impulse response functions of figure 4. Table 2 shows the mean
and observed object squared error and the the ol:)served projectioll squared error for these

: [
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reconstructions. The natural pixel and orthonormal natural pixel estimates have better
observed squared error than the square pixel estimates. The square pixel estimator has
better mean squared error characteristics than the unfiltered estimators based on natural
pixels or orthonormal natural pixels for the wedge shaped object.

i

Figure 11" Least squares reconstruction of a wedge shaped object using top) square pixels,
middle) Buonocore's natural pixels, and bottom.) orthonormal natural pixels.

Table 3 shows the effects of using tile diagonal weighting matrix defined in equation 29
with the value J varied fl'om one to four t"oi"the example ot"figure 8. The projection estimate
error decreases with the inclusion of each orthonormal natural pixel basis function; however,
adding the image corresponding to the third basis vector, J = 4, increases the mean object
squared error. The increase in mean object squared error is due to noise being added to
the reconstructed image while no new information about the object is being added since the
wedge phantom only has non-zero projections onto the first three ortllonormal natural basis



Generalized Approach to Inverse Problems in Tomography 19

Basis Mean Object Observed Object Observed Projection

Squared Error Squared Error Squared Error

E lib- BT_I[_2 [lEb- BT/:1122 IlEp- F. BT6[122

B1 1.1775 3.2636 0.3001

B2 1.3571 2.6294 0.2348

B3 1.3571 2.6294 0.2348

Table 2: Least squares reconstruction errors for a wedge shaped phantom sampled with noise
by a parallel beam tomographic system with three equally spaced projection angles and two
projection bins at each angle.

vectors as shown in equation 39.

Truncation Index Mean Object Observed Object Observed Projection

Squared Error Squared Error Squared Error

J E Jib- BTi:1122 ][Eb- BT_II22 . IlEp- f. BTi:II22
1 1.4762 1.9655 1.5270

2 1.3839 2.8223 0.5360

3 0.8571 2.4571 0.2584

4 1.3571 2.6294 0.2348

Table 3: Effects of truncating the number of singular values included in the singular value
filter on orthonormal natural pixel least squares reconstruction errors ibr a wedge shaped
phantom sampled with noise by a parallel beam tomographic system with three equally

: spaced projection angles and two projection bins at each angle.

3 Implementation

The computational complexity of reconstruction algorithms can be reduced by using the
orthonormal natural pixel basis because it preserves symmetries in the data acquisition

" process. In this section, an implementation of the orthonormal natural pixel least squares
estimator for rotationally invariant systems is described and analyzed.
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3.1 Orthonormal Least Squares

The continuous space representation of the truncated minimum L2 norm least squares esti-

mator for the mean value of the orthonormal natural pixel image is ft'ore equation 31

J-1

= Z V. S T (S. S T) + uTp--. (47)
j=o

This estimate of the object is converted to a square pixel representation using the Heaviside

basis operator, Bl, of equation 23. The resulting square pixel representation is

J-1

= E Bl. V. S f (S" S T) + uTp- (48)
j=o

and after rearrangement using equation 7,

J-1

- . . .UTp. (49)
33

j'-0

A block diagram of the orthonormal natural pixel least, squares estimation algorithm is

shown in figure 12. In general, the computation of the projection normal matrix requires

O(O2K 2) integral evaluations 2 a An f_(OaK a) singular value or eigenvalue decomposition

routine is used to compute U and S-S T. After the singular value decomposition of the

projection normal matrix is known, evaluation of equation 49 uses O(®2K 2) operations.

For a rotationally invariant system, the evaluation of the project_ion normal matrix

requires only ®(O.K 2) integral evaluations and its singular value (tecomposition requires

F/(OK a) operations using the block circulant singular value decomposition algorithm de-

scribed in sec,,ion 3.2. The rotationally invariant orthonormal least squares estimator is

computationally tractable on current computer systelns.

2Let n, no E NI and e (5 R,e > 0. Also, f,.q :NJ --. R. Then, detine
[31]

1. Upper bound

o(f(,)) = {g(,,):.q(n)< v,, > n,,}

2. Lower bound

n(f(n)) -- {g(n) : 9(n) > ef(n) Vn > n0}

3. Combined bound

e(f(,,)) = O(f(n))n_(f(n))

4. Asymptotic

f(n) --- g(n) ¢:_ lim f(n) _ 1

3Using the symbol 0 for the number of projection angles measured ar,d the cornbined bound function
O(.) is somewhat confusing })li|,parenthesis distinguish between the two uses.

- =
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Figure 12: Block diagram of orthonormal natural pixel least, squares estimation algorithm.
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3.2 Block Circulant Singular Value Decomposition (BCSVD)

When the elements of the projection normal matrix are a function oi"only the difference

AO = 0'-0 modulo O as shown in equation 50, the system is rotationally invariant. If it
is not a function of the difference between k and k' modulo Ix', then the system is radially
variant. The system is spatially variant if it is rotationally or radially variant.

Ae,k,ek = A[(e-e')modO]k'0k (50)

= Ata0moaOlk,ok (51)

-- /R dy /R dx f[AOmodO]k(x,Y) fok(X,y) (52)

When the system is rotationally invariant, the projection normal matrix can be written in
block circulant form [32]. The block circulant structure is

Ao A1 A2 .. Ao-2 Ao-1
Ao-1 Ao A1 .. Ao-3 Ao-2
Ao-2 Ao-1 Ao • • Ao-4 Ao-3

A = ..... (53)

A_ A3 A4 .. Ao Ai
Ai A2 A3 .. Ao_l Ao

There areO x O blocks each of size K × K.

For the simple system of figure 4 the projection normal matrix can be written in block
circulant form by reversing the direction oi"the projection axis for projection angle 0 = 1.
With this change,

301 2 1 2
032 1 2 1

7r 1 230 1 2

A = _) '2 1 0 3 2 1 (54)
1 2 1 230
2 12 1 03

There are three by three blocks each of size two by two.

By using the rotational invariance properties of the projection normal matrix, compu-
tationally fast and efficient algorithms have been implemented for the reconstruction pro-
cedures described in section 1. As an example for the rest of this section, the case where
O = K = 64 shall be used because it is representative of some typical tomographic inverse
problems.

A ®(K20 logO)fast Fourier transform (FFT) technique [33] [34]and _,_n
ft(OK a) singular value decomposition (SVD) algorithm are used to compute the factorization
[35]
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A = (.To ® IK) t D (.To ® Ih-) (55)

= (.To ® IK) t UDADU; (.To ® Ix,-) (56)

-- UADU T (57)

-" U~_" ocTv T (58)

where .To is a normalized O × O discrete Fourier operator matrix and Ih- is K × K identity

matrix. 4 The operator t is conjugate transpose and ® is the outer product operation.

Each of the K 2 discrete Fourier transforms of equation 56 can be computed independently;

i.e., each sum does not need the result or input of another sum [36] [37]. The SVD of the

blocks of D also do not have input/output dependencies with other blocks and can be

computed without explicit synchronization. Therefore, parallel processing implementations

of the block circulant singular value decomposition algorithm are possible.

Two parallel versions [38] of tile BCSVD algorithm were implemented and tested on a

Cray-2 supercomputer using macrotasks [35]. The O(Olog O) grain size of FFT tasks is

extremely small. For the example, it takes about 0.45 ms [39] [40]. This is comparable to
the 0.31 ms necessary to synchronize with a server process and is much smaller than the

2.63 ms necessary to create a new process. It is thus advantageous to increase the grain size

of FFT tasks by computing K FFTs per task. The resulting granularity of O(KOlogO)

is about 29 ms. The task granularity of an SVD process is fl(K 3) which is 428 ms for the

example problem.

A prescheduled algorithm was implemented by creating one process for each of the K

FFT tasks and another process for each of the O SVD tasks. The parent task starts n

processes with either an FFT or an SVD task. Ali of' the n processes run to completion

before another n processes are started. This method is very easy to implement because all

synchronization is implicit in the fork and join like paradigm [41].

To overcome the process creation overhead, a self-scheduling algorithm was constructed

[38]. This method is more complex than the prescheduled algorithm but has a smaller time

overhead. It requires explicit synchronization between server processes and a task manager.

n server processes are created and each waits for a start signal after initial setup of local

state information. After receiving the start signal from the task manager, a server checks

what part, of the matrix it is to work on next. When finished the server sends a ready signal

to the hibernating manager. The manager then reassigns each of the server processes until

the task queue is empty.

Figure 13 shows the computation time for different sizes of inl)ut matrices. The speedup

of the algorithm, shown in figure 14, increases as the size of O and K are increased. The

prescheduled algorithm is faster for very small matrix sizes because the self-scheduled al-

gorithm server processes have a larger startup overhead than a process started by the

prescheduled algorithm. The self-scheduled algorithm is faster for medium sized problems

that have small grain size,.',s but the prescheduled algorittnn again apl)roaches the speedup of

self-scheduling as the problem size increases.

4The matrix A of equation 53 is less general than the algorithm will accept since it. is symmetric with
square blocks and real elements instead of having rectangular I)locks and complex elements.
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Executiontime versusMatrixsize
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Preschedulingalgorithmdotted line
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Figure 13: Computation time versus problem size with four tasks and four processors avail-
able to service tasks.
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MultitaskingspeedupversusMatrix size

Prescheduling algorithm dotted line
Self-scheduling algorithm short dashed line
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" Figure 14" Speedup versus problem size with four tasks and four processors available to
service tasks.
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The efficiency, shown in figure 15, does not approach unity as quickly as expected. This

might be attributed to the timesharing scheduling algorithm used by the CTSS operating

system and not to synchronization overhead because the overhead, shown in table 4, is less

than 1.0% for O and K larger than 64 [42] [43]. It was not possible to verify this conjecture

by using the machine without other users present.

Multitasking efficiency versus Matrix size

Prescheduling algorithm dotted line
Self-scheduling algorithm short dashed line
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Figure 15: Efficiency versus problem size with four tasks and four processors available to
service tasks.

The process creation time was found to be 2.63 ms. Task synchronization in the self-

scheduling algorithm was 0.31 ms. A typical procedure call was Ineasured to take 4.7 its.

Self-scheduling has less time overhead than presclleduling but is still 66 times more expensive
than a procedure invocation.

Data memory usage and overhead is shown in table 5. Very little memory is necessary

,_,, "llqlll"' ",, lr ,_l',,w, ,,,iii lt ' ' lnlP,II.... INl_ ,*,,rl ,
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O = K prescheduled self-scheduled

• overhead (ms) /% overhead overhead (ms) % overhead
4 25.7 29.9

• 8 46.8 42.77 32.3 5.09
16 80.2 10.89 37.3 1.29

'¢_3.. 155 7 2.66 47.2 0.32

64 306.8 0.61 67.1 0.07

Table 4" Synchronization overhead versus problem size.

for the synchronization of tasks. Each of the processes needs some local working storage for
' (]computing FFTs and SVDs. (o e memory usage and overhead is shown in table 6 The

code space sharing was small due to a problem in the Fortran compiler that made code

replication necessary.

0 = K sequential prescheduled self-scheduled

usage (kB) usage (kB) c_,overhead ,,sage'(kB) % overhead
8 112 40(.) 265.2 475 324.1

16 240 533 130.4 604 151.7

32 i 648 1q46 18.1 1948 18.2

64 12400 12698 2.4 12888 3.9

Table 5: Data memory usage and overhead versus problem size with four tasks.

n ' sequential prescheduled self-scheduled

usage (kB) usage (kB) (7_,Overhead usage (kB) % overhead
1 404 450 11.4 447 10.6

2 404 489 '21.0 492 '21.8

3 404 530 31.1 537 32.9

4 404 570 41.1 582 44.1

Table 6: (:ode memory usage and overhead versus number of active tasks.

Dynamic xnemorv allocation costs are basically indel)endent of the block size being al-

located for small blocks, The cost depends almost entirely on the liumber of blocks being

' allocated. Each block takes approxinlatelv 0.68 nJs to allocate. The server processes of the

self-scheduling algorithm avoid this overhead by reusing their local storage during each ac-

tivation. The prescheduling algorithm originally allocated local storage blocks within each

child process. This was deemed to be unsatisfactory and another parameter with working

, storage was passed , o each child t,o avoid tile overhead of dynamic memory allocation.
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The BCSVD algorithm provides orders of magnitude speedup by utilizing tile circulant
structure of matrices. A further speedup was obtained using rnacrotasking. This does not
reduce central processing unit, charges because time oil ali processors is billed to tile job [43].
However, a substantial savings iii memory charges is achieved because the program memory
residency time is reduced by the muitiprocessor speedup [44] [45]. For typical problems O
and K are approximately 256. This requires approximately 800 megabytes of memory which
can be quite costly to use.

Self-scheduling is useful when the task granularity is small. As the task granularity
increases, prescheduling overhead becomes less important. Prescheduling is much easier to
implement and debug. There are no explicit synchronizations to consider since tile operating
system handles the process allocation and scheduling. The parent only has to wait for
the operating system to signal that the child has finished. Self-scheduling needs explicit
synchronization with tile server tasks and is therefore more difficult to implement and debug.

The Fortran compiler does not allocate local variables on the stack properly. II. puts
some local variables into static storage. Thus, code sharing is not possible for the Fortran
subroutines. Each process must have a separate copy of the code and local data space. This
was done by creating copies of the subroutines arid giving each cop3,' a unique name space
by appending the process number to the nanw of the subroutine and all of its descendants.

4 Conclusions

The inverse problem requires the solution of large systems of linear and non-linear equations.
For example, the Donner (,00-Crystal Positron Tomograph takes 120,200 projection measure-
ments and the resulting linear system is 120,200 x 120,200. The computational complexity
of configuration space methods based on orthonormal natural pixels has led to the use of a
distributed computing environment in which workstations are used to analyze results from
our identification, estiinatioil, and ol)timization algorithms rmlning on supercomputers in
a mult.ita_sking environment with priority scheduling. Several of the algorithms have been
implemented using large grain parallel processing and also remote procedure calls.

The block circulant singular value decomposition (BC,SVD) algorithm uses discrete Fouri-
er transforms to rotate the blocks of a block ciiculant matrix into block diagonal form. Each
block on the diagonal is then factored using a general singular value decomlmsition (SVD)
algorithm. The BCSVD a,lgorithnl provides orders of magldtude speedul_ over general SVD
algorithms. Fox"a 642 × 642 block circulant matrix. COmlmta.tion time decreased from 12
hours to 23 seconds oll a Cray-2 (aI_proximately 1 hour on a SPARCstation II) . Because
the BCSVD algorithm is ,,asy to partition, a further speedup can be achieved using parallel
processing. The orthogollalit.,,' properties of nlultidimensioxml fast Fourier transforms (FFT)
allows the FFT portion of the algorithm to t_artition into macrotasks. Tile SVD of the
blocks of the block diagonal matrix can be computed independently and a macrotask can be
assigned to each SVD. A inultiprocessor speedup of 3.06 was achieved t'oi prescheduling and
for self-scheduling a multip,'-cessor speedup of 3.25 was observed using four processors on a
Cray-2. Relative time overhead was 0.5% for tile prescheduled algorithm and 0.07% for tile
self-scheduled algorithm. Relative memory overhead was 4% for both cases. Self-scheduling
13 U3tlt.ll _,%'11t7.11 It, lit? I.,t"_h _IalIUIt'I.IIU)' 13 3111(111. /-3t3 bllr I.,t'l.hh _lt'lllUlgtlll,.y lllt. lVt'l.3t'3_ ])lW','nS..llt2tlUl-
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ing overhead becomes less important. Tile prescheduled algorithm is satisfactory for most
emission tomography problems because all the dimensions of the matrices are greater than

• 64 and the task granularity will therefore be large when compared to the synchronization
overhead.

Multitasking the block circulant singular value decomposition algorithm decreases overall
computation costs by reducing the time large sections of meinory are in use. Little or no gain
comes from reduced central processing unit charges since processing time on all processors
is charged to a job.

The data acquisition model presented in this work provides a mathematical framework
to incorporate detailed knowledge about the response function of a tomography system and
the statistical properties of the signals acquired using that system. Using this mathematical
forward problem model, it, is easy to represent systems of varying complexity; e.g., simple
spatially invariant systems, systems with spatially variant response that have symmetries,
and the most general linear case, a spatially variant system without symmetry. The novel sin-
gular value decomposition of the projection formation operator used in the data acquisition
model is a powerful mathematical description of a tomography system and is fundamental to
the estimation (inverse problem) methods presented here. While the results presented in the
examples are not inconsequential, these techniques should find the most utility in Inodeling
the spatial sampling of each unique tomograph. Extensions of the model to include sampling
in three spatial dimensions as well as time should be straightforward; but, in practice, higher
dimensional applications may be limited by computational tractability without using special
computing technology.

Because the data acquisition process is represented as a linear map from a continuous
domain object space to a discrete domain observation space, it, is a more physically re-
alistic model of many systems than approxin_ations using continuous-continuous maps or
discrete-discrete maps. Thus, the validity of many results that. were obtained using these ap-
proximations, e.g., angular and lateral sampling density in emission tonlography, may need
to be reexamined using the new, more robust techIliques presented in this work. While the
verification of old results is worthwhile, it is the unanswered questions such as the efficacy
of iterative algorithms and stopping rules, the formulation of Bayesian estimators that use
basis functions in the null space of the projection formation operator, the representation
of object, functions that are convex cones, and the efficiency of algorithm implementations
that provide challenging new research opportunities for the application of the mathematical
methods presented here to characterize and solve inverse proi)lems in tomography.

The computational complexity of reconstruction algorithms can be reduced by using
orthonormal natural pixels because this basis preserves symmetries in the data acquisition
process. The present state of the art in comi)uting hardware can be expected to accomplish
a properly composed orthonormal natural pixel least squares reconstruction of data taken

• with a modern rotationally invariant tomography system, such as the Donner 600-Crystal
Positron Tomograph, in 13 minutes per tomograph slice. While substantial performance
enhancements are often realized using improved hardware, specialized thought in algorithm
development can lead to more significant performance increases allowing the solution of
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