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Abstract

• Transport in a magnetic field configuration near stochastic threshold is investigated. The waiting

time distribution near magnetic islands, and the size distribution of these islands are identified as

the two fundamental functions which determine both the short time subdiffusive behavior, and

the regular diffusive regime. These time and length distributions are studied, the mean square

displacement is expressed in terms of these functions, and the result is compared to direct

numerical simulation.
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A three dimensional toroidal , ognetic field is a Hamiltonian system, and the existence of

magnetic surfaces in an axiaymmetric configuration is a consequence of the Kolmogorov-

Arnold-M6ser (K.A.M) stability theorem. Chirikov overlap of small resonant magnetic field
I,

perturbations can lead to the onset of chaotic field line diffusion [1]. This deconfinement

mechanism is a candidate to explain the anomalous confinement properties of tokamak

discharges [2,3].

In a previous work we reported a numerical conf'u'mation of the Rechester-Rosenbluth (RR)

regime well above stochastic threshold [4]. In the present work we address the critical issue of

transport near stochastic threshold, a probable state of a braided magnetic field in tokamaks.

We find that transport in this state can be understood in terms of two basic functions; the

waiting time distribution around magnetic islands and the size distribution of these islands. We

study these distribution functions and calculate the mean square displacement. Both the initial

subdiffusive behavior and the final diffusive motion agree with direct numerical simulation.

Near threshold the islands have two effects on transport. First, a geometrical effect: the

volume occupied by the islands does not contribute to transport [5]. Second, a dynamical effect: ,

an orbit spends a Ions time wandering around each island before crossing the stochastic sea and

striking the next island. This sequence determines the behavior and magnitude of transport near

threshold, the geometrical structure of phase space entering the associated waiting time

distribution through the island size distribution.

The transport of a scalar can always be decomposed as a set step/pause/step/pause/step... To

complete this structural reduction of the random walk near threshold we must introduce the

waiting time distribution at the pause _g(t)dt = (Probability to wait a time t) and the step size

distribution _(s)ds = (Probability of a step size s) .

We are interested in the mean square displacement <x2(t)>. Given an N step walk we can

write:
r



S oN

<x2>= <[ESi]2> = N f s2 O(S) dsal

1 t_
to (1)

N P

• <t>=<Y.ti> = N I t _1/(t) dt
1 O

To express the mean square displacement as a function of the time we have to eliminate N

from these equations. However for fixed N, the particles do not completely explore the

distribution of step sizes and waiting times. Thus rather than taking so = to = + oo, we introduce

two cut offpoints which are in fact N dependent: to = tm(N) and so = Sm(N).This regularization

gives the same result as a renormalization group procedure. When these integrals are well

behaved, we get normal diffusion with Deff=Js2_(s)ds/2Jt _(t)dt. But in the generic case the

regularization, depending on the behavior of t_ and _ at large argument, gives rise to the

occurrence of anomalous behavior [6] of the type

• <x2(t)>-- ta, <x2(t)> .-- log_3[t]. (2)

The exponents ct and II, characterizing the random walk, can be larger or smaller than one, with.

. anomalously long trapping time or ballistic flights often the cause of this subdiffusive or

hyperdiffusive transport. The occurrence of logarithmic behavior is also often due to trapping.

The case []_.4has been found by Sinai for diffusion in a random one dimensional potential [7].

In reference [4] we investigated transport above stochastic threshold using a Chirikov-Taylor

model. In this model a Lagrangian representation of heat flow along and across the magnetic

field is achieved by adding a random reversal of the velocity v correlated with a cross field

displacement of gyroradius 9. The Poincar6 section of such a dynamics for vt = 1 is:

f Zt+ = Zt + Vt

Yt+l = Yt + Xt+l
Xt+ 1 = X t + e sin[Yt] + P t (3)

and for vt - -1 the second and third equations must be inverted so that for Or=0 a particle

retraces its path back along the field line. The sign of vt for each particle is changed each time



step with probability P producing diffusive motion in z. A collisional displacement Pt of

magnitude p and random sign is given to x on those time steps that vt changes sign.

The Lyapounov length is evaluated with the usual algorithm [8]. The parallel mean free path

is _'c = (I'P)/P , and the parallel and perpendicular diffusions are Xll= (I'P)/2P and )_±= 92p/2.

Near threshold we observe subdiffusive behavior of logarithmic type followed by diffusive

motion. The numerical diffusion coefficient agrees with the Rechester-Rosenbluth value, DRR.

provided that one uses the numerical magnetic diffusion coefficient. This value, determined by

the anomalous waiting time of a field line around the islands and the island size distribution, is

very different from the quasilinear value, lt is remarkable that the analysis leading to DRRis valid

even though the diffusion of the magnetic field fines proceeds through a process quite unlike that

occurring well above threshold.

For example, for e = 1.1, P = .8, p = 10.8 we find subdiffusive behavior with 13= 1 for t <

5x106 . For very large t we find <x2(t)> = 2DRRt with DRR = 1.5 x 10-7, whereas the
41

quasilinear estimate gives DRR-- 10.3 . In the present work we will use these parameter values

to illustrate the results. A more complete discussion including transitions to other domains will .

be presented in a future publication.

To calculate the distribution of island size we proceed as follows. Introduce a grid, and

calculate the extent of the stochastic sea by initially setting the function n(id) = 1 everywhere and

then following a single long orbit in the stochastic sea, setting n(i,j) = 0 for each grid square

visited. Then sequentially label connected sets of island points and finally join the islands at the

edges of the domain in accordance with topological identification on the torus. Then by counting

the number of points to determine the area of each island, a complete catalogue of islands can be

made, each with its associated area and perimeter, from the island of maximum size so down to

islands of the grid size. Sample results are shown in Fig. 1 for e = 1.1.

Using continuum notation, the expression for the total area of ali islands with size greater than

s as a function of the density of islands of size s, D(s), is



S o

,, A(s) = j s2D(s) ds . (4)
S

The spectrum of island size, shown in Fig. 2, has two regimes. For small islands the

distribution of the islands is a fat fractal [9], with A(s) being given by

A(s) = A(0)- c sp , (5)

and for e = 1.1, A(0) = 17, c _1.3, p = 0.6. For s < so the scaling is quite different, and we

obtain

A(s) = b s"a (6)

with a -_0.2, b--12. From Eq. (4) we find, in this domain, D(s) = a b s -(3+a). We refer to

this scaling regime as the dynamical range, as we will see that it determines the transport in the

medium. Equations (5) and (6) capture ali the statistical geometrical properties of the phase

space near threshold.
lh

By following single particle orbits we find that long periods of time are spent circling the .

, periphery of the largest islands, according to the sequence capture/trapped/escape. Near

threshold, the dominant contribution to the time spent in any orbit comes from this trapping near

the largest island.

To quantify this process we measure the trapping time as a function of the island size, using

initial conditions with the particle located within the stochastic sea, but close to an island. We

choose the initial point to be within one grid spacing of the island. The minimum distance to the

island perimeter is then monitored as a function of time. Figure 3 depicts a typical realization of

this process, showing a plot of this distance versus time. (This plot shows a short-time average

of the distance, so does not display the fine scale bursting and intermittency which is present.)

The particle spends a long time stuck near the surface of the island, where the level of

stochasticity is only slightly above threshold. However once it has diffused to a point well inside

the stochastic sea, the rate of escape from the island increases rapidly.



By exploring many initial points distributed about the perimeter of the islands a well defined

mean trapping time is found. We have numerically determined this trapping time for four of the

largest islands. These correspond to the period one island (a in Fig. 1), the period two islands (b
b

in Fig. 1) the period three islands (c in Fig. 1), and the period five islands (d in Fig. 1). Note

that for islands with period greater than one the perimeter must be taken as the union of points in

the perimeters of ali islands in the chain. The trapping times obtained in this manner are shown

in Fig. 4. The mean trapping time, x, depends exponentially on the island perimeter,

x(s) = xo es/L (7)

where for these parameters x0= 5 xl0 -5,L = 0.5 (the occurrence of exponential trapping time is

quite common in the theory of transport in disordered media). This result is clearly incorrect for

s<<L, as it indicates that inf'mitesimal islands have a trapping time independent of their size. For

lack of a better procedure we will truncate x(s) at 5=. 1L. Results are insensitive to this value as
CD

long as it is not taken to be much smaller than this.

The dependence of x0 and L on e, 9 and P will be discussed in a future publication. ,

However, we note that the same dependence, Eq. (7), exists for P=0, 9=0, i.e., for magnetic

field line diffusion, with x0 =. 50, L = 0.5. In this case z(s) gives the length of the field line

remaining close to the island before escaping. The collisional trapping time is shorter than the

time required to diffuse this distance with XH'i.e., particles do not escape the islands simply by

diffusing along the escaping field line, x0 is shortened by the cross field diffusion. We conclude

that for small 9, L is mostly determined by the geometrical phase space structure, i.e., depends

only on _, but x0 depends on both P and 9. Clearly these dependencies determine the variation

of the transport with energy and mass. The domain of validity of Eq. (7) will be discussed in a

future publication. In 'ali these determinations, but particularly for magnetic field line diffusion,

the numerical experiment is complicated by the existence of nearby undetected islands (smaller

than the grid size), the interiors of which are obviously not allowed as initial conditions.

u,,'



Using Eqs. (1), (6), and (7) we can calculate the mean squared displacement. Diffusion

consists of steps with size given by the linear dimension of an island, and pauses while the

particle is attached to an island (not ali the pauses occur around islands or ali the steps between
q

islands, but for a statistically significant set of realizations, the relevant sums are dominated by

these processes). To evaluate _(s) consider a random path through the medium. The probability

of intersecting an island of size s and thus the distribution of island sizes encountered along the

trajectory is 0(s) = sD(s). The distribution of trapping times is ",alsorelated to the distribution of

the islands through

_t(t) = fS[z(s) - tlqb(s)ds . (8)

To find the cut off points sm and tm giving the regulafization consider a trajectory having

encountered N islands according to the probability d_. The limit sm,and hence the large scale

islands not visited is given by the expression
So

1
f ¢(s) ds = _-. (9)

Sm(N)

, Substituting this expression into Eq. (1) gives the mean squared displacement as an implicit

function of time
Sm Sm

_s2*(s)ds fe s/Ld_(s)ds
<x2> 8__ 8

= so ' <t> = I:o so (10)

Sm Sm

Note <x2> is independent of the cutoff 8, but <t> diverges if 5 ---)0, reflecting the incorrect

behavior of Eq. (6) for small s. These expressions are independent of the normalization of _.

The subdiffusive behavior can be obtained by evaluating the leading contributions to these

integrals. For Sm< so this dominant scaling is <x2> = loga+l[t]. Using the measured value

a=0.2 this result agrees reasonably with the observed subdiffusive behavior, which lasts until t =

5x 106 , i.e., from Fig. 4, until ali but the single largest island have been explored.



For times long enough that the entire island spectrum has been sampled, there is diffusive

motion with
So So

Deft = fS2¢(s)ds)/[2Xo feS/L¢(s)ds ] • (11) ,,
8

Using Eqs. (5) and (6), and evaluating these integrals we find agreement with the direct

numerical simulations within a factor of 2 both for the collisional case and for field line

diffusion. Further above threshold <x2> and <t> must include contributions from the stochastic

sea, which finally dominate well above threshold, leading to the usual quasilinear expression for

DRRand to the quasilinear value e2/4 for the magnetic field lines.

In conclusion, we have investigated transport in a stochastic magnetic field near stochastic

threshold using the Chirikov-Taylor map. We have identified the statistical geometrical properties

of the underlying phase space, O(s), and the dynamical properties of the islands, z,(s), as the

building blocks of the macroscopic transport process. Moreover Eqs. (10) and (11) give the

mean square displacement both in the early subdiffusive regime and tile long time diffusive

regime.

Slightly above stochastSc threshold short time propagation is subdiffusive, with <x2> = log_(t).

The exponent of the log is determined by the spectrum of islands in the stochastic sea. For

sufficiently long times transport is diffusive. The Rechester Rosenbluth formula is correct

provided one uses the effective magnetic diffusion given by Eq. (11) rather than the quasilinear

value. The island size spectrum and the trapping time determine the value of this near-threshold

diffusion constant, which can be orders of magnitude smaller than the quasilinear value both in

the collisional and collisionless case.

This work was supported by the U.S. Department of Energy under contract number DE-AC02-

76-CHO3073.
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Figure Captions

Fig. 1. Island perimeters found using a grid mesh of 1000x 1000, e = 1.1.
t

Fig. 2: The distribution of island size for e = 1.1. Note the occurrence of two scaling

regimes. The letters refer to the islands depicted on Fig. 1.

Fig. 3: Distance from island perimeter for island c in Fig. 1, as a function of time.

Fig. 4: Trapping time as a function of island size s. The points were obtained using initial

conditions next to the islands, a, b, c, and d in Fig. 1. The vertical bars indicate the

width of the distribution about the., iear'.
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